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The motion and capture of excitations on the Sierpinski gasket and on two Koch curves are inves-
tigated analytically by solving the master equation explicitly. We obtain the exact time dependence
of the average self-propagator and the survival fraction, as well as quantities relevant to the sensi-
tized luminescence such as the time-dependent luminescence intensity and the impurity quantum
yield. The capture calculations are particularly applicable in the limit of low trap concentrations. It
is seen that, at sufficiently long times, the behavior of the motion and capture is governed by the
spectral dimension only, in agreement with results reported earlier on the basis of other approaches.

I. INTRODUCTION

Recent studies have shown that many physical systems
exhibit fractal geometry over a range of observable length
scales.! Systematic studies of critical phenomena? and of
random walks® on fractal structures have been carried out
over the past few years. Recently,*> fractal behavior in
trapping and reaction has been studied by following the
dynamics of continuous-time random walks.

- Fractals are self-similar structures that exhibit dilation
symmetry and are not translationally invariant. The di-
mension d of the Euclidean space in which the fractal is
embedded is different from the Hausdorff dimension® d
of the fractal. The latter usually has a noninteger value
unlike d which is an integer and d <d. Another dimen-
sion, called the spectral dimension,’ E, is also required to
describe the transport and trapping phenomena on fractal
lattices. It has been shown® that various random-walk
properties are governed by the spectral dimension and
simulation studies®> have verified these results.

In this paper we present a new approach towards the
study of motion and capture of excitations in fractal sys-
tems. Although our analysis is of general interest, we oc-
casionally use language relevant to the specific physical
system consisting of a molecular crystal (also called the
host) with impurity molecules (also called traps), the mov-
ing excitations being Frenkel excitons.

Our approach® is based on the master equation, which
describes the motion of excitons in the host augmented by
terms representing exciton decay with lifetime 7 and cap-
ture by traps at rate ¢ whenever the exciton occupies a
trap-influenced site. It has been shown® that this analysis
for translationally invariant systems leads to simple ex-
pressions for observables such as the quantum yield or
photon count rate in the case of sensitized luminescence.
Since the systems under study in the present paper are not
translationally invariant, we cannot use all the results of
the analysis in Ref. 8. However, we will show that, for
low trap concentrations, only small changes are needed in
the relevant results® in order to describe motion and trap-
ping in fractals.

The plan of the paper is as follows. We consider the
motion of excitons without capture or decay in Secs. II
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and III. The Sierpinski gasket of d=2 and d=In3/In2
(see Fig. 1) is studied in Sec. Il. We use the algorithm of
Domany et al.’ for the solution of the Schrédinger equa-
tion on the Sierpinski gasket to obtain the self-propagator.
The long-time behavior of the self-propagator and its
dependence on the spectral dimension d is also considered.
In Sec. III we analyze two quasi-one-dimensional lattices.
These lattices have d=2 and d=1 but d=In4/In3 and
In6/1n4 (see Fig. 2). Although the algorithm of Domany
et al.® cannot be used in these cases, it is possible to use
the idea of cells as described in Sec. III. The self-
propagator and its long-time behavior are analyzed as in
Sec. II. At sufficiently long times, the evolution is
governed by the spectral dimension. This finding agrees
with earlier results.>’

Section IV incorporates the decay and capture terms in
the equation of motion. It is here that the absence of
translational invariance of the system poses a special diffi-
culty. However, we are able to solve the problem for low
trap concentration. The impurity quantum yield and the
time-dependent host luminescence for the lattices
described in Secs. II and III are the output of our calcula-
tion. It is seen again that the long-time behavior is deter-
mined by d. The discussion of our results is the content
of Sec. V.

2 3

FIG. 1. Construction of the Sierpinski gasket. There are
three sites on the largest scale (.#"=0). First two generations
are shown.
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FIG. 2. (a) Construction of the Koch curve for d=In4/In3.
The first two generations are shown. The labeling of the sites
within a cell is shown for the first generation. The dotted lines
separate the individual cells (see text). (b) Construction of the
Koch curve for d=In6/In4. The first two generations are
shown. The labeling of the sites within a cell is shown for the
first generation. The dotted lines separate the individual cells
(see text).

II. MOTION ON THE SIERPINSKI GASKET

In this section we give a description of the transport of
excitations on the Sierpinski gasket® (sometimes abbreviat-
ed by SG). A sequence of fractal lattices is shown in Fig.
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1. Following Domany et al.,’ we use boundary condi-
tions to identify the corners of two triangles on the largest
scale as shown in Fig. 1. After any finite number .4~ of
iterations, one has a lattice of N sites where n =3 '+!. If
| P(2)) is the probability vector whose components P, (t)
are the probabilities that the excitation occupies sites m at
time ¢, the motion of the excitations obeys, by assump-
tion, the master equation

%|P(r)):Fh |P(t))—4F | P(2)) 2.1
where F is the hopping rate between nearest neighbors and
the N X N matrix s has elements h,,, which equal / if m
and n are nearest neighbors and O otherwise. If we write

|Py(t))=e 5™ P, 2.2)
we obtain_
h|Py)=—(Ey—4)|Py)=—E,|P,) . (2.3)

This constitutes an eigenvalue problem solved by Domany
et al.’ In particular, they gave an algorithm for obtaining
the eigenvalues E, and orthonormal vectors | P,) for a
gasket obtained after any number of iterations. This is
done by reducing the problem on the (.#"+ 1)th genera-
tion to.the problem on the .#th generation. For example,
the sites of the lattice after one iteration are grouped into
two sets (see Fig. 1). The amplitudes on the sites
1,2',...,3" are written in terms of the amplitudes on
the sites 1,2,3. Effectively, the eigenvalue equation on
nine sites is reduced to a similar eigenvalue equation on
three sites. The resulting Hamiltonian has the same form
as the earlier one. Equivalently, the eigenvalues and
eigenvectors of the (.#"+ 1)th generation are written in
terms of the eigenvalues and eigenvectors of the .#th gen-
eration.
A general solution of Eq. (2.1) can be written as

|P(1)y=3 (P, | P(0)Ye F«*¥ P,y . 2.4)

The sum is over the complete set of eigenvectors. The ex-
plicit probability at the (arbitrary) mth site is

P,(t)=(m |P(1))
= > (Py|n"){n"|P(0))e

—(E,+4)Ft
@ (m|P,),

(2.5)

where (n’|P(0))=P,(0) is determined by the initial
(#=0) distribution of the excitation in the gasket. For the
localized initial condition P,(0)=35,, , the probability
P, ,(t) that the excitation is at the site m at time ¢ given
that at t=0 it was at the site » is

—(Ey+MFt

Ppn(t)= 3 (Py|m){n|P,)e (2.6)

As a particular result of (2.6), the self-propagator at the
site m, i.e., the probability that the excitation remains at
the site of initial occupation, is
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|2 —(Eq+4)Ft

Ppm)=3 |(Py|m) 2.7)

In general P, ,(¢) is dependent on the site m because of
the absence of translational invariance, and therefore is
difficult to obtain. However, the macroscopically impor-
tant quantity is the average of all the self-propagators

o (t)= }17 S Ppm(2) (2.8)

and can be evaluated explicitly, since,

(Py|Pey=1=3 (P, |n){n|Py) . 2.9)

Equation (2.8) yields

1 —(E_+4)Ft
¢av(t)=— 2 e “ .
N a

(2.10)
We rewrite (2.10) as
1 _
Y= 3 g(Egle et 2.11)

where g(E,) is the degeneracy associated with the eigen-
value E, and the primed summation goes over distinct
eigenvalues only. The values of E, and g(E,) are ob-
tained from the results of Ref. 9 and the evaluation is
therefore complete. We have carried out the explicit
evaluation of the energy spectrum up to the eighth genera-
tion, in which the number of sites N =3°=19683. For
any large but finite N, ¥,,(¢)—1/N as t— «. However,
as N increases, ,,(¢) will approach the limiting value
(N— o) very rapidly. We have plotted ,,(¢) for a large
range of ¢ values in Figs. 3(a) and 3(b). From the behavior
of 1,,(¢) in the earlier (less that eighth) generations we can
state with confidence that for all higher generations ,,(z)
is not appreciably different from that shown in Figs. 3.

III. MOTION ON QUASI-ONE-DIMENSIONAL
LATTICES

We will now analyze the motion of excitations on two
lattices which are quasi one dimensional. These lattices
have d=1 and 2 but have different d values. Figure 2(a)
shows a few generations of a lattice with
d=In4/In3=1.262. .. .

The method outlined in the preceding section cannot be
used to analyze these lattices. However, a much simpler
technique will be used here. It utilizes the quasi-one-
dimensional nature of the lattices in the sense that if the
sites are partitioned into cells, the cells are translationally
invariant. We use the boundary condition which identi-
fies the last site of the lattice with the first (note that be-
cause of the quasi-one-dimensional and nonbranching® na-
ture of the lattice, the sites can be ordered and the first
and last terms have meaning when applied to the sites).
The four sites of the smallest unit can be considered to
form a cell. Figure 3(a) shows how such partitioning can
be done for the first generation. These cells can be labeled
by m (m=1,2,...) and within each cell the four sites
can be labeled as shown in Fig. 2(a). If P;"(¢) is the prob-
ability that the excitation at time ¢ occupies the jth site of
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FIG. 3. (a) Average self-propagator ,,(¢) plotted as a func-
tion of the dimensionless time Ft. The propagators for
d=In4/In3 and for d=In6/In4 are indistinguishable on the
scale of the figure. (b) Average self-propagator ¥,,(¢) as a func-
tion of the dimensionless time Ft on a double-logarithmic scale.
The slopes give the long-time behavior. The self-propagators
for all d=1 lattices are indistinguishable on the scale of the fig-
ure. -

the mth cell, and if F is the hopping rate between the
nearest neighbors, then

dPT (1)
— L _FPr4+PP 2P,
dt . .
dP%(t)
_212?“ =F(PT+PT+PI'—3P7),
3.1)
dP% (1)
— L _F(PT P _2PT),
dt
dP7(t)
#:F(Pﬁ” +PT 4P _3pmy

If we exploit the translational invariance of the system of
cells and use Fourier transforms

pllcz S eikmpm ' (3.2)
- .
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we obtain
d/sdt| PXt))=FA | PX1)) , 3.3)

where the vector | PX(z)) has components P}‘(t) and the
matrix A is given by

—2 1 0 e*
1 -3 1 1
A=|o 1 2 1 |- (3.4)

With the localized initial condition
P;"(O)zﬁm,osj,,- > (35)

which implies P}‘(O):Sj,,-, we solve (3.3) exactly with the
use of Laplace transforms

Flo= [~ dre=<f (3.6)

for all four independent initial conditions (corresponding
to the four sites of cell m=0). We use tildes to denote
Laplace transforms and € to denote the Laplace variable.
Thus the resulting | P¥€)) can then be Fourier-inverted
to obtain | P™(e)). The latter give the probability propa-
gators. In particular, the value of the vector | P ™(€)) at
m =0 gives the self-propagators

P, (€)=(e+4)+4e+2)/D , (3.72)

Pyay(€)=P,  (€)=(e+4)+3e+2)/D , (3.7b)

By ye— 1(;%5) (€3+862—;186+10) . (3.70)
Here

D =[(c +2€e+6)(c —2¢e—6)]"?, (3.8a)

c =€*+10€’+32¢*4-34€+6 . (3.8b)

Note that, as a result of the translational invariance of the
cell system, the label m is not necessary in Eqgs. (3.7):
Fj, ;j(€) is the Laplace transform of the self-propagator for
site j in any cell. Equations (3.7) cannot be inverted
analytically but a numerical inversion'® gives all the self-
propagators P; ;(¢) explicitly in the time domain.

The method outlined above can be used to analyze the
lattice of Fig. 2(b). The labeling of cells and the sites
within a cell are shown in the .#"=1 generation [Fig.
2(b)]. The final results for this lattice, which corresponds
to (3.7), are

P 1(€)=P,,(e)=(a’b*—3a% —ab*—a*+a +b)/D’,

(3.9a)
P; 3(e)=Pg¢(€)=(a*h —2a>—2a% +2a +b)/D’,
(3.9b)
Py4le)=Ps s(e)= (a’b®—3a’h —ablz—a3+3a +b)
D
+(1_i¢ , (3.90)

where

a=€+2, (3.10a)
b=€e+3, (3.10b)
¢'=a*b?—4ab —a*—2a*b*+4ab +4a*+b*—1,
(3.10c¢)
and
D'=[(c'+2a*)(c'—2a*)]'?. (3.10d)

As in the case of the lattice of Fig. 2(a), the self-
propagators P; ;(t) for all sites within a cell are obtained
from the numerical inversion. The average, 1,,(2), of all
self-propagators for these two lattices is shown in Fig.
3(a). The long-time behavior of #,,(¢) is shown in Fig.
3(b).

IV. INTRODUCTION OF DECAY
AND CAPTURE IN THE EQUATION OF MOTION

We now introduce the decay and trapping terms in the
equation of motion for the quantities P,, (). As stated in
Sec. I, we formulate the problem in the language of
Frenkel excitons. For simplicity, we consider a single trap
(guest) in the lattice of N host sites. Following Kenkre
and Wong'! we write for the Sierpinski gasket

P, P,
iidT'" T’":F }n: hypn P, —AFP,, —c8,, P, .  (4.1)

This is a generalization of Eq. (2.1). Here 7 is the radi-
ative decay time in host, ¢ is the rate at which the single
trap is fed by the single trap-influenced host site #, and
8m,» 1s the Kronecker 8. All other quantities are defined
as in Eq. (2.1). A similar generalization of Eq. (3.1) will
be used to analyze capture on quasi-one-dimensional lat-
tices.

One of the observables of the system is the host
luminescence, ny/(t), which is given by

ng(t)= 3 Pp,(1), (4.2)

and which, in the absence of the decay represented by 1/7,
is the survival fraction of the excitations. The Laplace
transform of ng(z) is

c,(€)
1+ct,,(€)
where € =e+1/7. ,,(t) is the self-propagator obtained

from Eq. (4.1) with ¢=0, 7= 0, and with localized initial
condition; 77,,(¢) is then given by

NMm = 2 djm,nPn(O) s (4.4)

) 4.3)

ﬁH(€):;l,‘

where P, (0) is the actual initial condition. For the partic-
ular case of uniform initial host illumination P,(0)=1/N
and

Age=t [1-— A | 4.5)

€ B €/c +6’1Z,,,(6')

This result is the same as that for a translationally in-
variant system with a single trap.!! If we now assume
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that the system has N’ traps and that the trap concentra-
tion p=N'/N << 1, and that these traps are distributed
randomly, we obtain, in analogy to Ref. 11,

~ 1 p
=— |1—(1/N) - . (4.6)
O=g |ImM 2 [€'/c +€Ynnle]

Here the summation extends over all sites of the lattice.

Equation (4.6) can be solved easily for the quasi-one-
dimensional lattices because the self-propagators are
known for any lattice of sites N. The problem is more
complex for the SG. For the results to be independent of
N for the observable time scales, one has to consider large
lattices. To use Eq. (4.6) one needs to know the complete
set of orthonormal eigenvectors | P,) [see, e.g., (2.4)].
These are extremely difficult to obtain for large lattices.
The algorithm of Ref. 9 produces the eigenvectors at any
given generation in terms of the eigenvectors of the previ-
ous generation. However, they are not orthonormal and
have to be orthonormalized at every stage. The difficulty
of orthonormalizing a set of N vectors of N components
each is obviously considerable for N as large as 3°.

We considered five iterations and after each we found
out the orthonormal set of eigenvectors and subsequently
ng(t) from Eq. (4.6). We also found out numerically that
the result was unchanged when Eq. (4.6) was replaced by

14 ) @.7)

(e)=1— _
e €/cHE/N) S, Dunl€)

We therefore assume that Eq. (4.7) which involves the
average of the 1, ,’s generally provides an adequate ap-
proximation to (4.6). The form for ny(z) given by (4.7) is
much more convenient than that given by (4.6) because it
merely requires the average self-propagator ¥,,(¢). The
computation of 1,,(¢) is a simple numerical task even for
large lattices as we have seen in Sec. II. We have inverted
Eq. (4.7) numerically to obtain ng(z) for a lattice of
N =3°=19683 sites (.#"=8). The results are shown in
Fig. 4(a).

The passage from (4.6) to (4.7), while necessary for
practical reasons for the Sierpinski gasket, is not needed
for the Koch curves because the distinct self-propagators
for the latter are only three in number and are further-
more known analytically. It is interesting to note, howev-
er, that we have seen from a numerical calculation that
the above assumption is valid for Koch curves also.

We exhibit the results of the preceding analysis in Fig.
4. The host luminescence is shown as a function of ¢ in
Fig. 4(a) for a fixed concentration p=10"* for all the lat-
tices considered in this paper. We have set 1/7=0 in
these plots to eliminate the exponential decay which is im-
portant to excitons in molecular crystals but which is not
of particular relevance to behavior in fractals. Several
features are observed. For all times the curve for
d=1n6/1n4 lies below that for the linear chain (d=1) and
above that for d=1In4/In3.

The survival fraction—or in the language of Frenkel
excitons and molecular crystals, the time-dependent
luminescence intensity—npg(z) discussed above requires
(numerical) Laplace inversions. In the physics of molecu-
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FIG. 4. (a) Survival fraction or the host luminescence ny(t)
plotted against the dimensionless time Ft. The capture parame-
ter value c is arbitrarily set to 10F. The concentration p is 10~*.
(b) Ratio ¢ /p of the guest quantum yield to the trap concentra-
tion is plotted as a function of Ft on a double-logarithmic scale.
The value of C/F is arbitrarily set to 10.

lar crystals there is another quantity, viz., the quantum
yield, which is of interest and which requires no Laplace
inversion.? The guest quantum yield, ¢¢, for our system
is defined as the fraction of the initial excitation that is
trapped by the guest molecules. Therefore,

po=1—(1/n) [ “ditng), 4.8)
we display ¢ as a function of Ft in Fig. 4(b).

V. DISCUSSION

We have analyzed two kinds of fractal systems in this
paper: the quasi-one-dimensional lattices (Koch curves)
and the Sierpinski gasket. To treat the former we used
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the simple-cell idea based on the translational invariance
of the groups of sites in the Koch curves. To treat the
Sierpinski gasket we used the algorithm of Domany et al.
which gives the eigenvalue spectrum of the master-
equation matrix. The average self-propagator, which is a
measure of the motion alone, is shown in Fig. 3(a) for the
three fractal systems along with the self-propagator for
the linear chain (d =d =d=1) and for the square lattice
(d =d =d=2) for comparison. We see that for 1 <d <2
the average self-propagator seems to be bounded by the
self-propagators on the Euclidean lattices for one and two
dimensions. We note that at a given time the self-
propagator does not monotonically decrease with increas-
ing d. This is not clear on the scale of Fig. 3(a) since
the curves for d=In4/In3=1262... and d=In6/In4
=1.292... appear identical. The differences are, howev-
er, evident in the numerical calculations. Note also that
the d=1.292... propagator remains higher than the
d=1.262. .. propagator, but lower than the linear-chain
propagator for the range of time shown in Fig. 3. This
nonmonotonic dependence on d is perhaps unexpected
and makes the study of Koch curves interesting.

One observes from Fig. 3(b) that the long-time behavior
is dependent only on d. For all d=1 lattices the slope of
the straight lines is —+. Thus 1,,(£) ~¢~'/? for large .
The straight line for the Sierpinski gasket has slope
—0.682 while the Euclidean two-dimensional case has
slope —1. These results can be therefore written as
¢av(t)~t‘§/ 2 since d for the Sierpinski gasket is
1.365... . This conclusion has been arrived at earlier.>’
For the gasket this result is transparent from a considera-
tion of Eq. (2.12) and the results of Ref. 9 concerning the
eigenvalue spectrum. From the latter® one sees that
0<E,+4<8 and that, at E, = —4, the number of states
N (AE) in the interval AE is proportional to (AE)?/2. It
thus follows from Eq. (2.12) that a significant contribu-
tion to 1,,(¢) for large ¢ comes from terms corresponding
to E, + 4 within AE of zero. Hence one obtains the re-

sult ¥, (£) ~1 972,

S. M. PHATAK AND V. M. KENKRE 31

Our trapping analysis is analytical and its results are
shown in Fig. 4. The numerical calculation shows that at
a given time the survival fraction for d=1.292... is al-
ways lower than the survival fraction for the one-
dimensional chain and higher than the survival fraction
for the d=1.262 lattice.

If we set the ratio C/F to zero in our trapping analysis,
we can compare our results with those of Blumen et al.*
They have shown that the survival fraction ng(t) obtained
from a numerical simulation of random walks on the Sier-
pinski gasket can be fitted very well to Egs. (51) below,

—Ax+Bx? (5.1a)

l’lH(t)ze ’

x =p(Ft)}d’2 . (5.1b)

The important point is that it is the spectral dimension
d that governs the time dependence as seen from Egs.
(5.1). We find that Egs. (5.1) give an excellent fit to our
results for the survival fraction too. For the low concen-
trations considered in our analysis x is small and hence
the term in x2 in Eq. (5.1a) can be neglected. We find,
however, that our value of A4 for the Sierpinski gasket is
higher than that of Ref. 4. The linear chain and the two
Koch curves have different Hausdorff dimensions but
they all have the same time dependence, according to Egs.
(5.1) for the survival fraction.

Our analysis thus supports the results that trapping
properties are governed by the spectral dimension d. Fig-
ure 4(b) shows the guest quantum yield as a function of Ft
and one sees that the slope equal d/2. We would like to
mention here some recent work'>!3 that has been brought
to our attention which uses approaches different from
ours and analyses capture at higher trap concentrations.
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