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Abstract—The results of a recently presented formalism for neutron scattering lineshape calculations are
used to characterize the observable consequences of the coupling of tunneling and hopping interactions
of atoms moving in solids and are compared with those of another development, which treats the two

interactions but neglects the coupling.

1. INTRODUCTION

In a number of physical systems ranging from metal
hydrides and solid electrolytes to molecular crystals,
the transport of microscopic (quasi) particles fails to
conform to traditional models for highly coherent or
highly incoherent motion. In some of these systems,
in particular, metal hydrides, the motion of the
mobile particles, e.g. hydrogen nuclei, may be directly
probed through the application of neutron spectros-
copy. In a recent article [1] (hereafter referred to as
KB) the present authors have presented an evaluation
of the neutron scattering lineshape based on the
stochastic Liouville equation. The emphasis of KB
was placed on the behavior of the lineshape as a
function of the degree of transport coherence and on
the dependence of lineshape detail on temperature.
The usual motional narrowing behavior was shown
to result: small degrees of incoherence broaden the
coherent lineshape duc to band motion, while large
degrees of incoherence narrow the line toward an
asymptotically Lorentzian form.

In this study we wish to examine more closely the
broadening contributions of hopping processes when
they need to be considered as an additional channel
for the motion. We first consider a development
proposed recently [2] which, although incorporating
both tunneling and hopping processes, neglects cor-
relations between the two channels. We then consider
the consequences of coupling the two channels by
using a stochastic Liouville equation and following
the development of KB. This will allow, through a
direct comparison, an examination of the extent of
the validity of the uncoupled development. Debye-
Waller factors are neglected throughout both devel-
opments, for simplicity.

The central role is played by the scattering auto-
correlation function

I(k, t) = Tr pe *e?0, ey

from which the scattering function is obtained by
Fourier transformation in the time variable [3]. In
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(1), p is the equilibrium density matrix, x is the
position operator of the scatterer and k is the mo-
mentum transferred to the target; x and k are generally
vectors, and kx is their dot product.

If one neglects, as in [2], the coupling of tunneling
and hopping motions by writing (1) as a product of
the correlation functions due to the individual pro-
cesses,

Ik, 6y = Litk, D1k, 1), @

the combined lineshape is a convolution of the
lineshapes derived from the tunneling and hopping
processes separately:

Sk, w) = fw de' Splk, w — @)Sp(k, &), (3)

the functions S,(k, ) and S, (k, w) being the respective
time-Fourier transforms of I,(k, ¢) and I,(k, D).

If the hopping process may be represented by a
master equation with translationally invariant rates,

Pou(t) = 2 Z [YmrPr8) = Y Pon(D), (4)

the correlation function due to the hopping process

is a simple exponential, and the resulting scattering

function for the hopping channel alone is a Lorentzian

2" = 4H

Sk, w) = 1r‘1|:—————— 5 5

h( ) wz + 4(70 _ 'Yk)z ( )

wherein k superscripts indicate discrete Fourier trans-

forms in the site index.

If, as in KB, one denotes the Laplace transform of

the band channel correlation function [,(k}) by
7%(¢), where e is the Laplace variable, one obtains

Stk, w) = 7' Re{7"(iw + 2 — YN} 6)

from a conjunction of (3) and (5).
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Equation (6) is the result of the scheme prescribed
in [2]. The contributions of the tunneling process are
reflected in the nature of 7* whereas those of the
hopping processes are in the 4’s, and the correlations
between the two processes are neglected as a result
of the decoupling approximation (2). To examine the
extent of validity of the decoupling approximation,
we use the exact analysis of KB. That analysis takes
as its point of departure a well-known evolution
equation for the matrix elements of the density
matrix p of the moving particle in the representation
of the site states m, n

i)mn = —Z[H, p]mn —2T(1 — 5mn)pmn

+ 26mn Zr(7mrprr - 'Yrmpmm)- (7)

This equation is called the stochastic Liouville equa-
tion (SLE) [4] and contains two kinds of fluctuation
parameters: nonlocal (m # r) fluctuation strengths
v, and local fluctuation strengths -v,... Both types
of fluctuation serve to scatter a particle whose co-
herent evolution is otherwise determined by a Ham-
iltonian H; however, the nonlocal fluctuations con-
tribute to the transport of the particle independently
of I1, and hence constitute a distinct transport channel.
The parameter I' may be defined through the relation
I = Z.I'umsr, which results from derivations of (7)
based on a stochastic Hamiltonian [4, 5]. An evalu-
ation of the scattering function from an exact solution
of (7) is given by KB. 1t takes the form

Stk, w)

7w + 2T) ] ®)
1=2[T = (° - Y)W e + 2D ]

=qg! Re|:

where the quantity #*(iw + 2T") is the Laplace trans-
form of the function
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Fig. 1. Neutron scattering lineshape S(k, ) calculated from

the SLE incorporating both tunneling and hopping interac-

tions. Parameter values: (a) ¥%/2V = 0.01, (b) ¥°/2V = O.1,

(©) ¥°72V = 0.5, (d) ¥*2V = 1.0, (e) ¥°/2V = 5.0; for all
curves ka = w/10.
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Fig. 2. Neutron scattering lineshape S(k, w) calculated using
the same tunneling and hopping interactions as are incor-
porated in the SLE, but neglecting their correlation. Parameter
values: (a) ¥°/2V = 0.01, (b) v°/2V = 0.1, (c) v°/2V = 0.5,
(d) ¥%/2V = 1.0, (e) ¥°/2V = 5.0; for all curves, ka = =/10.

Lk, )= Z '3 (€7, (e e ), () e ",
(9)

evaluated at the value (iw + 2T') of the Laplace
variable, and ¢ is the infinite temperature limit of
#*. In (9), Z is the partition function and 8" is the
product of the Boltzmann constant and the absolute
temperature.

2. COMPARISON

There are obvious differences between (8), which
is an exact consequence of the SLE (7), and (6),
which is the result of the decoupling approximation
(2). For definiteness, we evaluate (6) and (8) at
infinite temperature (yn = ¢) for the simple model
consisting of a linear chain with nearest neighbor
tunneling interactions, viz., H,, = V{(dmnn
+ 8yn-1). In order that (7) represent the evolution of
the system under the action of tunneling and hopping
processes only, we neglect local fluctuations v,.,.
This consists of replacing T' by 4 in all expressions.
The resulting lincshape formula may then be directly
compared with (6). It is easily shown [6] that (2) then
becomes

Sk, ) = 7 Re({[(iw + 2v°)

+ VR = 2947, (10a)
On the other hand (6) takes the form
Sk, w) = 7~ Re{[(iw + 2¢° — 2Ky
+ V(¥ (10b)

These results are shown in Figs. | and 2, respectively.
The narrowing of the lineshape seen in Fig. 1 is
related to that discussed in KB—it is the consequence



Coupling of tunneling and hopping transport interactions 581

of limited quantum mechanical phase memory and
will be caused by either local or nonlocal fluctuations.
If only local fluctuations are considered, the lineshape
does not rebroaden as is seen here; this rebroadening
may be attributed to the dominance of the hopping
transport channel.

There exist some limits in which (10a) and (10b)
are identical. These occur when the basic band or
hopping parameter is allowed to vanish, in the limit
of infinite wavelengths (k = 0) and for particular k
such that v* 0. The latter, for example, would
occur at ka = w/2 for nearest-neighbor hopping
interactions. A useful parameter for clarifying the
limiting behavior of lineshapes is the complex ratio
¢ = Vk)/(ie + 2v%. Denoting (iw + 2v%) by ¢ and
reexpressing eqns (10) in these parameters,

Stk, w) = =~ Re{[€2 + V(k)?
+ 2942y — 261 + )1,

Sk, @) = 7' Re{[e? + V(k)
£ 29 2YF = 20071,

(11a)

(11b)

it is clear that thc two approaches yield identical
results when ¢? is small enough to be neglected.
Thus, the two formulations yield similar results when
transport is extremely incoherent, and in any case
vield the same behavior in the far tails of the scattering
lineshape.

The comparison of the two results (10a) and (10b)
may bc complemented by considering the corre-
sponding correlation functions in the time domain.
The quantity of interest is the intermediate scattering
function I(k, £). In the infinite temperature limit this
is the Fourier transform of the probability propagator
of the particle being probed. The latter quantity has
been calculated [7], and for the present model yields

Ik, t) = exp(44'y,Z)Jo(4Vt sin (k_za_))
+ (47, cos ka) exp(—4v 1) f du exp[(4y, cos ka)u]
o
x Jo(4Vsin (%)(zz - u2)'/2) . (12a)

wherein we have denoted +¥,.,..1 by 7. Equation
(12a) is the time domain result corresponding to
(11a). The corresponding result which follows from
2)is

Ik, 0
. [ka
= exp[—(4y, cos ka)t]lJo| 4V sin =) (12b)
The mean square displacements for an initially
localized condition implicit in the two approaches

are easily evaluated from eqns (12). These are, re-
spectively,

12 212
)l (i — exp(—4v.0],

2
(@) o (27' * T @y

(4v1)
(13a)

{mP(t)y oc 2yt + VA (13b)
At long times the SLE produces a mean square
displacement (13a) which increases linearly in time
and yields a two-channel diffusion rate. On the other
hand, neglecting correlations between the two channels
eliminates the scattering of an otherwise coherently
propagating particle which is necessary to produce
diffusive motion over macroscopic length scales, with
the result that at long times the mean square displace-
ment (13b) increases quadratically in time. At short
times, both mean-square displacements increase lin-
early in time. This feature is directly attributable to
the existence of a purely incoherent transport channel
in the models considered. Needless to say, when
SLE’s are used to study motion at short times, the
approximation of completely incoherent motion via
the additional channel of motion represented by the
4’s is not made, and the mean square displacement
initially displays a quadratic dependence on time, as
required.

To examine the subtler behavior of the two line-
shapes we have discussed, it is useful to consider the
“peak height™ S(k, 0) and its reciprocal S(k, 0)™' as
functions of the available parameters. Care must be
taken that this formally useful device does not lead
to misinterpretation of our results. For a Lorentzian
lineshape, wS(k, 0)~' is identical to the half width at
half maximum (HWHM). In general, no simple
relation exists between S(k, 0) and the HWHM,
particularly for such parameters that Sk, 0) is not a
peak. In practice, however, data are commonly fitted
incorporating the experimental errors in weighting
functions, with the result that fit parameters are most
representative of line shapes in their peak regions.
Thus, one may sometimes use S(k, 0) to obtain
information about derived HWHM’s. We shall not
use S(k, 0) in this way. Rather, we shall use S(k, 0)
as a simple formal device for comparing line-shape
formulations.

Figures 3 and 4 display S(k, 0) as a function of
incoherence and S(k, 0)"! as a function of momen-
tum transfer. The narrowing behavior seen in Fig.
1 appears in Fig. 3 as an increase in S(k, 0) which
is initially linear in the incoherence parameter
24°/V(k), with a slope determined by the value of k.
When +v*/4° < 0, that slope is negative, in which case
the line does not narrow before final broadening sets
in. The v* = 0 case discussed above, in which the
two formulations are identical, is thus seen to be the
marginal case demarking regions of k-space in which
motional narrowing will and will not be observed. In
all cases, however, the dependence of S(k, 0) on the
incoherence parameter continues to be linear near
the coherent limit. When correlations between the
band and hopping channels are neglected, S(k, 0)
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Fig. 3. Sk, 0)-wV(k) as a function of the incoherence

parameter 2v°%/V (k). The solid curves ( ) were calculated

from the SLE and display the characteristic features of

motional narrowing. The dotted curves (»» - - - ) were cal-

culated neglecting correlations between tunneling and hop-

ping processes: (a) ka = w/10, (b) ka = =/2, solid and dotted
curves coincide, (¢) ka = .

becomes a monotonically decreasing function of in-
coherence for all values of &, as is seen also in Fig.
3, and no narrowing of the lineshape occurs. The
dependence of S(k, 0) on the incoherence parameter
is quadratic near the coherent limit. Near the inco-
herent limit, both formulations vield essentially the
same results, attesting to the weakening of correlations
between the two channels with increasing incoherence.

The “reciprocal peak height” S(k, 0)~', which has
some of the properties of the HWHM, is displayed
in Fig. 4 as a function of momentum transfer. The
most significant feature of this comparison is that the
SLE (7) results in a quadratic dependence on & in
the long-wavelength limit (ka <€ 1), with a coefficient
given by the two-channel macroscopic diffusion rate

V2
xSk, 0" o (7" + ?)(ka)z, (14)

reflecting the usual diffusive behavior as seen in the
mean square displacement (13a). This result remains
valid when V?%/~° is replaced by V*T. Neglecting
correlations between channels results in a linear
dependence on k in the same limit, with a coefficient
given by the rms velocity of an unscattered particle
in the coherent channel,

7Sk, 0™ o 2Vka, (15)
reflecting the behavior of the mean-square displace-
ment (13b).

3. CONCLUSION

The techniques of neutron scattering lineshape
theory are well developed for addressing microscopic
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motion which is completely coherent (as for a particle
in an energy band) or completely incoherent (as for
a random walker). It is also possible (as in KB) to
treat the intermediate case of an arbitrary degree of
coherence. The coupling of a particle’s translational
motion and its local vibrational motion can be treated
in various ways, depending on the nature of its
environment (e.g. solid or liquid) and the strength
with which the two kinds of motion are coupled. For
an atom moving among the sites of a crystal, the
local and translational motions may usually be taken
to be uncorrelated, resulting in the familiar Debye—
Waller factors as coefficients of quasielastic scattering
intensities. The proven usefulness of this approach
for separating the scattering contributions of local
and translational motion has suggested that a similar
separation might be used to advantage when the
translational motion is the consequence of the com-
bined action of tunneling and hopping processes [2].

Our calculation of the neutron scattering lineshape
using a transport equation which embodies the cou-
pling of tunneling and hopping processes has allowed
us to isolate lineshape features attributable to that
coupling by contrasting an exact analysis of the
stochastic Liouville equation {1] with its correspondent
for which the coupling of the two channels of motion
was specifically neglected [2]. It has been shown that
motional narrowing of the scattering line shape is the
normal behavior near the coherent limit, even in the
presence of an additional hopping channel, and the
conditions under which narrowing would not occur
have been determined. It has been found, on the
other hand, that, when correlations between the two
channels are neglected, the lineshape does not narrow.
Importantly, it was seen that neglecting correlations
between the two channels of motion results in un-
physical lineshape features for small momentum
transfers. Specifically, both a direct evaluation of the

S (k,0)'/4zV

0.4
ka/m

0.6 0.8 1.0

Fig. 4. S(k, 0)"'/(4= V) as a function of momentum transfer.
The solid curves (——) were calculated from the SLE, while
the dotted curves (- +« ) were calculated neglecting cor-
relations between tunneling and hopping processes: (a) v,/
V = 0.1, (b) v,/V = 1.0. The differences between the two
treatments are particularly acute at long wavelengths.
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relevant mean square displacement and the behavior
of the peak height as a function of momentum
transfer has revealed that the assumptions underlying
such a lineshape calculation are inconsistent with
diffusive behavior on a macroscopic scale.
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