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ABSTRACT

Some modern mathematical methods developed for the investiga-—
tion of energy transfer are described. They are based primarily on
mster equations and are particularly useful for the description of
coherent motion, capture, annihilation, and related phencmena in-
volving quasiparticles such as Frenkel exciions.

1. INTRODUCTION

LA, Preliminary Remarks

This article describes a unified framework of mathematical
methods developed in recent years for the description of energy
trangfer in solids occuring via the motion of excitons. It is hoped
that the article will fulfill two functions: the description of
some modern theoretical approaches of transport theory of interest
not only to exciton dynamics and energy transfer but to the broader
area of quasiparticle transport, and the presentation of an over—
View,from the theoretical viewpoint, of Frenkel exeiton motion in
Wolecular crystals.

- Although the applicability of these mathematical methods ex-
teads over a wide area, the systems of direct interest to these
levelopments are molecular crystals. Examples are crystals of aro-
matic hydrocarbeons such as anthracene, napththalene, and tetrachlor-
Cbenzene. The specisl characteristics of these systems are that the
ftities occupying the lattice sites in the crystal, the molecules,
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have complex internal structure and motion {whence intramolecylay
motions arise); that intermolecular interactions are weak relative
to most inorganic solids; that anisotropy can prevail as a result o
the non-spherical shape and orientation of the molecules; ang that
dynamic disorder is of paramount importance in transport Phenomens,
These characteristics force the transport theorist to abanden tradi-
ticnal methods of analysis that have been used with success for many
¥Years In fields such as thgt of electron transport in metals, apg tg
look for fundamentally new formalisms. The traditional methogs
employ kinetic trestments in k-space. They are based on the theory
of bands which are slightly perturbed by interactions with phonong
or other sources of scattering which can therefore be treated ag
small corrections. However, in molecular crystals, the bandwidth of
the moving quesiparticle, the thermal energy kgT, phonon energies,
and other interaction energies can all acquire magnitudes comparable
to one another. The new methods that are described below are based
on mester equations, usually in real space. These master equations
are of the sc-called "generalized" kind as well as of the simple
kind. The existence of disorder which is not =z small perturbation
on crystalline properties, and the fact that molecular crystals
often retain the vroperties of the individual constituent molecules,
lead to the use of real space transport equations. On the other
hand, the fact thai the disorder is dynamic rather than static
(vhich would be the case for amorphcus sytems), the systen being
gtill perfectly crystalline at zero temperature, leads to transls-
tionally invariant master equations being used for the analysis.

The quasiparticle whose motion brings about the process of
energy traznsfer in mclecular crystals is the Frenkel exciton. Dif-
ferences of opinien sxist about the convenience of the terminology
used around the phrase "Frenkel exciton." Some authors (see else-
where in this book) prefer to mean by that phrase a Bloch state of
the electronic excitation of the molecules in the crystal, following
eariy usage [1l]. Other authors [2-6] look upon the Frenkel exciton
as a quasiparticle (in analogy with the electron) which may occupy a
delocalized Bloch siate, a localized Wannier state, or any other
allowable state. We find the latier usage conceptually more natursl
and practically more convenient and therefore employ it in this
article. Thus, excitation transfer is identical to Frenkel exciton
transport in this article and, if one were to consider systems with
sufficient static disorder to make quasimomentum a very poor quaniull
number, we would still describe excitetion transfer as the moticn of
& Fremkel exciton albeit among the sites of a disordered array.

As 1s well known, the subject of energy transfer is of special
importance because of its obvious connections to other disciplines
such as biology [T]. Energy transfer in molecular crystals derives

its particular importance both from the fact trat it raises basic
issues about transport as mentioned above, and from the Well-knO",Tn
fact that a molecular crystal is a solid state physicist’s
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rimentally realizable first approximetion to a complex biologi-
cal system.

The present article stresses mathematical methods for the
transport deseription, although special effort has been made L0

- relate the contents to experimental observations.

1.B. Processes and Questions of Interest

Optical absorption can produce electronic excitations in the
crystal, i.e., it can create Frenkel excitons. These excitons lead
a rather everntfal life before they die their radistive or radiation-
1ess death. They may undergo vibraticnal relaxation which may be of
3 simple kind as when the excited molecule relaxes among its intra-
polecular modes, or of a relatively dresmatic kind as when an
excimer, involving a drastic interacticn of two {or more) molecules,
is formed. They may decay through luminescence, which may be fluor-
escence as in the case of singlets, or phosphorescence as in the
case of triplets. They may undergo internal conversion, i.e., &
transition from one singlet manifold to another, or intersystem
erossing as when a singlet changes into a triplet. The excitons may
pove from molecular site to molecular site, i.e., bring about
energy transfer from one spatial Iocation to another. If during
this motion they come under the influence of traps in the crystal,
yhich may be there either inadvertently or precisely bDecause they
were put there to detect motionm, the excitons may be captured. They
may also come under the tnfluence of one another during motion and
undergo mutual annihilation. The latter process is particularly
striking when the moving exciions are triplets because the product
of the mutual annihilation is often the formetion of singlets which
luminesce differently - much faster and at higher freguencies pro-
ducing bplue rather than red 1ight which is typical of triplets.

A variety of questions are of interest in this field. The
extent and speed of energy transfer depends on the magnitude of the
Messurements of this central
quantity have been made by many experimentalists over the last three
decades but serious problems of interpretaticn remain., The value of
the diffnsion constant of singlet excitons in a prototype crystal
such as anthracene is therefore still unknown even at room tempera-
ture although opinions abound. There is thus a disparity of several
orders of magnitude in the reported values of this quantity. The
temperature dependence of the diffusion constant and the nature of
the underlying processes are also under question. In particuler,
the coherence issue, concerning whether excitons move in a wave-like
coherent manner or a diffusive incoherent manner, centinues to be
widely debated. The validity of the simple picture of an exciton

thermelizing before each transfer event, l1.e., the question of
vhether energy transfer cccurs after, before, or during relaxation,
also contimiles to be under study.

So does the connecticn between
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exciton motion and optical spectra. The validity of simple %5
schemes for understanding exciton trapping and mutual amihj
the role of the capture process (as differentiated from the
process) in the former, and the existence of time~dependent

time-independent rates of energy transfer constitute o
questicns in this field,

netie
lation,
motion
versyg
ther imPOI'tant

I.C. Some Experiments

Of the large variety of experiments that have been carried oyt
in the area of energy transfer in meclecular crystals we depict
schematically in Fig. 1, four kinds which use direct probes inte
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Schematic depiction of four kinds of experiment for the
measurement of energy transfer via exciton motion. Cir-
cled asterisks @ represent excitons, wavy lines with
arrows show illumination and dotted Ilines with arrovs
represent tlhie process which allows the measurement. I¢
(2] and (b), D represents the detector material whose
Juminescence is monitored, and in (d), T and O respec”

tively depict transparent and opaque regions of the
gratings,

Fig. 1.
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ilumination of +he entire erystal which ig doped with aother mole~
cules serving as traps.

of steady-state Quantum ¥ields,
Iuminescence intensitieg,

In OQutline or This Article
————2_ =15 Article

The basic transport equation to e used in most of the anaiy-
sis, viz, the generalized master €quation, ig Dresented in S8ection

r Suitability for the systems and questions under study,
O these transpors equations are theip "memory funetions,”
of thesge memery functionsg and explicit
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II. THE BASIC TRANSPORT INSTRUMENT: THE EVOLUTION EQUATION

IT.A. Introduction and the Coherence-Incoherence Problem

Insight into the physics of the basic evolution equation 1o be
used in the sequel can be gained by studying briefly some historiea]
aspects of the subject. In 1932 Perrin attempted to use the Schree-
dinger equation among sharp molecular site states to describe exei-
tation transfer in the context of experiments on fluorescence depe-
larization [14] and found cilear disagreement with observations,
That the problem lay in the evolution equation itself, and pot in
the specific transport mechanism assumed by Perrin - diplole~dipole
interactions - was shown a number of years later by Foerster {151,
He recognized that the levels among which the motion transitions
were occuring were not sharp but rather ‘broadened' into groups of
states as a result of bath (i.e., reserveir) interactions. By using
a Master equation with transition rates given by the Fermi Golden
Rule, with the same dipole-dipole interactions assumed by Perrin,
Foerster was able to obtain excellent agreement with experiment,
However, as further experiments were carried out at various tempera-
tures with varicus environments and on varicus systems, departures
from the Foerster theory were observed. The Schroedinger eguation
and the Master equation were cleariy understood to be valid in the
two exireme limits, called coherent and incoherent respectively.
But one was faced with two non-trivial tasks: how to give a unified
description which would reduce to the two limits and would further-
more be capable of treating the intermediate range, and how to
ascertain practically which limit is applicable to & given experi-
mental system. '

The simplest way of appreciating the coherence-incoherence
issue i1s to consider motion of the exciton in a system of just 2
sites, 0 and 1, which would have equal energies in the absence of
the intersite inmteraction. If the latter is V, one solves a simple
Schroedinger equation and shows that the probability Po(t) that the
initially occupled site 1s occupied by the exciton at time %, is

P(t) = cos?(Vt) (1)

Here and henceforth we put h=l. Equation (1) shows oscililations,
acd a reversible or ringing character. However, if the 2 sites
provide smeared—out (rather then sharp) levels, i.e., if each site
repregsents a group of an extremely large number of states as &
result of bath interactions, the familiar procedure is to take for
the evolution equation the Masier equation, the rates of transfer
between the sites F being given by the Fermi Golden Rule :

F = 2V¥/qg (2)

where l/:xcontains an appropriate density of states factor iZ
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gddition to other propertionality constanits. The result for the
probebility of the initially occupied site is then

p(t) = ({1 + exp (-2Ft)] (3)
and shows a non—escillatory decay and an irreversible approach to
squilibrium in contrast to (1). Equation (1) depicts coherent
métion, while equation {3) describves incoherent motion. It is clear
:nat these motions have entirely different character relative to
each other.

A more realistic system is an infinite linear chain wherein the
exciton moves via nearest-nelghbeur matrix elements YV in the coher—
ent case and nearest-neighbour transport rates F in the incoherent
case. The evolution equation for ccherent motion iIs the Schroe—

dinger equation for the amplitude cm(t):

de
idtm = V(Cm_!_l + CI[I._-I) (h‘)

£

7o solve (4) one multiplies it by exp{ikm) and sums over all sites
m, i.e., performs a discrete Fourier transform. This is a standard
methematical proccedure for the solution of translationally invariant
equetions suckh as (4). Denoting the discrete Fourier transforms by
superscripts k as in

k_v ikm : ) (5)

the interconnected equaticns (4) are transformed into N unconnected
equations for the individual ¢™'s, where N is the number of sites in

the crystal (infinite in the present case). Thus,

K
de .
iz = (2 oskleX (6)

vith the immediste solution cX(t) = c®{0)exp(-i2Vicosk). If, ini-
tially, +the exciton occupies & single site which, without loss of
generality we shall call C, the cF(0)'s are all equal to 1 from Eq.
(5). The fnversion of (5) through

e (t)=(1/N) exp(—iEVtcosk)e_ikm : ' (7)

m

el

fmi multiplication by the complex conjugate of c then give Pm(t),
The probability of cccupation of site m. In the limit N-+mthe
right hand side of (T) equals (3/27) times an integral over a con-
?‘inuous k-variable from -fto 7. One immediate obtains for this
‘nfinite chain,
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P, (t) = J2(2vt)

(8)

where J 1s the ordinary Bessel function. The probabilities exhibit
oscillations as in (1), although the infinite size of the SYsten

considered destroys Poincaré recurrences evident in the 2-site pe-
sult (1).

The evolution equation in +the inccherent case is the Master
equation .

dPy - -
2 =F(Ppyy +Pp g - 2P)) (9)

rether than (4).  This probability equation can alsc be solved with
the use of discrete Fourier transforms. Proceeding as above,

P, = (1/N) } expl-4Ftsin?(x/2)]e kM (10)
' k

which is analogous to (7) in the ccherent case and results in
Bult) = [exp(-2Ft) ]I, (2Ft) (11)

where Im is the modified Bessel function. - Unlike (8}, this incoher-
ent result shows a non-oscillatory deczy.

The profound difference in the nature of the motion depicted
respectively by the coherent probability propagators (8) and their
inccherent counterparts (11) is alsc reflected cleariy in the mean-
square—displacement <x2», With a as the lattice constant, i.e., the
distance between nearest neighbour sites on the linear chain, one
has the general result

m
m k=0

<x%> = a2<m?®> = a? ym?P_ = —af [z | 7 {12}
The discrete Fourier. transform of (8) is
P = J_[Wvtsin(i/2)] _ (13)

whereas that of (11), which occurs in.the process of the derivatiol
of {11), is

pk = exp[-LFtsin?(k/2)] (14}

On combining (13), (14) with (12), one sees that the mean-square”
displacement is bilinear in t for the coherent case,

x> = (/2vVa)2t2 {15)
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‘put linear in t for the inccherent case,

x?> = 2{Fa?)t {16)

The quantities in parentheses in (15) and (16} should be famil-
jar from stendard trestments. In the incoherent case, it is the
jiffusion comstant of the exciton, D = Fa®. In the coherent case it
is the square of the average ¢ver the band of the group velocity of
the exciton. To recover the latter result, observe that the c™(%)'s
in (6) are nothing other than amplitudes in the Bloch representa—
tion, and the factor 2Vecosk in the expenent in the solution of (6)
is but the band energy E, in the tight-binding scheme. The group
velocity, given by a times the k-derivative of Ey, therefore has the
tand everage V2Va,

Fig. 2 shows the self-propagator, i.e., P,, the probability of
occupetion of the initially occupied site for the purely coherent
case and the completely inccherent case obtained respectively from
(8) and (11). These plots as well as the expression (15) and (16)
for the mear—square—displacement <{x*> given above make clesr the
strong differences between coherent and incoherent motion. While we
have seen that it is trivisl to describe these two extreme limits,
the comstruction of & unified framework to treat them both as well
25 the intermediate rangs presents a challenging problem. A result
of the solution of this problem is seen in Fig. 2, where the inter-
nediate self-propagator is also plotted for two given arbitrary
degrees of coherence. The ccrresponding expression and its deriva-
tior will be found in IV, For now the form of the problem and the
relevant questions should be amply clear. What is the general
expressicn for the probability propagater which has the general
unifying behaviour shown in Fig. 2 and which reduces to (8) for a
system wherein the exciton does not suffer any scatiering but to
(11) when the scattering is so strong that the exciton motion has
the aspect of a random walker? What is the general evolution equa-
tion whose respective 1limits are (4) and ($)? What is a practical
rescription to extract the degree of ccherence, i.e., the degree of
the departure from the two extreme limits, for a given realistic
trystal? What are the observable effects of this departure in
ractical experiments?

It is worth commenting in passing that the discrete Fourier
transform technique explained above can be used to obtain explicit
Solutions in the case of long-range interactions V or an as well
8 for higher—-dimensional systems. To treat the former one merely
forms the Fourier transforms of qu or F, . since translational
invariance demands that the V's or F's are functions of the differ-
fnces m-n, and proceeds exsctly as shown in the case of nearest—
lelghbour transfer. The generalization tc higher—dimensionzl crys-—

tals is also straightforvard. The indices m, k, etc. then represent
Vectors of appropriate dimensicnality and expressions such as km in
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Fig. 2. The profound difference between coherent and incoherent
moticn shown through plots of the self-propagator, i.e.,
the probability of occupation of the initially occupied
site, displayed as a function of (a dimensionless) time.
Shown are the purely coherent case, the perfectly inco-
herent case and two intermediate cases, one being almost
coherent and the other almost incoherent.

(5), (1), (10) represent dot products. Furthermore, for nearesi-
nelghbour interactions in simple cubic lattices, allowing for arhi-
trary anisotropy, i.e., different V's or F's in different direc-
tions, the probability propagators Pm are simply productis of the
one~dimensional ones given in (8) and (11).

IT. B. Motivation for the GME

The most natural and convenient solution of the unificatiod
problem posed in section IT.A. is found in the method of the gen~
eralized master equation {GME). The essertial characteristic of the
CME is that it is non-Markoffian, i.e., an integro-differential
equation with kernels which are non-local in time. These kernels,
which are known as memory functions, give the GME its particulal
suitability for the analysis of the ccherence-inccherence issue. I3
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order to understand thig sultability consider the tvo functions

y.=cos(wt) and ¥yi;=exp(-Kt). The former oscillates ang the latter
- jScays. The single equatien

t
EdLJEt_M [ at'z(t-t")y(47) = g (17)
G .

gives both Yo 2nd y. as sclutions ‘in the respective extreme limits
i(t)=v® and 2(t)=K&() of the "memory kernel" g(t). Farthermore,
-for an extremely large class of z's the solution of (17) behaves
ke y. and ¥; at long times. To aprreciate this Quantitatively,
take z?t)wzexp(—at). One then has

d® Lo A S
E%det-’-wy 0 (18)

vhich shows that ope recovers from {17) Yo and ¥; a5 extreme solu-
tions for 2+0 ang ey wow, 32 /50k respectively. These corre-
spond to the above two choices of the memory kernel z: a constant
and a ¢ ~function respectively, Also the solution of {1T), d.e. of
(18} behaves like Yo and ¥i respectively for times which are much
smaller thar, and mueh larger than, 1/y. Equetion (18) ig only a
special case of {17). Generslly the time for comparison {14 in the
simple case of the exponential z{t) corresponding to (17)) will be
the characteristie time over which the kernel gz decays. The initial
relue of z eguals the 8quare of the frequency of the oscillation of
To ¥hile its time integral from t=0 to t=» equals the decay con-
sfant or Yi. The unification of the oscillatory behavicur of the
tosine and “the decay behaviour of the exponential can thus be done
¥th the help of (17).

tions would bte of value in the coherence*incoherence issue since

®¢illations and decay are indeed cheracteristic of cohlerent and
liccherent motion respectively.

The above example corresponds to an actual physical system:
e quantity y could be the amplitude of g damped harmonic oscilla-
T with frequency w and damping constant o, Although this example
%8s not contain site-to-gite motion, one ean easily ineclude it by
“placing w2y ip {18) vy —®{5%7/5x%). One now has the well-known
tave equation and diffusion 2quation as the extreme (coherent ang

oherent) Ilimits which are unified by the single telegrapher's
Quation

A 2. ~2
3 Y = .23
—%r-at +cclat c (19)

89X
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or what 1s the same, a memory-possessing diffusion equation wity
exponential memory. A perfect memory corresponds to wave-like beha~
viour with its oscillations and speed e, while a perfectly absent
memory (& §-function) to diffusive behaviour. The genersl solutiopg
of (19) are well known to combine wave-like and diffusive behavioyy,
They exhibit transport coherence for times short with respect to the
decay time of the memory and incoherence at large times.

A1l the power of evolution equations rossessing memory fupe-
tions would of course be useless to the issue under analysis if speh
equations were not natural to the exciton transport praoblem, Iy
fact the telegrapher's equation (19} is of little direct use to
excitons because the wave equation does not deseribe exciton motion
in the coherent limit., The dispersion relation is quite different,
However, memory-possessing evolution equations do turn out %o he
completely natural to exciton transport. Indeed they are actually
unavoidable in the process of the derivation of the Master equation,
the basis of Foerster's amalysis of incoherent motion. We will
therefore be able to harness their unification properties for the
description of transport with arbltrary degree of cocherence.

II.C. Derivation and Validity of the GME

Extensive detgils of the derivation and validity of the gener-
alized master equation have been given in other reviews of the

author [5,16] and will not be repeated here. Only a brief descrip-
tion follows.

The starting point for the evolution is the Von Neumann equa-
tion for p, the density matrix of the exciton along with whatever
bath {phonons, imperfections, etc.) it is in interaction with. One
defines projection operators Pwhich diagonalize and coarsegrain the
density matrix. The coarsegraining eliminates the bath coordinates
and the diagonalization is in the representation of site-loecal
states. Acting on the full density matrix p, the operator P thus
vyields a reduced probability vector which describes +the probabili-
ties of site occupation by the exciton. The procedure is exsact,
although it involves the elimination of the coordinates of a part of
the total system - the bath - and although it involves only the
dizgonal part of the reduced density marix. The Von Neumann equa~
tion is

130 = [m,0] = 1o (20)
at

where L is the Liouville operator vhich, acting on any operator,
produces the commutator of the full Hamiltonian H with that opera”
tor. The respective application of the projection operator P and of
its complement (1-7) to (20), followed by the elimination of (1-F)
from the equation involving P through the simple substitution of
s 8ives

the formal solution of (1-P)
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Po( % T
g_pi._}.. = - (d-tf'pLe—l(t-t }{lFP)L(l_P)LPp(t')
dt !
- iPLe_it(l_P)L(l—P)p(VO) (21)

This eguation is always exact. . Furthermore, if the full density
pmatrix at t=0 equals the projected density matrix, i.e., p(0) =
Po(0), the last term in (21) is zero at all times. One then has an
evolution equation for Pp, i.e., for the site-oceupation probabili-
ties of the exciton, which is closed in Pp{i.e., in the probabili-
ties), and is non-Markoffian in nature. Since P has no off-di-
agonal elements in the site representation, the tetradics in (21)
reduce to square matrices and one obtains the probebility egquaticn

o._‘d_

5‘%‘ IEI (b=t )P (") - W (t=t")PL(t")] (22)

This is the generalized master equaticn.

The ¢ 's are the memory functions. Their functional form
depends on the extent of coarsegraining as well as on the interac-
tions in the Hamiltonian., A detailed examination of how the memory
functions vary on varying the level of coarsegraining may be found
elsevhere [17]. What is important to realize is that, if the ini-
tial state is such that the last term in {21) vanishes, the GME is
an exact consequence of microscopic dynamics. Even if the last term
n (21) does not vanish at all times but dces in some practical time
range, the GME becomes exact in that time range. The GME 1s more
general than the Master egquation, the basis of traditionsl theories
such as Foerster's, in that itsW's are not 6 ~functions, In fact
the Master ecuation can be derived only when the approximation of
replacing W(t) by

)[afdsGJ(s)]

15 made in the GME. To address the coherence issue, and to describe
the exciton transport problem in a general way, one need merely
refrain from meking this approximation. The powers of non-Markof-
fian equations pointed out in section IIB are then at our disposal
in an entirely natural manner.

The range of validity of the GME is decided by the validity of
the passage from (21) to (22), i.e., the validity of neglecting the
last term in the former. The condition p(0)=Pp(C) means, first,
that the initial state is an outer product of an exciton staie and a-
bath state and, second, that the exciton is initially site diageonal.
The latter condition is extremely restrictive and would seldom apply
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in exciton physics since the creation of excitons usually in‘-"olvés':_':’z.?" _
optical zbsorption and, therefore, an initial siate that is wy ,
means localized. An initial Bloch state would be much more apppq.. )
priate than an initial site-lecal state. Fortunately it cap pe
shown [5,18] that a sufficient condition for the vanishing of tye ™ §

first term in (21) is that L{1-P)p(0)=0 rather than (1-P)p(0)=q

Tnitial Bloch state occupation or generally the initial occupatigy -

of & delocalized state does indeed result in L{1-P}(C)=0 for cpys-

tals. The GME is thus valid for the practically occuring case of .4 .

initially delocalized excitons as well as for initial localizatien,

To cbtain the memory functions explicitly, 1t 1iIs necessary ta

evaluate the first term on the right hand side of (21). Some exact
evaluations will be described in section III. Eere we give the

exact definition of the projection operator and a general approxi-.
mate expression for the memory functions when the site-to-site "

interaction is small encugh tc be treated perturbatively.

The general definition of the projection operator P is

PO > = 12 <10l [E,07 48z (25)

where the £, uare eigenstates of the full exeiton-tath system, o

is any operator, Q is arbitrary except for being subject to the
condition '

T gal

to ensure that P is idempotent. The summation of £in the "grain’ o
is the coarsegraining operation and involves the elimiration of the
bath coordinates. The Q's do not affect the expresssions for the

memory functions in an exact caleulation but do affect then iﬂ_‘
If the Hamiltonian is Hy*

calculations involving approximations.
'V, the part H, being site-diagonal, the memory functions are given
perturtatively by :

Un(2) = 2L, 210,/ )| <E[VIL>| Peos] (2g-B,)t] (2h |
0 o(8) = 2.5 110, /ey]I<E[V|u>| cos (B -E )] (25

where g, = Eéml end g, = u)&;nl'

Equations (24) and (25) are coarsegrained .g;enera.liZati"ﬂs
[16,17] of memory expressions given originally by Zwanzig [19].
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.11, D. Selution of Foerster's Problem

If the interaction V responsible for exciton motion is dipole-
gipole in nature, Iits dependence on the intersite distance R is
' given by 1/33.‘ The rate of iransfer calculated through the Golden

fule 1s proporticmal to the square of V and has therefore the dig-
- tance dependence 1/RE. However, if the motion is coherent, the
- oscillations of probability would be characterized by a frequency

which is proportional to V at least for a two-site system. It was

--A—often thought, therefore, that the distance dependence of transfer

retes in the coherent limit should be 1/R3  Foerster sharpened this
" form of the coherence question by presenting a plot of the transfer
 rate versus the intersite distence R. He stated that the dependence
" was 1/R® for large R, i.e., for weak enough V for perturbation
theory in terms of the Golden Rule tc be valid, and that ore might
argue that the dependence was 1/R*for small enough R which would
make the V overwhelm the bath broadening. He further hoped that a
theory of iransier rates which could bridge the two limits would be
available [20].

The unification of transfer rates which Foerster had hoped for
is possible in & natural way through the GME. No details of the
memory functions are necessary, To stress the extreme simplicity of
the argument, assume that the memory functions are of the separable
form {,, () = Fon®{t), the F's being the transition rates in the
corresponding Master equation, which one would arrive at on replac—
ing q)(t) by a §-function., One first realizes that it is necessary
to define a transfer rate unambiguously and not merely take it to be
4 transition rate in one case and a frequency in the other. To that
end one caleulates the mean-square—displacement <x?> of the exciton
for an initial localized condition, finds the time for whieh it
becomes equal to the square of the lattice constant, and defines the
reciprocal of thaet time as the rate of transfer w. Obvicusly this
definition is sensitive to the time taken by the exciton to move cne
8ite irrespective of the degree of coherence, It is straightforward
to see that this defipition leads to

/v

fav fas'e(t") = [z wPFy)™ = (w271 (26)
0 b

The wnification is apparemt from (26). For incoherent transfer is
& §-function, the first integration gives a constant and the rate w
Is proportional to m? and for nearest neighbour F's to R~°. For
Coherent transfer ¢ is a coustant, the first integration gives t,
*d w2 is proporticnmal to m? and thus the rate w is proportional to
B, 7o calculate an explicit expression for the R-dependence of
the rate, assume a simple expression for ¢ (t) such as an exponential

6(t) = ge™4t (27)
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Fig. 3. The solution of Foerster's problem demonstated through 4
plot of the exponent of Rin the transfer rate for the
case of dipolar interaction, as a function of the {rang-
fer rate in units of d. The inflecticn point is atw/ax
0.22.

along with a simple expression such as (2V2/a)(6,  9+8y n-q) for
Fons representative of nesrest-neighbour interactidns on = Jlinear
chain., Substitution in {26) gives the implieit expression

{a/w) + expl-lo/w)] -1 = (@?/2v?) (28)

With V = constant * R 3, a plot of the rate w versus the intersite
distance R can be given from (28) and Foerster's problem solved
explicity [21]. In Fig. 3 is shown a plot of the exponent n in ¥ =
constant * RY, defined [21] as

- @nlw) _ 6(¥

_ 1
2 = Fa(x) - O T e @

This plot hes found use in analyzing excitation transfer in some
biclogical systems [21,22].

II.E. General Remasrks about the GME

The characteristic festures of the GME are that it is an exact
consequence of the microscopic dynamics for some initial conditiof®
that its memory functions may be obitained from knowledge of tke
microscopic interactions at least in principle, and that its non”
Markoffian nature mekes it especially adapted to the analysis of the
coherence-incoherence issue. The structure of the GME approach 18
-as follows. One calculates the memory functions of the GME from the

microscopic interactions whenever possible. These calculations mz?
be exact as is the case in a small number of model systems, OF they

may involve sitandard perturbation techniques. The memory functics
may alsoc be obtained in some cases directly from experimenté
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. Gbserva.tions which do not inveolve transport, an example being opti-
With the memory functlons as an input, one calculates
obabllity propagators. These appear directly in varicus experi-
pental observables. A comnection is thus established between memory
'ﬁmctions and observables. Memory functions which are long-lived
generallY correspond to coherent motion and litile or no bath inmter-—
actions, although factors other than the latter also affect the
decay. Rapidly decaying memory functions signal incoherent trans-
rt. The decay characteristics of the memories are reflected in
the propagators and therefore in the observables. There are experi-
pents such as the grating ones shown in Fig, 1d which probe directly
tpe Fourier transforms of the propagators and are therefore highly
sensitive to the degree of coherence 1n the system. While any
realistic non-pathological system behaves coherently at short enough
times and incoherently at long enough times, 1t 1is thus possible to
peasure the degree of coherence quantitatively by analyzing observa-
tions with the help of the GME framework outlined above.

I;T. MEMORY FUNCTIONS: EXPLICIT CALCUTATIONS

1I11.A. Outline

Exact evaluation of the memory functions for a realistic systenm
is obviously out of the question since such an evaluation would be
tamtamount to an exact solution of the dynamics of the full complex
system. Model calculations are therefore undertaken as elsewhere in
piysics with the hope that in simplifying the mathematical problem
the model does not sacrifice the essential features of the system
wder consideratiocn. Such exact model ealeulations are to be found
in ITL.B. and ITI.C. below. It 1s also necessary to perform approx—
imate caleulations of reslistic systems which defy exact solution.
Here the hope is that the approximation procedures employed do not
destroy the essential features of the system. Section III.D. pro-
vides an example. An attractive result in the GME theory is that it
is sometimes possidble to obtain the memory functions for a real
system directly from observations in a different realm. This is
deserived in section IILE.

III.B. Exact Results for Pure Crystals

The general expression for the memory functicn wnm(t) for
{ﬂoticn in a crystal of arbitrary dimensionality and size (but cbey—
ing pericdic boundary conditions) is [5,231:

W (t)=-face™ %{e‘ik(m‘n)/é[wi(v}‘*q—vq)]“1} (30)

mn

vhere the g¢-integration is on the Bromwich contocur, where m,n are
direct lattice vectors, k, q are vectors in the first Brillouin zone
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of the reciprocal lattice of the crystal, km represents a dot pro.
duct, the k and q summations are within the first Brillouin zope
and V is the discrete Fourier transform of the interaction matri;c
elements V. = Vo _o, the only peculierity of the expressions rels-
tive to standard usage being that k,q,m,n are dimensionless in {30)
as also elsewhere in this review.

Translational invariance, i.e., 2 true crystalline environment,
is the only requirement to obtain (30). The proof is as follows,
The Schroedinger equation for transport in the crystal is

denlt) = 5 Jvg, enlt) (31)

the site energies being taken to be zero without loss of generality,
Equation (b) representing motion on a linear chain is a yparticular
case of (31) and so is the 2-site equation whose solution leads to
(1). Discrete Fourler transforms in the manner of section II.A
lead to the solusion of c*(t) and thence through s Fourier inversion
to cm(t). For the initial condition that the exciton occupies 2
singie site, which we lsbel zero, the solution gives, when mulii-
plied by its complex conjugate,

P (%) = (l/N)que"it(vk'Vq) o—im(k-q) (32)

If we define the quantities Amn as equal to ~wmn for m # n, with Amm

=L , the GME (22} takes on the form
apyit) , ¢ '
Lale) 4 [ ar’ b Ag(t-6') Bole’) = 0 (33)

A discrete Fourier transform, a lLaplace transform, and the initial
condition stated above which leads to PX(0)=1, yield from (33)

ey = [1/B5(e)]-¢ (3

The calculation of the memory functions is now immediate on substi~
tuting the transform of (32) in {34) and using the relation

%(e) = (e + B(e)] : (35)

which follows from the above definition of the A's. The derivatiof
of (32) is thus complete without the need to disentangle the projet”
tion operator expression (21).

It is possible for one to have two misconceptions aboub this
derivation: +that it is useless because it assumes knowledge of the
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Probability solutions which it is the function of the GME and of its

- pemory functions to arrive at, and that it cammot be correct since

1t claims to obtain the N(N-1) quantities wmn from the N quantities
p_. The latter misconception is €asily removed by observing that in
a translationally invariant system (which alone is under consider-
ation) the quantities wm are functions of m-n, there being thus
only ¥ independent W's or A's. The other misconception will disap—
pear in section III.C. when this calculation will be put to use to
obtain results which are extremely hard to get without its help and

 for which the probability solutions are tertainly not known before-

hand.

. Particuler cases of the exact general result (30) are presented
in the table below. The interaction is characterized by the single
patrix element V in all cases and is of nearest-neighbour range in
all cases but the last ome. In that last case the interaction is Vv
between any two sites. A system which can be said both %o have such
a unlversal range in its interaction and to be of the nearest-
neighbour kind, as in the case of the others presented in the table,
is the trimer (3 sites). All the systems shown abcve obey periodic
bourdary conditions, i.e,, have no ends or surfaces. The crystals

being all pure (po bath interactions), the motion is perfectly
coherent in all cases.,

The result for the dimer (2 sites) shows the constant memory
familiar from the pedagogical examples given in section IL.A.
Introduction of bath interactions can indeed be shown to cause the
decay of this memory. In section ITI.C. we shall see that the

Table I

§0. OF SITES

IN¥ THE CRYSTAL RANGE OF INTERACTION MEMCRY FUNCTIONS

2 - Wis=s Wy = 2V2
3 - Wio=Wos = W, 1=2V2C‘.OS('tV1/3_)

in nearest-naighbour
between sides 1 and 2,
2 and 3, 3 and %, and

Wio=Wos =3, =l =
2V2cos (tV2/?)
W=y, =LV25in?{+V/2)

L and 1,
nearest-neighbour w_o(t) =14 [g2 (2vt)]
. _ g mn T a m-n
linear chain)
—__ X equal among 211 sites Won(t)=2V3cos [tV /AW=2) ]
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exponential decay referred to in II.A. is
However, it must not be coneluded that ¢
accompanied by constant memory functions.

already shows that the memory generally oscillates in the
The frequency of this osecillation h

coherent motion.

zero for a dimer, For crystals of finite s

functions does not occur unless some degree of
But the infinite chain result shows t
decay even for purely coherent motion as a
destruction of Poincaré cycles brought about hy

duced.

the system.
chain is given below

W (t)=2v2[ 2

-2J2

m—n-Jm—n( J'Ir1-1:1+2"'Jm--n—2) I

quite physical iy
cherent motion is
The result for th

ize,

2
m“n+l+J m—n—l+2Jnr—n—lJm—n+l

The J's are ali Bessel functions of argument 2V+,

III.C. Exact Results for an SIE

Origiy,
&lVayS

€ trimer
case of
appens
true decay or
incoherence ig intpg-
hat the memorieg can
consequence of ty,
: the infinite .S_EZ_E_ of
An alternative form of Won(t) for the infinite linegr

to be
Demg

(36)

A transport equation that has often appeared [2,3,6,21] in the
analysis of exciton motion as well ss in other transport contexts is

the stochastic Liouville equetion (SIE).

9p .
- = Vpn®

= -1 E{fmrprn rn mr) - (1-3

+ 6 m,n g (Ymrprr_Yrmpmm)

decay;

scattering of phonons and other sources;
assisted rates,

leads to (22) with the ¥'s given by

Unn(t) = W (t)e™™ & o s(t)

In (38) the quantities WC are the
corresponding to (37)
expression for them is given in (30) above.

A form of the SIE is

m,n) P iy

2

{37)

where pis the exciton density matrix; m,n,ete., represent site- .
localized states =g always in this review; V's are the intersite .
interaction matrix elements; G represents scattering gnd is the rate
at which the off-diagonal elements of p(in the m,n representation)
and the Y's are additional rates of incoherent tramsfer. Io
microscopic derivations such as Silvey's [3]
the following meaning to these various quantities:

tional to the bandwidth of the exciteon dressed wi
other words to the bandwidth of the excitonic polaron;

» one naturally attaches
V's are propor™
th phonons, ia
o arises from -~
and +the y's are phonoft”
An exact calculation of the memory functions

appearing in the GME corresponding to (37) is possible [5,25] end

(38)

purely coherent memory functiorf
in the absence of o and of the ¥'s.
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. qhe proof of (38) is facilitated by the introduetion of some
C erator manipuiations involving the projection operators P. One
g;rites the SIE as

i-g-g = Lo+ L+ Lp (39)
nere L, represents the first term in the right side of (37) which
¥

jescribes coherent motion,: L; represents the second term in (37)
wiich describes the primary source of: incohere}}ce, and 1;9 represents
: which deseribes the "assisted transport.

t . '
dpg_t(:t) = PLaPp('t) _ J dt'P(ch_l‘Li)e_l(t_t )(l—P)(Lc+Li)

x {1-P) (L +L1; )Pp(t') (40)
vhere we have dropped the initial term involving (1-P)o{0) as in
section II.C. Witk the definition

0" = (1-P)0 (41)
for any operater U, the identity
{exp[-1t(1~P) (L, +L; )} 130"
= [1+(-1t)(T]-1a) + ...]0" = e_atexp[—it(l—]p)[,c] (42}

follows for any off-diagonal operator 0", This remerkably simple
result is a conseguence of the fact that Ly = (1-P)L;, acting on any
off-diagenal operator, merely multiplies it by -ig. Equation (42)
vien substituted in (L0), immediastely produces the first term in the
memory function result (38)., The other part of the memory function
ir (38) follows directly from *he term L, in (40) and is the
tomplete contribution of L.

Tris calculation of the memory functions for the SIE (37) is
fxact, I% illustrates the method of direct computation with projec-
tion cperators and clarifies the questions raised in section ITI.RE.
about the usefulness of the caleulation of the coherent memories (.
Al‘ihough the latter are obtained from knowledge of the probability
Solutions in the coherent case, the result (38) for the full memory

ctions in the presence of the scattering aand of the "phonon-
signified by the Y's has been obtained without

Such knowledge. The probability solutions in the presence of the g

a2d the v's do not bear a very simple relation to those in their
be computed by sclving the GME after the result
On the other hand *he memory functions in the two

8%8ence and must
(38) is obtained.
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cases are simply related. One merely multiplies the coherent memg
functions by the exponential e %' and adds the S-function termg
Ymnﬁ(t) to obtain the expresssion valid in the SIE casge.

The physics underlying the SIE is +that of the coexistence of
two channels of transport: band or cocherent transport represented
by the V's which is interrupted by scatiering events controlieg by
¢, and diffusion—type or incoherent transport represented by the
Y's. It Is extremely satisfying that this coexistence is reflecteq
s0 clearly in the expresssion for the menory function as a gyg of
two terms. The effect of scattering appears as a decay with time
constant 1l/tsuperimposed on whatever time dependence the coherent
memory function ®W® has. Such a clean separation of the contrim-
tions of the two scatiering mechanisms also appears in trangfer
rates or diffusionconstants obtained from the SIE [5,6] since they
merely involve the integration of the memories from t = 0 to t =w,

III.D. Perturbative Evaluation for Linear Exciten—Phonon Coupling

The Hamiltonian H given by
H=E_ El CIHCAN +m;nvmna%an + g wqﬁﬁbq

g a elqm
+m§qg€»q(bq + b e (43)

where a and b destroy respectively an exciton and a phonon, and
where W, is the phonon freguency, is an important and useful model
for the description of exciton transport in realistic systems.
While the evaluation of memory furctions is trivial when the exei-
ton-phonon coupling term - the last term in (43) - is negligible or
relatively small, the case when it dominates requires a transforms”
tion to be carried out prior %o the application of a perturbative
formula such as (24). The transformation [3,26] is designed to
eliminate the coupling and it is said to dress the excitons With
vhonons, giving rise to excitonic polarons. The perturbative f'orly'
ula {24) is then applied to the residual interaction which is
treated as a small quantity.

The transformation is given by the relation
= - o iqm - - n eiqm]}
z {exp[mgng(bq oty e eV} 2z {expl mzng(bq b, Jafey )

where Z is the transformed operator cerresponding to any operator %
It gives rise to the excitoric polaron operators Am given by

A = e, expl- égq(_bq-biq)eiqm] (45)
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: :‘_"Theil' form obviously Jjustifies the statement that the polarcn con—

sists of the Dbare particle surrounded by a cloud of phonons. The
qew {displaced) phonon operators By are given by
= & —igm
By 'bq + gigqamame (k6)
_ fThe Hamiltonian E is now expressed as
) ) R
. = -) 2 + _
B m [EO Q ngq]AﬁIAm * qquan +m;nvmnmr-rfqne & (MT)

yhere

= - Jelom
O g gq(bq b_q)e .

igplication of the perturbative formula (24) with the last term of
(7) as the perturbation leads [27] in the case of a dimer to +he
remory function expression

Upn(t) = 2]V |? expl -rgsghm(t) - h. (0)]} (18)
vhere r and s each take the values m and n, and h-,rs is given by
h.o(t) = - é hg;sin2q(r—s)[qujmqt + (Nq+1)e‘i“’qt] (h9)

I, being the average number of phorons given by the Bose distribu-
tion [exp(wq/kBT)—l]-

Equation {L8) is the generalization of the pure dimer results
Usplayed in the table of section ITI.B. to the case of exciton-
Honon interactions as described in the Familtonian of (43) or (47).

IL.E. Evaluation from Spectra

The rate of transfer Fm for singlet execiton transport is given
‘W the thecries of Foerster FlS] and Dexter [28] in a form which is
*tremely convenient from a practical point of view. In these
“®ries the F's are proportional to the spectral overlap of the
®ission of the donor and the absorption of the acceptor. The great
f‘d“'antage of such a prescription is that, when valid, it allows one
0 bypass model calculations and assumptions and to connect exciton
;ransport directly to another experimental realm, viz, optical
Yeetra.  In situations wherein the Foerster-Dexter mechznism of
;anspcrt is valid but the Master equation formalism underlying the
t°er8ter-Dexter theory is not, the memory functions can be obtained
Mrough g simple generalization [5,29] of their prescription. The

®eralization is based on the fact that an expression such as {2k)
' the memory function is a straightforward generalization of the
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corresponding Golden Rule expression for the transfer rates F:

=2my pla/g ] <EviD|? S(E, ~E ) (50

F;Emuenq"l & 2 H )
The only difference between (2L) and (50) is that cos(E.~E )t appegy
in the former where w8{Eg-E,) sppears in the latter.” Indeed the

latter can be obtained from (2%) by replacing each cosine by 2§~
function in t, times the integral from t=0 to t == of the cosine,
This is the Markcffian approximation necessary o convert the GMp
into the ordinary Master equation and is responsible for the fact
that, while the CGME is able 16 describe transport at short times,
the Master equatior is not., To gain the capability of providing a
short-time (i.e. coherence) description while retaining the basic
mechanism of transfer, one need therefore make only the necessary
modifications in the Foerster—-Dexter formula and obtain

= comstant * —= fdz cos(zt) fdm“—wig-)- (51)

W o (t)
o m g=—co W-0 (w-z)* (wtz)

The constant factor in (51) is unimportant for the present discus-
sion. The guantities A and E are the absorption and emission
spectra respectively and R is the intersite distance, the sixth
power being characteristic of the diple-dipole interaction. The
prescription implied by (S51) is as follows. One obtaimsF__ as given
by the Foerster-Dexter prescription, rerames it f__(0), recalculates
it after displacing the two spectra on the frequency axis by z/2 and

5@
¥ T
] 1
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o
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(U noMsec™
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Fig. b. The time dependence of the memory fFfunction for excitol
transport among anthracene molecules in cyclchexane solv”
tion at room temperature obtained from the spectral pre”
seription of (51). Ordinates are chosen in a way to DOT”

malize the memory function.
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_,/2 respectively, renames the results f (z) and repests for all
salues of 2. The Fourier cosine transform of the function £ nlz)
tpus ovtained is the memory function wmn(t).

an intimate relation thus exists between spectra and memory
sunctions. Narrow spectra generally correspond to long-lived memo—
ries and therefore to coherent behaviour in the transport whereas
path interactions cause incoherence as well as spectral broadening.
yell-known restrictions: exist on the applicability of the Foerster-—
Dexter theory, particularly when inhomogeneous broaderning is impor-
tant. These restrictions have been discussed elsewhere in this bock
apd must certainly not be ignored in the use of the above procedure.
However, when the restrictions do not apply, (51) provides a direct
method of extracting memeory functions from experiment. As an exam—
ple of the application of (51), Fig. 4 shows the time-dependence of
the memory furction for exciton motion from cone anthracene molecule
to another in cyclohexane sclution at room temperature.

IV. CALCULATION OF OBSERVABLES

Calculation of Propagators

IV.A. Prelude:

The previcus sections of this article have set up the basic
evolution egquation, the GME, and shown how its memory functions are
obtained, Now we shall use that equation to address experiment. OF
central relevance to the experimental gquantities, particularly in
the context of the experiments described schematically in Fig. 1,
are the probability propagators iy, which are nothing other than
special solutions of the GME for initially localized conditions or,
vhat is the same, the Green functions of the GME. Thus, by ¢, {t) is
neant the probability that the exciton occupies the site m at time
%, given that it occupied site 0 and time 0. Although for a dis-
crdered system with ne translstional invariance, the propagator
Wwould depend explicitly both on the site of initial occupation and
thet of later interest, the crystalline nature of our system makes
the propagator = function of the single index m, the difference
between the indices representing the two locations in question.
Some of the observations require knowledge of lﬂ (t), while others
are related to its discrete Fourier transform 3 Tt) and yet others
frobe their respective laplace transforms ¢ (e) and (). Thus,
the grating experiments depicted in Fig. 1d are directly sensitive
?0 the time dependence of the propagstor in the Fourier demain,
Le, to ’J,Jk(t) and the capture experiments shown in Fig. 1b probe
"Che self-propagator ian the Laplace domain, i.e. ITJO(E:). The GME
1tselr is an integro—differential difference eguation with a vari-
8ble upper 1imi% and a difference t-kernel in the time integration.
he t-structure of the equation suggests the use of the Laplace
transform for its solution while the crystalline nature, i.e., the
Mroperties in m,n-space, suggest the discrete Fourier transform.



230

Thus, purely calculational considerations focus one's attentioy o
the propagator in the Laplace and Fourier domain.

It ig 4 dan
lightful asccident that 5ome of the experiments probe the ¢

transformed
Propagators directly and thereby save the theorist the often trog-
blesome - and always tedious - task of inverting the transforms,

One begins then with the GME (22) ang uses the procedype
already outlined in section ITT.A.: One calculates the Ann(t)'s
Trom the memory functions Won(t)'s, obtains the Fourier transfory
A*(t), and uses its Laplace transform in the followin

Un(e) = (1/2m)8 faxe thmp 43k y)-1 (52)
Here d is the nunmber of dimensions of the crystal, taken to be
infinite in extent, and the integration 1s in d~dimensional k-space,

In arriving at (52) one also encounters the propagator in the
Fourier domain:

75(e) = [e + AK(e)]-L (53)

Equations (52) and (53) show how the various characteristics that
memory functions possess enter into the behaviour of the propaga-
tors, i.e., the solutions of the GME, angd therefore into that of
observable quantities. Thus, if the nemory functions are short-
lived, the A's are largely constant in €-space, the'y™'s are expo-
nential, and the behaviour of the lbm's is the same as from a Master
equation. It exhibits no coherence.  For highly coherent systems on
the other hand, A's are far from constant in £E-space, the time

ap )
mn_ _. - — - -
T T TiVlogy g ¢ Pm-ln ~ Pmons1 T Py ogpop) - (1 Sm,n)ap”(lsi)

It was first used for exciton transport by Avakian et al, [30] and
can be considered to be a DParticular case of the SIE (37). 1In the
absence of the scattering o, the off-diagonal elements of the den-
sity matrix do not decay and the motion of the exciton is purely
coherent. The evolution is exactly the same as that of (L) ir the
System is taken to be a linear chain, and the prepagators are given
by (8). One can show that, 1f the scattering is very large and
Justifies the limitgso, Ve, poy2/y= F, (54) reduces to the
Master equation (9) and the motion is perfectly incoherent. ThE
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qnderlying picture in {54) is "band motien" with a bandwidth

Proportional to V and scattering at the rate «. This can be made
ticulerly clear by transforming {54%) to k-space. The diagomal

rart of pin the k-representation follows the "Boltzmann" equation

ﬂ;?kk— = (a/N) % (p9Q - o¥k) (55)

which shows scattering with équal scattering rates (/%) among all
k-states, N being the number of sites in the crystal.

It is possible, in principle, to analyze the observables with
any GME with any degree of complexity by following the procedure
outlined earlier. However, to understand the coherence isgue, it is
important not to be distracted by other elements of the evolution
which are not essential to the issue. All the calculations in this
section will be made, therefore, from (54). The GME corresponding
to (54) has the memory functions [5]

Wplt) = & g2 (2ve)lem ot (56)

as is clear from (36). The corresponding AX(c) 1s given by
i) = [(e +a)? + 16V3sin®(x/2)]% - ¢ (57)

Te discrete Fourier transform of the square of the ordinary Bessel
function with respect to the space index is given quite simply.
Thus

4o
) J;(X)eikm = Jo(2xsinlk/El } (58)
m=—

It is this simple result that allows the effortless passage from
(56) to (57). Eguation (53) yields, on Laplace inversion,

pE(t) = & J,(bt) +f duoae_a(t“u)Jo(b/ti—uE) (59)
o

where b = 4Vsin|k/2|. The derivation of (59) uses a well-known
theorem in Laplace-transform theory which allows inversion of trans—-
forms of the form Fl(e? + ¢?}2] in terms of known transforms of
f(£), Here f is any function amd ¢ 1s some e-independent quantity.
To obtain the real-space prepegators one must evaluate the Fouriler-
irverse of (59). For this purpose one uses (58) in reverse. Then

=
bt = J2(2Vt)e T + 6[ due‘“(’“'u)J;{ewtz—u’) (6C)

Equations (59) and (60) constitute the solutions of the GME
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corresponding to {S54) and, with their counterparts in the Laplace
domain, enter direetly into the description of experimental
bles. They exhibit oscillations when the degree of cecherence 18
high, i.e., Whenais small, and show incoherent behaviour When g ig
large. The former case is obtained trivially by taking the limit op
small ain (59), (60); the latter is obtained by expressing ty,
square root in (57) in the form of a Binomial expansion ang retain-
ing the lowest power of V/y. The cases (13) and (14) are thug
recovered as extreme limits of.(60). The solutions for interumediate
degree of coherence displayed along with those extreme limits iy
Fig. 2 are given by (60).

Obseryg.

IV.B. Application to Grating Experiments

nential decay after illumination weuld be t¥ypical of incoherent

motion. Oscillatory features would charzcterize a high degree of
ccherence.

The evoluticn equation is the GME {22) corresponding to (54)
but with its right hand side augmented by two terms: a radiative
term -P,(t)/twhere tis the exciton lifetime and a term S_(t) which

The former term merely multiplies the GME solutions hy exp(-t/t), or
replaces ¢ in the Laplace domain by € =e+ 1/t. The source tern
Sm(t) introduces an additional driven contribution in the solutionh
Thus the solutions in the Laplace domain are now

Bp () = Ly o(e)p (0) + Lhpn(eEgle) - (61)

- The Ronchi grating experiment consists of three parts. In the
build-up part, in which the delayed fluorescence signal builds up ¢
1ts saturation value, P_(0) is identically zero as there are no
€xcitons initially, ang (éll) gives, through the Fourier transform,

B¥(e) = (1/e)1 g5%( o) (62)
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fere the illumination is switched on to a constant value which, when

multiplied by the appropriate absortion coefficient, equals io’ and
pas & spatial dependence gp characteristic of the ruling geometry.
The seccend part of the experiment is concerned with the steady-
state-value of the signal. The limit of PX(t) as t+w is given from
(62) as

LiP(t) = 1,g9%(1/7) (63)

The third part of the experiment consists of observing the time
dependent decay of the signal from the steady state value, To
calculate this decay, one returns to (61). There is no driving term
$ now, but the P (C) are given by (63), Thus, for the decay

B(e) = (1,65 §5(1/0)Jik(er) (61)

It suffices for illustrative purpeses to study only this decay stage
{6). We see that, except for the time-independent quantity in the
square brackets in (64), the probability solution is given in +he
time domain by exp{~t/T) times that given in (59) above.

The measured quamtity is the delayed fluorescence signal which
is proportional %o

2
L [py(8)]
and therefore to

}Z PE{4)P %(t)

following a standard Fourier result. It is therefore clear that, if
the illumination were to excite a single Fourier component k, the
delayed fluorescence signal would be given essentially by squaring
the result (59) for W¥+). It is thus that the grating experiment
contains a direct probe of the time dependence of the Fourier trans-—
form of the provagator.

The actual Ronchi grating experiment does not populate a single
Fourier component but several ones with amplitudes given by the
Fourier transform of the square wave, since a mask is employed. The
€xpression for g, and, therefore, for g5 in (62)-(64) is written
down trivielly, Straightforward calculations [32] lead then to
€xplicit expressions for the normalized decay signal of delayed
fluorescence. Careful experimentation requires that this signal be
Subtracted from one in the absence of the mask in order to eliminate
Shurious contributions. The difference signal thus obtained is
Elven by aA¢(t) with
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A(t) = 72/ T gy : (65)
B(t) = [1+ 2 agl™ [ ap pEe(s)12-1) (66)
Ay = 8ln*(2-1)2T7L[(1/1)j%%(1/ 1)) (67)

The quantity k) appearing in (61)-(63)

is the dimensionless Vave-
vector given by

kg = 2r{a/x,)(24-1) (68)
with a 2s the lattice constant of the crystal and X, a5 the perigg
of the ruling, i.e., of the mask. The dynamics of the exciton ig

reflected in the y's appearing in (66) and (6T). The grating peried
decides which Fourier components appear in the exypression.

The time dependence of E(t), equivalently that of the delayed
fluorescence difference signal which differs from E(t) only by the
factor exp(—Et/T), is completely controlled by the time dependence
of the Fourier transform of the propagator. For incoherent motion

the latter is an exponential ag given by (14} and -E(t) rises from 0
to the value

[1+0 8172 T 4]
) g

menctonically. For purely coherent motien, i.e.,

when the exciton
suffers no scatt

ering, -E(t) rises in an oscillatory fashion. The
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Fig. 5. The delayed fluorescence signal for the decay stage of the
Ronchi ruling experiment times the factor exp(2t/ 1) plot-
ted as a function of time for several degrees of exciton
coherence. The effect of coherence is seen in the charac-

teristic shape near +the origin and in oscillations. Se¢
equation (66),
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spatial inhomogeneity disappears monotonically in the former case
wut overshooting with resultant oscillations occcurs in the latter.
Fig. 5 shows the evolution of -E(t) for various degrees of ccherence
typified by several values of OT. The latter parameter is the ratio
of the exciton lifetime to the time between scattering events.

The measured gquantity, is A¢(t) rather than E{t). The clear
oseillations seen in E(t) are not always seen in 4¢ (t) because the
exponential factor in (65) generally suppresses them. EHewever,
cseillations are not the only characteristic of ccherence. It is
manifested alse in the shape near the origin - concave Versus ccmvex
- of the time dependence. Quantitative analysis for representative
crystals has shown [32] that this latter effect would be quite
discernible in realistic systems. Fig. 6 shows the actual measura-
ble quantity -ad, rather than the gquantity E(t), plotted for the
extreme limits of pure coherence and complete incoherence for seve
eral values of the quantity, 2m/x,, which is the ratic of the ex-
citon transport length L4 to the ruling period X.. The transport
length & is a generalization, to arbitrary degree of ccherence, of
the well-known diffusion length. For the present system it is given

vy [32]

Lp=2a (Va)lar - 1+e 0% (69)

-Ad D%

t/z

Fig, 6. Delayed fluorescence decay signal -~ A (t) plotted as a
funection of the dimensionless time t/tfor the extreme
_cases of pure coherence and complete inccherence. Curves
a, b, ¢, 4, refer, respectively, to the values
O.Q5,0.15,0.35,0.h5 of Lm/x,, the ratio of the transport
length tc the ruling pericd. Solid lines represent the
purely coherent case, and the dagshed lines the completely
incocherent case. Curves of the latter kind have been

already observed experimentally {31].
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M H r ] ]

) G2 o4 05
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%5 10 {aer™)

Fig. 7. Plot vs (1/x,), the spatial frequency of the rulings, or
the dimensionless quantities & oh = EH/Q_(RT)CO /x0 for the
purely coherent case (curve a) and Eine =TV2 Ly ine/%q
for the completely incoherent case (ciurve b), as obtained
by graphically inverting the relevant expressions for the
same "observed" signal -Ad(t). The latter is obtalned by
fitting curves such as these in Fig. 6. The straight-line
behaviour a indicates that the correct theory has been
used to interpret the measurements. The clear departure
of curve b from straight-line bebavicur shows that the
theory used for b ig incorrect. The straight line a
corresponds to a transport length R,T:SO | m.

The measurable shown in Fig. 6 is quite different in the coherest
and incoherent cases. Attempts to fit one with any of a family of
curves of the other kind sheow [32] suehn poor resuits that experi-
mental differentiation would be quite unambiguous. We exhibit this
consequence graphieally in Fig. 7.

The question of ccherence has been debated for a long time in
the literature, However, clear experimental methods for its mea~

- Surement have not been developed. A careful study along the lines

outlined in the present section has recently showr [32-34] that the
Ronchi grating experiment is an excellent candidste for this task.

This had not been realized earlier, although grating experiments
~ have had a long history [31]. Tt is expected that such experiments

will be carried out in the near future.
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1v.C. Capture Experiments

The capture experiment represented by Fig. 1b employs homoge-
peous bulk illumination of the host crystal under study which is
doped with guest molecules. These capture the excitons moving in
the host and luminesce at a frequency different from that of the
noest. Monitoring the luminescence from the host and/or guest allows
one to measure exciton motion in the host. An enormous amount of
information has been gathered over the years through the use of this
technique [9313335:36]-

The evolution equation is the GME (22} once again with two
terms appended to its righthand side: —Pm(t)/r to describe decay as
in IV.B. and a term which represents capture by the guests or traps.
The simplest form of the latter term is

1 )

~C E ‘PI;‘SII{,T
r

and means that whenever the exciton is at one of the trap—infiuenced
host sites r (over which the primed summation runs), its probability
decays into the trap from the host at rate c. To solve the GME with
these terms, a new mathematical technique needs to be introduced.
This is the defect technique of Montrell [37]. The laplace trans-
form ?g ‘r),he augmented GME gives an equation similar o tut different
from {61 '

Byle) = figle) - el I (eNF (o) (70)

Eere, as in (61), €' =¢ + 1/7and nis the homogeneous solution,
Le., the first term on the righthand side of (61).

The experiméntal observable is the total illumination intensity
vaich is proportional to

nglt) = L Pylt),

the probability that the host is excited. Summation of (70) over

21l host sites m gives

Byle) = & [1c] B, (2)] (1)
r

and shows that ny is simply related to the probability that the
trag-influenced host region 1s excited, However, the latter cannct
be generally evaluated since, from (70),

LB (e) = & - ) 9,(eM,(e) (72)
S
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where the initisl illumination has been assumed explicitly hOmoge-
necus as in usual experiments, where pis the trap concentratigy
i.e., the ratio of the trap-influenced host sites to the ‘totai
number of host sites, and v is defined as

ve(t) = Ly (x) - (73)

An exact evaluation is possible for small p since then one can
use the single-trap solution of (71)-(73). The v~function is then
equal to the self-propagator Y (t) and (71) is easily evaluated. An
important cbservable is the steady-state yield ¢pg defined as the
ratio of the:number of phctons emerging radiatively from the host tq
that put initially through illumination and is given by

oy = (1/7) [at nglt) = ligle)] _ ()

=0

for the simple case when the radiative lifetime equals the total
lifetime. For the single~trap case one gets

. a3
R SV VTN VLD (T5)

Thus, in the capture experiment, characteristics of exciteon
motion infiluence the observable, in this case ¢gs through the self-
propagator {,(1/T). To study the effect of coherence, (60) may te
used as in IV.B. The propagator to be calculated is the m=0 case of
(60) evaluated in the Laplace domain, The result is [38]

~ o (2/m)
Vol®) = Toaea) G Z42ear1fVe) Ve T [(e+a)2+l6V2]”2”ﬂ<(k)
1 ) (2/m) , :
" Te+a) 241672172 T fzea+16v)72 T{a%, k) (76)
where
8] * = 16V2(e+2ca+16v2)7L, (77)
k = Lv[(c+q)2+16v2]7% (18)

andiK and MNare elliptic integrals of the first and third kinds
respectively defined through :

K(o) = [ax(1-x2)%(1-p2x2) % (79)
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n(af,b) = {ldx(l-xz)“;ﬁ(l—baxz)""ﬁ(l—afxa)‘l (80)
1n the coherent limit o + 0, (76) gives

(1/ 0T, (1/0) = (2/7) (126v372) 2K [ WV e(1+16v212) 2] (81)
ynereas in the incoherent limit ge, V+w, 2V234= F, one has

(/07 (1/1) = (1P} : (82)

For exciton transport V31 and FT>>1 usually applies: the
excitons cover a distance of many lattice comstants vefore they die.
It is then possible to express (81) and (82) more simply. The
elliptic integral reduces to a logarithmic expression and (81) gives

(1/1)0,(1/1) = (L/knvT) La (256VT) (83)

as the key quantity in this experiment for coherent transport. 0On
the other hand, for incokerence, (82) gives

(1/7) ,(1/7) * 1/(2/F%) (8k)

These results show that the quantity examined by these capture
_experiments is &q/a, the ratio of the transport length (see (69)) to
the lattice constant. For higher concentration of traps the probed
quantity can be shown to Dbe SLT/ %g where Lg is the distance between

traps.

10 -
ol Q7 ol 10 10° 10°

Fig. 8. Guest yield plotted as a function of the (in)coherence
parameier 4/V, i.e., the ratio of the lattice cous tant
to the mean free path, for several values of the irap

concentration.
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To treat the multi-trap case one returns to (72) and by assup-

ing s-independence of V. writes an average form of (73):
vs(t) = v(t) = Iy (e)p, (85)

Here Pp 1s the p%gbability that the m®
given that the 0 is; it will be cal
function. The problem is now immediat
of (T5) to the multi-trap case being

h host-site is trap~influenced
led the trap pair correlation
ely solved, the generalization

pT
T (Ve T/ N (177 (86)

For random placement of traps, it follows that [39]

¢H =1

vit) =p + (10)y (1) (ar)

Fig. 8 is the guest yield, i.e., 1-¢y obtained from (86) and (87},
the exciton dynamics being given vy (gh), Plotted to show the effect
of coherence. The coherence parameter is

V/a, which is Proportional
to the mean free path of the exciton

in units of the lattice

1/ Ty

¥ plotted as a function of time
ap concentration to show the
explicit effect of transport coherence. The extreme
limits of completely coherent motin and compiletely inco-
herent %Ption are Ehown.

The_ parameter values are
Vi=1.8x107, Fr=1.8x10", and c1=100,

for two values of the tr
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constant. Higher degree of coherence is seen to result in more
efficient trapping but no dramatic differences comparable to theose
in Figs. 5-T iIn the grating context occur here. Fig. 9 shows the
time dependence of guest luminescenc obtained from the solution of
(71) by using numerical inversiom of the Laplace transform but again
no striking difference occurs [39].

The fact that such a pronounced difference exists between the
qualitative effects of coherence for capture experiments on the one
kand and grating observations on the other suggests that one compare
the two analyses. In both kinds of experiment one begins with

t - o

In the gratipg analysis one adds an annihilation term which gives
rise to the delayed fluorescence signal but neglects it in finding
solutions of (88). In the capture analysis one adds a capture term
which, however, cannot be neglected. This difference is in keeping
with the experimentzl situation. No information can be gathered
about exciton motion if ¢ im (T70) is put equal to zero.

The initial condition on the execiton population is different
for the two kinds of experiment. In the grating case it is irhomo-—
geneous but periodic. In the capture case it is homogeneous, It is
certainly possible to make it inhomogeneous in the latter case but
the experiments carried out so far use homogeneous illumination or
populations near one end. The latter case [5] is not treated in the
Tresent article,

The observed signal measures

L PEPTE | gle., T oyl E
K K

in the grating experiment but is sensitive to Z¢;um in the capture
cbservations. Here g, 1is the Fourier transform of the spatial
dependence - square wave - of the initial illumination and is con-
trelled by the ruling period. The corresponding ceontrol in the
cepture case is exercised by the trap concentration o on the trap
pair correlaticn function Py Thus, for random placement of traps,

Py = P+ (1=} 4 .(89)

The control in the capture case is, however, much weaker than in the
grating case because it is not as systematic. The rulings have a
Periodic arrangement. The doping by guest or trap molecules is
random. This is the reason that dramatic manifestations of coher-
€nce are possible in the grating case but not in capture experi-
ments. The quantity to measure in these experiments is the
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diffusion length of excitons if the extent of transport is tndep
study while it is the mean free path if the quality of transpops
(i.e., degree of coherence) is under study. The measuring unjt
employed in capture observations of the kind discussed is the inter-
trap distance and is a random quantity. The measuring unit in
grating observations is the ruling period which is a fixed quantity,
In modern singlet grating experiments it appears possible to ake
the grating measurement unit even more systematic as it involveg the
selection of a single Fourier component of the P's by illuminating

the crystal with crossed laser beams (5,507 instead of through 5
ruling.

V. MISCELLANEOUS METHODS AND CONCIUSIONS

V.A. Methods for Cooperative Trap Interactions

The mzthematical technique of the GME and the issue of exciten
transpert coherence are well matched to each other, play a central
role in the subject of energy transfer, and have been explained in
sections II-IV. EKowever, the subject poses other important issues
and requires other useful mathematical methods. Although space
considerations do not allew us 3o trest them all, an attempt is
being made to describe one of them and briefly mention some of the
others. The present section contains techniques used in capture
situations with a high concentration of traps with particuler refer-
ence to the difficult question, seldom discussed in the Iiterature,
of the effect of cooperative interactions among the traps, i.e.,
among the guest molecules in sensitized luminescence observaticns.

The interesting feature of this treatment is that it combines
the methods of non-equilibrium statistical mechanics, i.e. transport
theory, with techniques of equilibrium statistical mechanics, par-
ticularly Ising model arguments. Although time dependent observa-
bles can be analyzed as well as steady state quantities [39,L1,42],
attention will be restricted to the latter for simplicity. Central
to this analysis are (86) which relate the observable, the yield, to
the v-function, and (85) which expresses the v-function in terms of
the Pp 2nd the ¥, The powerful feature of (85) is +hat the
observables can be calculated by combining two distinct parts of the
system under study: (i) the dynamic part which involves the motion
of the exciton in the pure host as described by the propegators o
and (ii) the static part which involves the placement of the %raps
in the doped crysial as described by the pair correlatiom functiol
by Calculation of the propagators has been illustrated in earlier
sections. A procedure for obtaining the pair correlation functich
p, fellows. '

If one represents the crystal under investigation by a lattic®
gas, one can exploit the well-known analogy hetween the latter end
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the Ising model, and use known results for spin correlation fune-
tions in the Tsing model. The host sites are treated as the lattice
gas sites, and are considered "occupied” if they are trap-influenced
2nd "unoccupied” otherwise. The interaction between any two trap-
influenced host sites is characterized by an energy which equals
infinity if the two sites colncide, -Aif they are nearest neigh-
pours, and zero in all other cases. It follows that the gquantities
Aand 2p-1, where pis the trap concentration, respectively corre~
spond to the magnetic interaction 47 and magnetization M of the
Ising model. The spin-svin correlation function <O'OO'm> is related
to the Py e seek, through

pp = 1~ (1/40)(1-< o) | (90)

We shall restrict ourselves tc a one~dimensional system. Ising
model arguments and the above correspondence then give

Bp = O * (-8 )o+(1-0)x 2] (91)

The details of the computation of <0.g > may be cbtained from exten-
sions of standard textbvook calculations and therefore have not been

10 \
=1

o8-\ T £=10°
os | [
13 s \\
o \ e—
0-4" B - Av —

02-l TT——g=1d?

00 T T T T
0 5 0 B 20 25

INTERTRAP DISTANCE m

Fig, 10  The trap pair correlation function p, plotted as a func-
tlon of the dimensionless intertrap distance m for atirac—
tive,2 repulsive, and nc interacticon among the iraps
(E=10°, 107°, 1 respectively). The value of the concen-

tration has been arbitrarily made 0.4,
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shown here. The quantity x in (91} is defined by
x={y -1/ +1) (92)

and can take values between -1 and 1 depending on the nature of tha
trap-trap interaction and the value of the concentration. Here v 14
given by

¥ = [1-b(1-0)(1-E) | (93)

and E, the trap—trap interaction rarzmeter, eguals exp@i/kBT) where
T is a characteristic temperature. For no interactions¢lvanishe&
E'equals 1, x vanishes since ¥ equals 1, and (91) reduces to the
random placement result (87). Attractive interactions lead to the
formation of clusters while repulsive ones generally cause desert
regions to form. Fig., 10 shows the pair correlation funetion for
three values of E showing typical spatial oscilliations for repulsive
interactions and siow decay for attractive ones.

The v-function is obtained by combining {91) with (85):

[+

v(s) =0+ (1p) ] x iy _(v) (9h)
m==—o

and reduces to (87) for random trap placement. The sum in (94) cen
be evaluated in simple cases. Thus, for incoherent motion with
hearest~neighbour transfer rates F as in (9 ) or (11), the v~-rfune-
tion gives, for the relevant quantity appearing in (86)

(/T {1/t) =p + {1-0)[tanh(£/2) Tkanh{E +yu)/2} J-senlx) (95)

The factors tann(u/2) and tann{g/2) respectively egual y and
(/). (1/1) vwhere Yo 18, as before, the self-propagator. The
behaviour of v, and therefore that of the observables, is controlled
by the irterplay of the two quantities £and p. They characterize
the motion of the exciton and the interaction among the traps re-
spectively and are given by

g

cosh™1 + (1/2F7)] | _ (96)

it

u = 2n (1/]«]) (97}

Simple physical meaning can be ascribed to these two quantities in
certain limits. Thus, for excitons in molecular crystals usually
Fr>>1 with the consequence that £ equals (UF1)72 to an excellent
approximation. Except for a factor of /2, £, therefore, equalg the
ratio of the lattice constant a to the diffusion lengtk /2Fa?7=
YyDT. It can be similarly shown [41] that, except for unimportant
Proportionality constants, pequals the ratio of the lattice com
stant to the effective distence over which the trap-trap interaction
extends. The effective distance is defined ag one over which the
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pair correlation funetion D, falls off by some characteristic
amount, The reciprocal of ptherefore measures how far the effec-—
tive trap-trap interaction extends, whereas the reciprocal of &
messures how far the exciton can travel in its lifetime.

Fig. 11 shows theé result of the application of this theory to
compute the observable, the guest quantum yield ¢G which is obtained
from {86). Speeifically,

be = prl(1/en) + (L0811 (98)

with {(65)-(97). One draws the conclusion that trapping is more
efficient for repulsive interactions.

The present technique can be used for arbitrary degree of
transport coherence (whose effect will be felt through the propaga-
tors appearing in (87)) and also for arbitrary sirength of the
capture rate. However, it involves the averaging approximation
ipherent in the use of the y-function theory [5,39]. An exact

10
E=16°
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E=10%
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Fig. 11. The guest (trap) yield ¢; plotted as a function of the
guest concentration pfor the three values of trap-trap
interactions corresponding to Fig. 10. Repulsive interac—
tions are seen to lead o enhanced efficiency of capiure,
whereas sttrzctive interactions inhibit capture.
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solution which avoids all approximstions 1s possible [k2]
willing to sacrifice the ability to cover arbitrary degree
ence and capture. For incoherent one-dimensional execit
with nearest-neighhour rates F and nearest-neighbour
interactions characterized by as above, the exact expr

the guest yield for the case of infinite capture rates is
[ee]

if one 4
of cohep~
Ol motigy
trap—trap
ession rop

- v —n -1
og = peNilpe (1-p,)

[tanh(éfe)]‘l{tanh[(N+1)£/2]—tanh(€/2)} {8)

where 0. is an "effective" trap coucentration which equals P{1-x)

with x as in (92),

V.B. Conelusion

) There is a large number of important questions and t
which it has not been rossible to
those techniques addresses mutual
procedure [5] is to consider the evolution of the s
representing two interacting (annihilating)
twice the number of dimensions

echniques
describe in this review. One of

ystem point
excitons in a Space of
as the real crystal. The annihkila-

expressions for the so-called

energy transfer rate and the time
dependence of the latter,

For many years sensitized luminescence
ovservations had been interpreted in terms of & simple kinetic

scheme invelving an energy transfer rate which described the trans-
Ter of energy from the host to the guest [9]. Iater experimentss
reported a time dependence of thisg rate [13] and various thecretical
and experimental investigations of this time dependence began., The
mest recent developments on this question are as fellows., The
systems that were reported earlier [13] to exhibit time dependence
in the energy transfer rate have been found [36] to have a time-
independent rate. The earliier observa

tinns appear to have been an
experimental artifact. However, time dependence in the rate is seen
43] for one-dimensional systems.

The unified theoretical framework
described in this article is able to reconcile quantitatively both
of these observations (time—dependent rates in the experiments of
ref. [42] and time-independent rates for the system of ref. [36]),

as 1is clear from detailed fits carried out recently [L4]. ‘A related
nev development [45] is the concern that usual exciton capture
ure rather than motion parameters and o feel-
ing is developing that a large amount of information gathered over
the years may be of little relevance to exciton motion.

Another issue in this field is that of the interplay of enerey
transfer with vibrational relaxation, The natural mathematical

technique to study it is to employ two interlocked master equations
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[5], one for the relaxation and the other for transfer. It is
possible to investigate in this way the dependence of energy trans—
fer on the wavelength of initial excitation which could be observa-
ble if relaxation occurs on a scale comparable o or slower than
transfer.

A pumber of other techniques exist including those involving a
return to k-space equations such as the Boltzmann equation. The
interested reader is referred to several reviews by the author for
deteiled [5] as well as perspective [46-18] descriptions and also to
other reviews cited in this article.
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