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The traditional theme of metal hydride transport analysis has
employed an equation for the probability P;(t) that a hydrogen atom
pccupies an interstitial site 2 in the host metal at a time t

d .
= =3 ) -T
where l'ygr is the hopping rate from site £' to site ?. The inade-

quacy of such treatments has led more recent Investigations to con-
siderzcorre]ations between jumps and correlations in continuous
time. We will discuss here a transport instrument particularly
well suited to the analysis of such memory effects, and we will il-
lustrate the nature of these effects on the quasiclastic scattering

function.

The hopping picture of hydrogen motion can be understapd as
arising through a process of coarse—graining from a microscopic,
"flowing'" picture, wherein motion is described by the Schrodinger
equation. Under certain initial conditions (including the completely
(de)localized ones) the Schrodinger equation has been shown to lead,
without approximation, to the generalized master equation '

% P (1) = rSaetsy Doy (et )Py (21) - Wy, (E-t)P (e, (2)
As a direct consequence of guantum mechanics, (2) includes
not accessible to (1), which is rocovered under the Markotfian ap-
proximation, in which the “"memory functions" Wog, (L) are replaced by
time delta functions &(t)lgpr. In the case of translationally invar-
fant svstems one of us® has caleculated the memory functions of

effects
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(2), which may be simply written
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in the Fourier-Laplace domaingas

-1

~h (3

where N is the number of sites, Vgg' the intersite Hamiltcnian matrix
element (The discrete Fourijer space (q) is conjugate to the lattice.).

Dimensionality does not restrict

(3), so (2) and (3) together give

a purely quantal description of motion in perfect crvstalline matter.

A familiar description of mo
V and a randomizing parameter o i
equations for the density matrix

A i X
= 1% Weplgm(1=8p )

5? pC’m i
shown here without a term in Dpo,
1t has further been shown® that (

Wopr (£) = Togi6(8) + W (1)

where W%P,(E) is the memory funct
i{s (3). The two-channel form of
separation of transport events in

tion with site-to-site interaction
s provided by stochastic Liouville

DS

)y (4)
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often neglected for simplicity.
4) is equivalent to (2) with

e—ﬂt (5)

fon whose Fourier-Laplace transform
(5) is directly due to the natural
to a class assisted bv a change

in the bath state, and a class in which no stuch change occurs.

Furthermore, the last term in (5)
continuous bridge between the "ho
transport. The two primary aspec
thus accessible to the generallize
take it as the instrument for our

In the usual vein we write t
product of a Debve-Waller factor

, even by itself, provides a simple,
pping" and "flowing' extremes of

ts of micrescopic motion being

d master equation (2) with (5), we
calculation.

he scattering functien S(q,v) as a
involving only the mean square dis-

placement <ul> and the scattering function sD(q,w) arising from

the hydrogen transport alene

2.2
- < >
S(q,w) = e 4 SD(q,W)

. . , D
The quantity of interest 1s S {(q,
self-correlation function Gs(l,t)

SD(q,W) = Reés(q,iW)
Defining A,,,(t) = -W L8, A,
9 . 24 29
translational invariance of the s
wg(t) of (2) has the Fourier-Lapl
ey = (e+dd(e)) ™ = {eni®(
[ 3

and is identical to Gg(L,t) at hi

(6)

w), which_is related to the van Hove
through G(g,c) as

(7
t) = zngc'g(t)’ and invoking the

ystem, we sec that the propagator
ace transform

ey- iy}t (8)

gh enough temperatures. - Therefore,
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within the approximations discussed, we have the resulec.

sP(q,w) = Re{ﬁi(u+iw)-a+(r°—rq)}“’ 9)

The restriction to high temperatures {(narrow bands) is made only be-
cause this is the normal regime of hydrogen transport; the extension
of (9) to arbitrary temperature has been developed, but is net
presented here.

For simplicity we shall consider a one-dimensional crystal with
nearest-neighbor interactions V and nearest-neighbor hopping rates
I', whereupon (9) results in

SD(q,w) = Re{/?u+iw)2 + 16V2 51n%ﬁ/2)—a+4rsin%g/3}*l (10)

The "flowing" limit is obtained from (10) by allowing u and ' to

q.E 4V sin(q/2) and Iq = 4isin(q/2), we have

vanish: defining V

SD(q,w) = {'4;2_w2 -T }—1 (1)

q

2 .
The "hopping" limit is extracted by keeping IV /v finite as both
and V are allowed to diverge, resulting in the Lorentzian

2y2 sin? 2
4(r+2v%/a) sin“(q/2) (12)

sD(q,w) = 5 . o
w2 + (a(r+2v2/a)sin©(q/2)1-

The intermediate regime forsakes such simplicity, requiring the
more complicated form

1

. 9 2 1 2 L) 3
sP(q.w) = {[v;l—wz—rqm—rq> ] [%((Vimz—wz) 2 iy el 1
9 1 i 2 L
+ aw[%((V§+u’—w2)2+4u2w2)2 - g(v§+a“—w~)1~ (13)

b (T ) (VP weT ) IILIVAT (aeT )= ot
q q q q g q

Figure 1 displays the general features of our result for the
case of negligible Tq and fixed Vq. The parameter Vq/u represcnts
the degree of persistence of quantum mechanical phase. The decrease
in linewidth (after an initial increase) with increasing randomization
ol phase testifies to the occurrence of motional narrowing. The dif-
fusion constant varies among the.curves of Fig. l: therefore, if
known (e.g., from measurgments of the mean square displacement at
long times) the ratio 2VS/w may be used to present out results in
another meaningful way. Fig. 2 displays sD(q,w) for fixed V270 and
negligible T,, which requires.both « and Vq to vary. At fixed q, the
content of Fig. 2 is essentially the same as Fig. 1; however, in the
experimentally reasonable case that « and V are fixed (and probably
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Scattering function sP(q,w) plotted against frequency w for

several values of Ct/Vq for Tq =0. Vq has been set arbitrarily 5.
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2. Scattering function SD(q,w) in which I =0 aud W2 a=4

When G/Vq>>l, 2V2/n represents the diffusion constant.
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in the presence of bath-assisted
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Fig. 3. Scattering function SP(q,w)
transport. Tq and Vq have been set arbitrarily to 1.
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Fig. 4. Scattering function in the presence of bath-assisted trans-
port. For comparison with Fig. 3, (2v2/a4T)=4 and v=.9. When
a/Vq>>1, (2v8/#T) represents the diffusion constant.
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unknown), Fig. 2 displays the dependence of the lineshape .on mgmentum
transfer [a/q ='a/4V sin(q/2)]. It must be noted that whatever

values of o and V may be available in a system, observable effects
become completely washed out at low momentum transfers (large u/Vq).

Figs. 3 and 4 relax the restriction that Tq vanish in Figs. 1

-and 2 respectively. 1In Fig. 3, Vq and Fq are fixed at nontrivial

values, showing now the effect of phase randomization in the présence

of bath-assisted transport. Characteristic features are that SD(q,OX

is pinned between ‘the values >+ and (Vq+F )"1, and that the maximum
value attained by SD(q,w) in both limits of T is ral. Motional nar-
rowing is again evident; however, the lines now narrow to the
Lorentzian (12) whereas there was no Lorentzian in Fig. 1. The hop-
ping rate 1/T appearing in the usual Master equation treatments! of
hydrogen motion corresponds, in the presence of bath-assisted trans-
port, to 2VZ/oa+T. Specifying this quantity fixes the diffusion con-
stant, and conversely, the existence of a diffusion constant fixes
lower and upper bounds for o and T tespectively (fixed V). Thus the
curve in Fig. 2 appropriate to a system with a known diffusion con-
stant reflects the most extreme effect of phase persistence which can
be observed in that system. The sense of this statement is shown in
Fig. 4, where we have chosen one of the Fig. 2 curves and allowed T
to increase from.zero.

We have illustrated the manifestations in the scattering observ-

able of two distinct features of the micrascopic motion of the hydro-
gen atom: (i) quantum mechanical phase persistence and (ii) competi-
tion of bath-assisted and bath-hindered transport. Such manifesta-

tions include generally non-Lorentzian lines, motional narrowing, and
a characteristic distension in the half-widths of near-Lorentzian
lines. Limitations on the possible appearance of these have been
noted, importantly the experimental demand of significant momentum
transfer. Our transport instrument in this analysis has been the
well-known stochastic Liouville equation in a high-temperature ap-
proximation, or equivalently, the corresponding generalized master
equation. The detailed analysis of these effects for realistic lat-
tices and arbitrary temperatures will be reported elsewhere.
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