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Taking the viewpoint that a complete solution of the Liouville equation contains much more
information than is necessary in response theory (wherein one is concerned with a particular
response), projection techniques are employed to introduce a shortcut in the problem. The
treatment supplements and completes the formalism initiated in a previous publication and
yields a general equation which is more relevant to response theory in the usual sense. The
most natural application is to the theory of transport. The general transport equation is an-
alyzed in the context of electrical conduction. Meaningful similarities to the simple classical
Drude model of conduction are exhibited; the relationship of this exact formalism to the Kubo
theory of linear response is shown, an exact solution for a step-function stimulus and approx-
imation procedures which go beyond the linear regime are presented, and an expression for
the electrical resistivity is explicitly calculated thus making contact with an earlier paper by
Kenkre and Dresden. The response equation is also analyzed in the context of electric and
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magnetic polarization.

I. INTRODUCTION

In a previous publication! an integrodifferential
equation was obtained for response theory in the
context of statistical mechanics. Projection tech-
niques were employed to avoid the complicated
problem of the full dynamics of the system density
matrix p and to select only that part of p which is
relevant to the response ». The techniques achieved
a formal elimination of the irrelevant part of p and
yielded a general linear homogeneous equation for
¥. This equation (or one having its general charac-
ter) has been used®® in several different ways to
obtain various results. However it has a definite
drawback: Its derivation entails the assumption
that the value of the response at £=0 is nof zero.
Such an assumption is no doubt perfectly valid in
situations like the ones treated in Refs. 2 and 3
wherein the response is a correlation function or a
reduced distribution function. On the other hand,
important situations also exist in which the response
is indeed zero before the application of the external
stimulus, the simplest example being the electric
current which arises when (and not before) an ex-
ternal electric field is applied. The theory devel-
oped in Ref, 1 does not apply to these instances and
the response formalism initiated in that paper must
therefore be supplemented by more general consid-
erations. These are the content of this paper.

The Liouville equation® obeyed by the system
density matrix p(¢) is

z‘a-‘;—,f"L L), (1)

where the Planck’s constant has been equated to
2w, and the Liouville operator L(¢) is defined in
terms of the Hamiltonian H(¢) through the relation®

d

L{t)o =[H(), o] for anyo . (2)

The Hamiltonian H(¢) includes the stimulus applied
to the system.

The conventional problem of response theory con-
sists of the solution of (1) and the subsequent ex-
traction of the response » from the p thus obtained
by means of the prescription®

7(t)=TrRp(), 3)

where R is the operator corresponding to the re-
sponse. Clearly, if one’s interest lies only in the
response ¥, one requires only that part of p which
figures in (3), and the complete solution of (1) con-
tains too much information. A solution of (1) is
therefore not really necessary in response theory
and, as we have shown in Ref, 1, the two operations
in (1) and (3) may be combined in a certain sense to
obtain an evolution equation for the response:

¢

i;ti‘LB(m(mj ds K, sp(s)
0
+C(t)-7(0)C(t).  (4)

Whenever 7(0)#0, one may choose the projection
operators involved in the derivation of (4) in such a
way that the last two terms in (4) are eliminated,
giving”

oy

TR (5)
with ¥ as a linear integrodifferential operator.

However, if one has zero initial response, it is

not possible to get (5) from (4), and one must al-
ways have an inhomogeneous term added to the
right-hand side of an equation like (5). Sucha
term is obviously necessary since if #(0)=0 in an
equation like (5) with ¥ a linear operator, the re-
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sponse will never “pick up” and will be forever
destined to remain at its initial zero value, The
approach of Ref. 1 may no doubt be extended triv-
ially to cover these situations by merely putting
7(0)=0 in Eq. (4) to obtain

%: Y7+ Cylt). ®)
An examination of the term C,(¢) reveals, however,
that it has no important significance, and such an
approach does not facilitate the analysis of response
theory. The formalism developed in the present
paper proceeds along quite different lines and will
be found to be more natural and suggestive. While
this analysis was begun merely to complete the
arguments of Ref. 1, it is, inits final form, more
general and more useful to the theory of response
in general and the theory of transport in particular.

InSec. IT it will be shownthat the condition #(0)=0
immediately suggests that one split the density ma-
trix into two parts p, and p’ and concentrate merely
on the time evolution of one of them, viz.,p’. This
latter part of the system density matrix, which is
the part that arises after and due to the application
of the external stimulus, will be found to be de-
scribed not by a homogeneous equation like (1) but
by one containing an inhomogeneous term. The
Zwanzig projection techniques® (which must then be
applied to this equation) have been most frequently
used in conjunction with homogeneous equations., In
Sec, II their use is extended to inhomogeneous

equations and the projected equation (19) is obtained.

This is quite complicated in structure but it is
shown that by defining the projection operator in a
certain way (which is different from the way it is
defined in previous publications) a significant sim-
plification results. In Sec. IV this equation is ap-
plied to the problem of response theory and Eq.
(27), the principal result of this paper, is obtained.
Some exact results connected with this equation

are also derived. The problem of electrical con-
duction is studied in Sec, V with the help of the gen-
eral transport equation which takes a form amazing-
ly similar to the result one obtains from the simple
classical Drude model. Remarks are made con-
necting the formalism to the Kubo theory and an
explicit expression (in terms of the matrix elements
of the scattering potential) is obtained in the linear
approximation, Exact solutions and approximation
procedures going beyond the linear regime are also
discussed. In Sec. VI a difficulty that seems to
arise in the application of the formalism to the
study of phenomena like electric or magnetic polar-
ization is pointed out. The difficulty is resolved

by redefining the projection operators. General
remarks are made in Sec. VII, where the formalism
is also compared to other investigations which have
used the method of projection techniques.

II. SPLITTING OF THE DENSITY MATRIX

The condition #(0)=0 (which has launched this
analysis) naturally suggests that the density matrix
be split into two parts p, and p’,

p=py+p’, (7)

where p, equals p(0) and p’ is the part that is initial-
ly zero and rises solely due to the application of

the stimulus. Such a splitting is natural because
Eqgs. (3) and (7) and the condition #(0)=0 above

show that

¥(t)=TrRp’(t). (8)-

For such responses therefore, it is only p’ that is
of immediate relevance, Carrying out the corre-
sponding splitting for the Hamiltonian and the Liou-
ville operators

H=Hy+H', 9)
L=Ly+L", (10)
where H’ and L' contain the external stimulus and

H, and L, do not, it is possible to put (7) and (10)
in (1); note that

% Lopy , (11)

i
ot

and obtain the equation governing the time evolu-
tion of p’:

’

i%:LopuL'p, (12a)
’
i%%—: Lp'+L'p,. (12b)

The two forms of Eq. (12) are equivalent to each
other, A certain separation of the causes which
bring about the change in p’ seems to have occurred
in (12a). The first term represents the contribution
of the stimulusless system alone, the stimulus being
entirely placed inthe second term.® Afurther advan-
tage of (12a) over (12b) appears to be inherent in
the terms linear in p’. In (12a) it is Lop', while in
(12b) it is Lp’. The operator L, is always simpler
than L and is often time independent (in most, if
not all, applications). It will become clear later on
in the discussion that such a lack of dependence on
t is highly advantageous for it gives rise to time-
independent terms and difference kernels in the
final projected equation, making possible such tech-
niques as Laplace transforms to be applied toward
its solution. In spite of all these advantages of
(12a) over (12b), it turns out that it is not practical
to use (12a) in subsequent calculations, and the
simpler character of the last term in (12b) makes
it preferable to (12a) as the point of departure.

The conventional problem of response theory may
therefore be reworded as the solution of p’ from
(12) followed by the extraction of the response by
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means of (8). In order to combine Egs. (8) and
(12) in a manner parallel to that of Ref. 1, projec-
tions must be applied to Eqs. (12). These equa-
tions, however, possess an additional feature not
present in (1). Unlike the latter they contain an
inhomogeneous term. In (12a) it is L’p while in
(12b) it is L'p,. Projection techniques, which have
been applied most frequently in conjunction with
linear homogeneous equations, must therefore be
generalized in the context of inhomogeneous equa-
tions. This is done in Sec, III,

III. PROJECTION TECHNIQUES

Consider the inhomogeneous equation for a quan-
tity «(£) 20:

22w )+al). (13)
Defining x’, x’', @’, and @’’ through

x'=Px, (14a)

x"=(1-Pk, (14b)

a’'=Ppa, (15a)

@"’"=(1-P)a, (15b)

where P is a linear time-independent operator, it
is noted that the respective application of P and
(1 - P) to (13) gives

14
P’ PR e’ (162)

axll

i~ = P)eiw'+a’”. (16b)

1-P)L(tp" + (1~

Since an equation like

2 -Dy+c) (1)
may be solved™ as

y@)= [ dsg(t, s)Cs)+g(, 0)y0), (18)

s(t, s):exp[fatdt'D(t’)]’ (18a)

the solution x’” of (16b) may be substituted in
(16a) to obtain

.o’ ’ ’ ’"
1F=P£x +a’'+PLG{E, 0)x''(0)

- iP.,B(t)I ds G, s)1—P)&(skx’(s)
0

t

—iP£(t)I ds G(¢t, s)a’’(s), (19)
0

¢
G(t, s)=exp I dt'"1-P)eit")| . (19%)

S

Equation (19) is horrendously complicated, and one

might naturally wonder whether it is at all possible
for anything nice and simple to emerge from the
frightening depths of this complicated result. How-
ever, it will now be shown that a significant sim-
plification is indeed possible. If Eq. (13) is used
always with the condition that x(0) =0 (as is the
case for the particular case x=p’) and if (1 ~P)
does not disturb this zero value, i.e., if

(1 - P)x(0)=0, the third term on the right-hand
side of (19) disappears. It will now be assumed
that the inhomogeneous term G(¢) in (13) is of the
form

a(t)=a f(t), (20)

where @ is a time-independent operator (if x is an
operator) and f(#) is a ¢ number. Note that this is
the form used by Kubo!! in his theory of linear re-
sponse, and it is the form most frequently met with,
It is perhaps in order to remark at this stage that
projection techniques make a real contribution to
the solution of a problem only when a carefully
selected projection operator is defined and that
without the proper choice the techniques can hardly
achieve anything of value, A search must therefore
be made for such a projection operator as will allow
a simplification of Eq. (19).

The choice

Po=(TrM@a)™a TrMo for anyo (21)

M being some operator satisfying TrM@#0, shows
that P is linear, time independent, and idempotent.
Its most important property, however, is that it
projects the inhomogeneous term G(¢) at any time ¢
onto itself:

a’(t)=Palt)=a(t). (22)
Since P must be time independent, it is the par-

ticular form (20) of @(¢) that makes (22) possible,
A corollary of (22) is that

@"’({t)=(1-P)a(t)=0 for all ¢, (23)
The last term in (19) is then suddenly eliminated

on account of (23) and the equation is enormously

simplified to
t

iaﬂaf;(t):Poe(t)x'(t)_if ds P£(t)G(t3 s)
0

x(1—P)E(s)x'(s)+alt), (24)

which may be written in the manner of Eq. (6) as

’
iy, (25)
at

Note, however, that unlike the C,(¢) of Eq. (6) the
c(#) in Eq. (25) is highly significant: It is the in-
homogeneous or “driving” term appearing in

Eq. (13).

The foregoing analysis has thus succeeded in
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yielding from Eq. (13) a projected equation [Eq.
(25)] which is relatively simple and suggestive.
This equation will be put to use in Secs. IV-VII in
the context of response theory.

IV. GENERAL RESPONSE EQUATION

The external Hamiltonian H’ appearing in (9) will
now be assumed to have the time dependence of Eq.
(20), i.e., it will be taken as Af(t), where A is a
time-independent operator and f(f) is a ¢ number,
As remarked earlier, H’ covers a very large part
of stimuli one encounters in practice and is also the
choice made by Kubo.** It will be noticed that such
an H' throws the inhomogeneous term in (12b) [but
not the one in (12a)]* into the form of Eq. (20) if
the stimulusless density matrix p, is taken to be
time independent, This will of course be true un-
less the initial state of the system is a highly com-
plicated nonequilibrium one. The following corre-
spondence between (12b) and (13) is therefore es-
tablished:

LH)-L@),
F@&)~1@) .

The results of Sec. III, the correspondence (26),
and the choice M =R give

x=p',
(26)
G~ Lypg,

ar(t) ¢ .
7:oz(zs)romj ds Q(t, syr(s)-inflt), (27a)
0

which may be rewritten differently as
t

ar(t .
0 asa, swis)-instn, (27b)
0
or cast into the by now familiar form
& v —inflr). (27¢)

ot

The various quantities appearing in Eq. (27) are
given by

a(t)=(1/in) Te[RL()L 4p) , (28a)
Q(, s)=~ (1/n) TrRL()G(, s)(1 - P)L(s)Lapg,

(28b)
G, s)=exp—[i [ at’ (1 - P)L@")], (28¢c)
2, s)=Q, s)+alt)dt~s), (28d)
Po=(1/n)L,p, TrRO® for anyo , (28e)
1=TrRL,p, . (28f)

Equations (27) and (28) constitute the principal
result of this paper. Given any response of inter-
est, one may immediately write down Eq. (27) for
its time evolution. The tedious and partially irrel-
evant problem of the solution of p from the original
Liouville equation or Egs. (12) is thus formal-
ly avoided. Surely whether or not a really signifi-

cant advantage has been gained will be decided only
by the actual form of the response and the operator
G(t, s). However, the formal simplification intro-
duced may be (dramatically) appreciated by con-
sidering a particular instance wherein the response
operator R has nonzero elements only in an ex-
tremely limited part of its matrix. Solving for a
highly complicated p with zillions of nonzero matrix
elements and then applying the simple operator R
to the p through (3) throwing out in the process all
but a highly limited number of the matrix elements
of p (because they are irrelevant to the response),
knowledge about which has been gained at the cost
of enormous effort, is then seen to be a ridiculous
way of tackling the response problem. Equation
(27) achieves this elimination of the irrelevant in-
formation automatically through the means of the
projection techniques and thus recommends itself to
be taken as the point of departure in all response
calculations, Unlike the matrix equation (1), (27)
is a c-number equation and is therefore (at least
formally) much more simple, Also, the equation
is exact and highly suggestive. What is meant by
the term “suggestive ” will become clear in our
discussion of electrical conduction., Qualitative
considerations, approximation procedures, or even
exact calculations could profitably proceed with
(27) as the starting point. Examples of approxi-
mation procedures will be provided below. Exact
calculations of a function like @(#, s) have also
been carried out™ in a different context and similar
considerations may be immediately applied to the
general Q(¢, s)in Eq. (27). Note also that linear
response emerges trivially from our equation. **
One merely replaces Y by Y, where by the latter
we mean the expression for ¥ wherein the external
stimulus has been put equal to zero. When this is
done a beautiful separation occurs in the right-hand
side of (27): the effect of the external stimulus and
that of the interaction of the system components
(collisions, for instance) are neatly separated, the
former residing only in the last term in the right-
hand side of Eq. (27) and the latter only in the
first. In the general nonlinear case the last term
still denotes the sole effect of the external stimu-
lus, but the system interactions and the stimulus
get mixed in the first term. It is easy to show that
in the linear case, «(¢) sheds its time dependence,
Q(¢, s) turns into a pure difference kernel, and a
solution of Eq. (27) with the aid of Laplace trans-
forms (see e.g., Ref. 1) is made possible, It
should be borne in mind that the latter device may
be employed not only in the linear approximation
but whenever « and @ become, respectively, time

-independent and a difference kernel.!® Since Eq.

(27) will probably be used most frequently in its
linear approximation, it is exhibited explicitly in
that form:
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t

ara(:) = aor(t)+j ds @t —s)r(s)-inflt), (29)
0

with the solution for its Laplace transform

7(e)= () fle), (30)

where the Laplace transform of any function g(¢) is
written as £(e) and where the “linear response coef-

ficient” ¢(eg), given by
ble)=-in/le- ag- le)], (31)

depends only on the system components and is in-
dependent of the stimulus. Equation (30) may be
inverse Laplace transformed into the well-known
form

r(t):fotds o(t-s)f(s) . (32)

This makes contact with the Kubo theory!! which is thus
contained in, and is obtained effortlessly from, our
formalism. It is further possible to show that ¢ is
indeed a correlation function and thus to establish
the fluctuation dissipation theorem. ***® The quan-
tities @, and @, in (29) are given by

ag=(1/in) TrRLy L 4p, , (33a)

Qlt—s)== (1/0) TrRLy e = U=PYLo(1 _ P)L L 4, .
(33b)

I shall end this section with some exact reduc-
tions of Eqs. (27) and (28) that are possible in par-
ticular instances when certain relations exist be-
tween the stimulus and the response operators.
Some of these will be used in the subsequent dis-
cussion.

Suppose that the stimulus operator A and the re-
sponse operator R have a c-number commutator:

L,R=[A, R]=a ¢ number. (34)

Since TrRL L 4po=~— Tr(L4R)L 4p, and the trace of a
commutator must equal zero, (34) makes the above
trace equal zero and yields in Eq. (28a) a purely
time-independent a(f):

a(t)=(1/in) TrRLyL 4p, . (35)

It should go without saying that the 7 in (28f) equals,
in this case, the negative of the c-number commu-
tator in (34).
On the other hand, if A and R are conjugate op-
erators, in the sense that
R = (const)x[A, H,], (36)

one may write out the full commutator for L, in
the expression for TrRLyL,p,, use the fact that
Lyoy=0 and obtain

TrRLoL 4py = Tr[R(L,A)py — RpgLoA]. (37)

Using (36) to substitute for R in (37), the trace in
(37) is found to be zero, giving for the «(¢) of (28a),

a(t)=(1/in)f(t) TrRL%p, . (38)

Note that (35) and (38) are the two parts of a(¢) in
general and if the conditions of (34) and (36) are
simultaneously satisfied, the a(#) drops out com-~
pletely. This will be seen to happen in the case of
electrical conduction.

V. ELECTRICAL CONDUCTION

To better understand and appreciate the formal-
ism developed in the preceding sections, we shall
now study, with its help, the phenomenon of elec-
trical conduction, Striking formal similarities with
the simple classical Drude approach!” will be no-
ticed, and a usable result in terms of the matrix
elements of the scattering potential will be derived.

Consider a spatially constant, time-dependent-
electric field &§(¢) applied to a system containing N
electrons of charge — e, If the position and velocity
operators for the kth electron are denoted by x, and
vy, respectively, the operators A and R in (27) are
found to be

A=—elix,, (39a)
k

R=—eX v,. (39b)
k

Since the position and the velocity are related to

each other through v,=iLyx,, and [x,, v,]=(@/m)s, ,,

where m is the electron mass and 6 the Kronecker

& the following relations between A and R are ob-

tained:

R=iL,A, (40)
L, R=iNe?/m . (41)

An immediate simplification of Eq. (27) is obtained
through the use of the exact reductions described
at the end of Sec. IV. Equations (40) and (41) are
cases of (36) and (34), respectively, and the term
a(¢) is therefore completely eliminated from Eq.

(27). The equation obeyed by the electric current
je)=-e Tr{ :Qv,zpw)}
is then
) ¢ Ne?
91;—;"‘—) -], asat, )i 3 80). 42)

The result used here, viz.,
n=-iNe?/m (43)

can be easily obtained from (28e) and (41).
Equation (42) is the exact equation governing the
phenomenon of electrical conduction. The first
term on the right-hand side represents a general-
ized friction or resistance to the growth of the cur-
rent, and the second term is simply the electric
field (with the correct multiplicative factor), The
equation is remarkably similar to the result one
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might get from the simple Drude model'” wherein
one writes Newton’s equation

mi=—a't+ed(t), (44)
giving in our notation

aj(t ' Né

ng_%](”‘k—;ﬁ_ S(t) (45)

The only difference in (45) and (42) is the appear-
ance (in the latter) of a non-Markoffian friction
constant instead of — a’/m. Needless to say, this
is not a shortcoming of our theory. Nature does
indeed behave quite often in a non- Markoffian man-
ner. In fact, the most general form of the friction
term would be [y ds Q(¢, s)j(s) and the upper limit
of integration is stopped at s=¢ in (39) only due to
the cutoff introduced for s >¢ by the principle of
causality (our firm belief that future events can-
not influence the present). A Markoffian behavior
would demand the opposite cutoff, i.e., for s<¢,
and is by no means a necessary a priovi feature

of a theory. If memory were not present in the
friction term, an exponential behavior would al-
ways be assured for j(¢), and surely not all sys-
tems have such a universal and simple behavior.
The characteristics of each individual system un-
der consideration will make themselves felt through
the particular details of the structure of the mem-
ory term Q(¢, s). Note, however, that the results
of the Drude model are easily recovered by making
Q(¢, s) proportional to a Dirac & function in time:
Qt, s)=(=a'/m)s(t —s).

Before proceeding with an analysis of the trans-
port equation (42) in its linear approximation, we
shall make a few remarks about other possible at-
tacks on (42). As noted in Sec. IV, any set of
conditions which permits one to write Q(¢, s) in the
difference form Q(f - s), allows a solution through
Laplace transforms. An example is a step-function

stimulus. If a constant electric field is applied
suddenly at £=0,
8t)=86(), (46)

where 6(¢) is the Heaviside step function and § is
time independent, the Liouville operator takes the
form

L{t)=L,, £<0
=Ly+8L,, t>0 (47)

and therefore one obtains a time-independent L(¢)
all times after the application of the field. This
makes Q(#, s) a difference kernel and allows an
exact solution of (42):

je)= (N8 /m)[e? - eQe)]™. (48)

It should be clear that such a treatment for the case
of a step-function stimulus is possible not only for

(42) but also for the general response equation (27),
since (46) or its equivalent

f@)=r6@) “4s’)

allows Q(#, s) to be written as Q(¢ - s)and a(t) as a
time-independent @, the exact solution for the re-
sponse then being

7e)=(=inf)/ [ - ea-eQle)]. (49)

In situations wherein 8(¢) has an arbitrary time
dependence but Q(¢, s) is a difference kernel
Q(t~s), a nonlinear conductivity j (¢)/ &(e) similar
to the one defined by Tani'®!® may be obtained as

jle)/ 8e)= (Ne2/m)e - @(e)] ™. (50)

It should not be forgotten that (50) is not a linear
approximation (although if the latter is invoked,
Laplace transforms may be employed towards

the solution of the equation in a manner identical
to the above analysis). Similar remarks obviously
apply to the solution of the general response equa-
tion (27).

From the linear form of the transport equation
(42) an explicit expression in terms of the matrix
elements of the scattering interaction will now be
obtained for the dc resistivity of a system.

Such formulas have been given by Greenwood, 2’
Chester and Thellung,?! Verboven,?* and Kenkre
and Dresden.® The expression we derive here
will be almost identical (although obtained from
different considerations) to the one in Ref. 3 and
different from the ones in Refs, 20-22,

Defining the frequency-dependent resistivity
v(e) as equal to &(e)/j(e), one obtains from the
linearized version of (42),

(€)= (m/Ne?)e - Qule)], (51)

where éo(€), the zero-field limit é(e), appears as
the Laplace transform of the difference function
@Qo(¢=s). Taking the limit as € = 0 one obtains
from (51) the dc resistivity (0):

7(0) = (m/Ne?) fo”dt Qt). (52)

It is now possible to express the system Hamilto-
nian H, as a sum of two parts, a scattering inter-
action V and a “free” part H) whose only assumed
property is that it commutes with the current op-
erator R in (39b), write correspondingly

Ly=L3+Ly; (53)
note that
PL30=0 for anyo (54)

make the “weak-coupling approximation”®® in
(33b), approximate the equilibrium density ma-
trix as

pong-f-pv, (55)



778 V. M. KENKRE

where py is the linear term in a suitable expansion
of py in orders of the scattering V, and finally ob-
tain

mo_T
Ne* NmkT

7(0)= J'dEe'“EjE!@lvwz

X(F, ~ FyP6(E~ E;)5(E - Eu)/

de et Fy 6(E- E,), (56)
¢

where F is the operator for the total momentum
component along the direction of the applied field
and the current (only the diagonal elements of the
resistivity tensor have been considered here) and
is related to R through F=- (m/e)R; F,, F, are
its diagonal elements (| F[u), (¢1F[£), etc. in
the representation of the many-body eigenstates L,
£ of the “free” Hamiltonian HJ; % is the Boltzmann
constant, T is the temperature, and f=1/kT; and
E is the quasicontinuous energy variable (com-
pletely continuous in the thermodynamic limit that
we have used here) denoting the eigenvalues of HJ.
The equilibrium matrix has been taken to be canon-
ical in the above argument,

Further details of the derivation of (56) may be
found in Ref. 3 where a parallel calculation has
been carried out. The difference in the derivation
above and the one in Ref. 3 lies in the meaning
of the projection operator. The difference is not
trivial and the derivation in the present paper al-
lows one to avoid considerable work involving
extraneous expansions of the quantity J(0) appear-
ing in Ref. 3. Remarks showing the connection of
the development in Ref, 3 and the present theory
are perhaps in order. Defining y(¢) through &(e)
=y(e)jle), where j(e) is the Laplace transform of
the linear current, the Kubo theory'! or the fluc-
tuation dissipation theorem'*® exhibits the rela-
tionship between vy and the equilibrium correlation
function J(¢) through

y(e)=1/J(e). (57)

The work in Ref, 3 proceeds to show, with the
help of projection techniques, that

Je)=[e- Q)" (58)

where Q'(¢) is very similar to the Qy(¢) of (51).
Projection techniques are therefore used in Ref. 3
to “invert” J(e) and thereby remove the divergence
difficulties in the expression for J(0). In the pres-
ent paper they are used in the very beginning for
the totally different purpose of obtaining the gen-
eral equation (27) or (42). The starting point of
the considerations in Ref, 3 was the Kubo corre-
lation expression for 1/y, whereas our present
formalism does not involve the Kubo theory. In
spite of this, the calculations can be shown to be

| =3

almost equivalent,

It is possible to obtain simple Boltzmann results
from (56). For this and other discussions con-
cerning the resistivity formula, we refer the read-
er to Ref. 3. It is also possible to analyze the
transport equation (42) in other ways leading to
expressions for nondiagonal elements of the re-
sistivity tensor, magnetoresistance, an analysis of
the validity of Matthiessen’s rule,? and such
other discussions in transport theory. These will
form the content of a future publication, A scheme
for obtaining higher-order contributions to the
resistivity similar to those of Refs., 21 and 22
has been constructed and will also be presented in

that paper.
VI. POLARIZATION

For the phenomenon of polarization or magne-
tization, the response andthe stimulus operators
(R and A) turn out to be identical or proportional
to each other, For instance, in the case of elec-
tric polarization

A=R==-e)x,, (59)

P ,
where ~ e and x, are the charge and the position
(the displacement of the electron from its “original
position ) of the kth electron. This may at first
sight appear to pose a serious problem in the ap-
plication of the present formalism because from
(28f)

n=0, (60)

and the projection operator P cannot even be de-
fined since in (28e) it carries a factor (1/7) in its
expression. The entire formalism then seems to
break down, and one might conclude that in these
cases it is not possible to define a suitable oper-
ator D in

Po=(TrDR)™D TrRo for anyo , (61)

such that it simultaneously satisfies TrDR #0 and
eliminates the complicated last term appearing in
the projected equation (19).

However, closer inspection reveals that this
seeming breakdown of the formalism is only ap-
parent and arises only from a habitual (but unneces-
sary) ingredient in the definition of P, This habit-
ual ingredient probably owes its existence to the
nomenclature used to describe P, in particular
the term projection operator. Every single ap-
plication of the Zwanzig projection techniques
known to the author uses P’s which are idempotent,
i,e., which obey

PP-p, (62)
It is this property that requires the factor (TrDR)™

to appear in (61). It is, however, a property that
is entirely unnecessary for the present development.
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Linearity and lack of dependence on ¢ are all that
is required of P for the discussion in Sec, III,
Equation (62) need not, therefore, be obeyed, and
one may define instead of (28e),

PO=L 0, TrRO for anyo . (28e )

We may, if we wish, imagine a factor of value 1
and of appropriate dimensions multiplying the

right-hand side. The entire formalism then ap-
plies as developed earlier with the modifications

~a(t)=-1i TrRL(t)L 4p,, (28a’)
Q(t, s)==TrRL(¢)G(t, s)(1 = P)L(s)L,p,,
. (280 ")
and (28e’).
For cases when
A=aR, (63)

a being a ¢ number, one obtains with the help of
(34)

a(t)=~ia TrALyL s00=a TrAL 4, , (64)

where A= TrLyA is the Heisenberg equation of
motion for A, Note thus that «a(#) is exactly time
independent and equals —iNe?/m in the particular
case of polarization. Also (28b’) reduces exactly
to

Q¢, s)=—aTrAL,G(t, s)(1 = P)L(s)L,p,, (65)
with the understanding that
PL(S)L zpy= PLoL 40o=— a TrAL 4p;. (66)

Approximation techniques and detailed results may
be obtained for these cases but will not be exhib-
ited here.

VII. CONCLUSION

A formalism has thus been presented for the
theory of response in the context of statistical
mechanics, which is.exact, suggestive, and, I be-
lieve useful. One begins with the Liouville equa-
tion and first shows that for responses that are ini-
tially zero, the density matrix should be separated
into two parts, only one of which is directly rele-
vant to the calculation of the response. One then
notes that this part obeys an inhomogeneous equa-
tion, finds it, therefore, necessary to extend the
use of projection techniques to such equations, se-

lects a particular projection operator to bring about
a very significant simplification, and finally obtains

the response equation (27). Whereas it was the
desire to complete the arguments of Ref. 1 [valid
for cases with #(0)+0] that led to the present de-

velopment, the latter is truly general from the point

of view of usual response theory. Thus, even if
7(0)#0, if one focuses one’s attention on the change
in the response A7(¢)=7(t) — 7(0) and renames this
A7r(t) as the response, one will find that it satisfies

the zero-initial-value condition used in this paper.
In most instances of response theory Ar(t) is indeed
what one is interested in. Thus, while it is not to
be denied that important applications of the formal-
ism based on 7(0) # do exist, * the theory in the
present paper is perfectly general from the cus-
tomary viewpoint of response theory.

Needless to say, the validity of the response
equation (27) or the transport equation (42) is
dependent on nothing more than the validity of the
Liouville equation, since projection techniques do
not, in themselves, introduce any approximations.
For the same reason, (27) and (42) are reversible
like the Liouville equation, and irreversibility is
made to enter (in applications of the equations)
artificially by replacing a quasicontinuous sum
over states by an integral, introducing Dirac &
functions in the place of time integrals of imaginary
exponentials, or with the help of such other arti-
facts. Like the Kubo theory, this formalism does
not (and is not supposed to or expected to) yield
irreversibility because it is a direct consequence
of the microscopic equations. The development
here is not aimed at the problem of irreversibility,
and for applications of projection techniques to the
latter, the reader is referred to the works of
Zwanzig, ® Jones, 2 and Muriel and Dresden. 2

The exactresponse equation derivedin this paper
is simple ontwo counts: It is a c-number equation
as opposed to the matrix equations one is faced
with in the Liouville problem, and it has a built-in
elimination of the parts of the density matrix not
relevant to the particular response of interest. The
form of the equation is quite simple and in transport
theory [Eq. (42)]it takes on an especially suggestive
aspect. The Q(¢, s)[or in the general response equa-
tion the 2(¢, s)] plays the part of a generalized friction
and, in the case of electrical conduction, is very
closely related to the resistance. Several simpli-
fications arising from manipulations with the pro-
jection operators are already seen to occur in my
formal discussion, Further reductions will be
made possible when one uses a concrete Hamil-
tonian inthe expressions of (27), (28), and (42). To
establish the usefulness of the formalism and to
show the details of how it makes contact with
usable expressions involving scattering matrix
elements, free eigenfunctions, the temperature,
etc., I have derived a formula for electrical re-
sistivity [Eq. (56)]. Such results involving exact
considerations or approximation techniques can
be obtained for other situations in response theory.

It is seen that in more senses than one the re-
sponse equation (27) is nonlinear. Linearity is ob-
tained by expelling the stimulus from 2 (¢,s). Some
remarks must be made in connection with this
linearized version of (27) and (5) which is exact but
derived only for 7(0)#0. There are two meanings
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to linearity. Thus, one may state that

. 67
o =W (67)
is linear, meaning that the operator Q is such that
the principle of superposition applies: (y,+,) is
a solution if y, and y, are solutions. Such a lin-
earity is clearly absent from

B _qyicl), (68)
at

since (v, +7,) will not satisfy (68) if y, and y, do
unless c(¢)=0. However, there may be another
kind of linearity to Eq. (68). Calling the c(¢)’s

the inputs and the y(#)’s the outputs, @ may be

such that if inputs ¢, and ¢, cause outputs v, and

v,, respectively, input ¢, +c, causes output y,+y,.
We then say that (68) describes a linear system.
The former kind of linearity is associated with the
superposition principle, the Schrodinger equation
in quantum mechanics, the Liouville equation, etc.
It exists also in Eq. (5) which was derived in Ref.
1. It is absent in the equations developed in the
present paper. However, these, in the approxi-
mate form (29), possess the input-output type of
linearity discussed above. The latter is typical to
response theory and is encountered in the literature
on control systems and related electrical-engineer-
ing matters.

FinallyIshall compare the present formalism to
the theory developed by Mori. 2" Thiswork, ofwhich
I was unaware during most of the period of prepi
aration of the present pap'er, proceeds to provide
a justification to the Langevin equation used in the
theory of Brownian motion. Projection techniques
are used for this purpose and equations resembling
some presented here are derived. A brief com-
parison of Mori’s formalism and the present ap-
proach will be found at the end of Ref. 3 and Ishall
mainly repeat some of those comments. Some of
the equations derived by Mori bear a resemblance
to some obtained in this paper, but very signifi-
cant differences exist both in the results and the
spirit of the investigation. The Heisenberg equa-

tion of motion for an operator (with no statistical
mechanics in it) serves as the starting point for
Mori’s investigations and the result obtained is an
equation obeyed by the same opervator whose Hei-
senberg equation is the point of departure. The
present development begins with the Liouville
equation containing the statistical element through
the density matrix p and ends with the response
equation for a ¢ number, viz., . A “random
force” term appears in Mori’s results and is in-
deed relevant to the theory of Brownian motion
that he treats. No such term appears in the re-
sults in this paper. The real differences between
two treatments using projection techniques lie in
the definition of the projection operators. These
are totally different in Mori’s approach and the
present formalism. His bear a greater resem-
blance to the ordinary projection operators in
quantum mechanics?® and are chosen specifically
to eliminate the first term in a projected equation
like (19) and to retain an initial value term [like
the third term in (19)] which is to play the role of
the random force. My projections, however, are
chosen for the particular purpose of eliminating the
last term in (19) and obtaining an equation which
(almost) separates the effect of the stimulus and
the system and is therefore particularly suited to
response investigations, The theory of Brownian
motion is ideally discussed in the context of Mori’s
work while my formalism aims specifically at re-
sponse theory. Another author whose work involves
projections, is Argyres. In a lucid and detailed .
exposition®® he has described the use of projection
techniques to obtain kinetic equations. A splitting
of the density matrix p (as in Sec. II) occurs in his
treatment, and he also applies projections to an
inhomogeneous equation. However, he (approxi-
mately) separates p into an equilibrium part and a
linear part, and his projection operators are quite
different from the ones employed here. Also, his
aim in the use of projections is to obtain kinetic
equations for reduced density matrices, and is
therefore entirely different from the one in this
paper.
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Simultaneous measurements of the time dependence of the electron number density and the ion wall
current in a helium afterglow are reported. The transition from ambipolar-to-free diffusion is investigated as
a function of gas pressure and discharge-tube size. The onset of the transition regime occurs when
A/ {Ap) =86, where (A ) is the Debye length corresponding to the average electron or ion density, and
A is the characteristic diffusion length of the vessel. The time dependence of the transition regime was found
to depend only on A/(\,) if times are scaled as ¢D, /A?. This latter result is in agreement with high-pres-
sure theories which assume mean free paths short with respect to experimental dimensions. The ion
current changed by a factor of (1.2 £0.5) X 105 during the transition. The ions diffuse free by space-charge
effects when A/()\i)) < 0.25, where (\}; ) is the Debye length corresponding to the average ion density.

I. INTRODUCTION

The space charge in a plasma inhibits the diffu-
sion of electrons while enhancing the ion diffusion.
At sufficiently high values of charged-particle den-
sities the electrons and positive ions diffuse at the
same rate (ambipolar diffusion) and for isothermal
conditions the ambipolar-diffusion coefficient is
exactly twice the ion-free diffusion coefficient. For
very low densities, space-charge effects become
negligible; electrons and ions diffuse independently
of each other and this is known as free diffusion.
The density range between these two extremes is
called the transition regime. This regime is of
primary interest in this paper.

The transition from ambipolar-to-free diffusion
has been studied both theoretically'™ and experi-
mentallys"’ for many years. Allis and Rose! 1aid
the groundwork for these studies by calculating the

behavior of the electrons in a steady-state dis-
charge. Their calculations were for a gas in which
D,/D, =32, where D, and D, are the electron and
ion diffusion coefficients, respectively. Although
their results give a qualitative understanding of the
transition regime, an exact comparison between
experiment and their calculations cannot be made
because D, /D, is much greater than 32 for most
gases. Cohen and Kruskal? extended the steady-
state calculations of Ref. 1 by using a somewhat
different approach. Since both of these analyses
are for a steady-state discharge, some question
arises concerning their applicability to an after-
glow. In neither case do the authors discuss the
temporal behavior of the ions during the transition
from ambipolar-to-free diffusion although the decay
of the free-electron density is easily inferred from
the solutions. Measurements®® of the electron
density in the range from 10" to 2x10* cm™ in a



