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We use the generalized master equation with a simple exponential memory but with
disorder in its spatial dependence to analyze the combined effect of coherence and
randomness on the transport of quasiparticles. We calculate the mean-square-displace-
ment and find that 1t retains well-known properties in the presence of randomness.

L Introduction

The study of Forster migration [1] of electronic
excitation among randomly distributed molecules in
solution was greatly revived as a result of an impor-
tant contribution of Haan and Zwanzig [2]. The
analysis of these authors was extended to high densi-
ty and/or large times by Gochanouretal [3]. The
continuous-time random walk approach of Montroll
and Weiss [4], developed and applied to related
problems with great success [5] by Scher and Lax,
and by Scher and Montroll. has been recently given
further support by the formal analysis of Klafter and
Silbey [6]. Multipolar and exchange transfer rates
have been studied by Godzik and Jortner [7] and
by Blumenetal. [8]. Many vears ago, Miller and
Abraham [9] derived a possible incoherent hopping
rate for the case of impurity conduction at low
concentration in an n-type semiconductor. Recently
Meclnneset al. [10] have made a comparison study
of the a.c. conductivity which is closely related to
the mean square displacement of the species under-
going transport.

In all the above works, one studies the effect of
disorder on incoherent (or hopping) motion, ie. one
that is described by an irreversible rate equation.
The intrinsic coupled coherent-incoherent motion, if
it exists in a random medium [3], is not treated.
Recently, motion of an arbitrarv degree of transport
coherence but in ordered svstems has been studied
extensively by various authors [11-14]. In a disor-
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dered system the only treatment of coherence is that
by Huber and collaborators [15] in the extreme
limit of complete coherence. It is clearly necessary
therefore to study the combined effect of random-
ness and of an arbitrary degree of coherence on the
transport properties. We begin such an analysis by
using the generalised-master-equation approach [14]
and calculating the mean-square-displacement in
several situations.

In Sect.Il, we briefly mention the relevant features
of the generalized-master-equation. In Sect. I1I. we
exhibit the modification of the time-dependence of
the mean-square-displacement brought about by
randomness for the case of Forster [1], Dexter [16]
and Miller-Abraham [9] transfer rates. In Sect. 1V,
closely following Gochanour et al. [3], we argue that
the essential time-dependence of the mean-square-
displacement is not affected by increasing the densi-
ty. A discussion forms the concluding Sect. V.

I1. Generalized-Master Equation
with a Phenomenological Memory

The extensive work that has been recently done on
the simultaneous description of coherent and in-
coherent motion of quasiparticles may be classified
into two categories: that which uses the stochastic
Liouville equation (SLE) [11, 12] and that which
uses the generalized master equation (GME) [13,
14]. In view of the relations and equivalences shown
{14] to exist between the two approaches it suffices
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for our present purposes to choose either the SLE or
the GME. The mean-square-displacement is a quan-
tity which requires only the diagonal elements of the
density matrix in a site-representation and the GME
is therefore the more appropriate starting point. It
has the form

dP,
—,ﬂ = j‘lt, Z [Van(t - [/) R:(t,) - W”"(t -
0 n

r )R] (21

It describes the evolution of the probabilities of oc-
cupation P,(t), m denoting the sites, and the key
quantities are the memory functions W, .(1). The ex-
treme limit

W) =, 0(0) (22)

describes complete incoherence and corresponds to
previous analyses [2, 3]. We shall allow disorder in
w,, as in [2, 3] but replace 3(t) by a time-de-
pendence that is less drastic so that the coupled
coherent and incoherent-behaviour may be analysed.
We shall use the simple choice of an exponential

and write

W ()=w,,oxe” ™. (2.3)

The limit x — oo reduces (2.3) to (2.2). It is true that
choices such as (2.3) must be used with caution
because they are oversimplistic in their separation of
the time and space parts. But it is known that even
when such an oversimplification gives unacceptable
P’s from (2.1) it often gives the accurate mean-
square displacement [12, 14]. We shall assume here
that the choice does not introduce undesirable fea-
tures. The exponential approximation to (2.3) has
been used earlier [13, 14] to demonstrate the essen-
tial features of the coupled coherent and incoherent
motion. Its consequences in presence of disorder are
explored below.

II1. Low-Density Limit

A primary result of Haan and Zwanzig [2] is the
following: in Laplace & space
<’r\5(s)>=$(r2(t)>=£_\-d3rr2 [1———l——] (3.1
N 2 e e+2w(rl )

Here <(r2(f)) is the mean-square-displacement. p is
the density of transferring sites, which is assumed
[2] to be small. We now introduce into (3.1) the
memory factor discussed above and write

(ﬁ(a)):%jﬁrrl %——2i—— : (3.2)
e+ w(r)
£+

The factor x/(e+a) signals the presence of possible
coherence in the transport. Substituting the Forster
rate L.e.

w(r) =% (59>6 (3.3)

r

in (3.2), one obtains after an integration [2]

—~ C o 4 3/6 1 1
TS = g RE[D) —o——er 4
<r (5)> 21/6 TERO (1’) 81/6 (8+d)°‘6 (3 )

where C=(4pnR3)/3 is a dimensionless density. A
short-time analysis gives

C AR .
0>~z R (;) 75" 3, (3.5)

In (3.5) we have an interesting result. It should be
compared with the previously derived incoherent ex-
pression [2] in which {r(t)> is proportional to
t3/8,

It is well known that in the periodic lattice, for
purely diffusive motion, {r¥(t)y ~t whereas the co-
herent limit, or equivalently the unified approach at
short times, gives a t>-dependence. Thus we conclude
that at short times, when coupled coherent-inco-
herent transport is suspected to exist, the tendency
for the motion to be faster in terms of the mean-
square-displacement is retained even in the presence
of slight disorder in the system. Indeed, the fact
that the t-dependence in the coherent limit is the
square of the t-dependence in the incoherent limit
holds both in the presence and absence of disorder.
Furthermore, since there is no way to scale an expo-
nential function in contrast to a power law depen-
dence, the scaling law proposed by Haan and Zwan-
zig does not hold here. Equation (3.4) will be true for
all time. But this will not interest us here since an
asymptotic analysis will recover the master equation
result.

We now turn to the Dexter exchange rate [16],
given by

w(r)=Ae ?". (3.6)

When substituted into (3.2). equation (3.5) gives, after
some simple manipulations,

4np xA J . 1
= |dxx*——Fr——
B e?e+a o 224
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: X (=12 4
mpad ¢ CXEZ e e
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The last expression follows by identifying x=4, y
=23A4/ele+x)<1 and =0 in (A.1) in the Appen-
dix. A short-time analysis gives

{rA oy ~1 (3.8)
For a Miller-Abraham type of exchange [9] ie.
w(r)=ar’ et (3.9

a similar procedure gives

4rrpc1 X\ % xi b
o= 83( )gd,\-x PR

e+
e(e+a)blt?

(3.10)

which again can be expressed in powers of [e(e
+2)] % when one identifies x=11,2, y=02xa)[ele
+7)b' %] and f=3/2 in (A.l). Again, a short-time
analysis gives (r2())~t? as found in the Dexter
exchange rate case.

It is not surprising to find that in the low transfer
site limit the mean-square-displacement at short
time has the same time dependence in both ordered
and slightly disordered medium for an exponentially
dominated spatial transfer rate. This should be clear
from the physical argument that the particle cannot
travel very far to sample enough sites to distinguish
whether it is in a periodic or random medium. Math-
ematically it is the presence of an exponential
factor that allows one to express the integral in an
inverse power series of gle+«) and thus, for short
times. it is the factor outside the integral that de-
termines the time-dependence of (r*(1)). For a
transfer rate of the form r"e~*, where n is a large
power, one may expect a different time-dependence
of ¢r(r)> since the integral has to be treated dif-
ferently.

IV. Extension to High Densities

The propagator G°(¢) relevant to the high-density
situation has been given by Gochanouretal. [3] in
their (86):

LN

500} — T 3
&'l [H” R yeTmy

which determines the mean square displacement in
Laplace variable ¢ through the following two ex-
pressions

D(0, ¢) (4.2)

and

r2 w(r)

_ (4.
1+2G%(g) wir)

9]

P
= d’
€) 6j r )
Here D(0,¢) is the long-wavelength limit of the gen-
eralised diffusion coefficient D(k.¢) [2]. With the re-
placement of w(r) by [#/(e+2] w(r) in (41) and
solving for G*(s), one obtains

- 1

GS\Z

© 4rg?

1 Cu 32et(e+

DRI PR PNl Al Ghd) FRPEIS 4.4
{4(8+0()[1 Ty ]+ ST} (+4)

Equations (4.2) to (4.4), after a short-time analysis
give

oy~ (4.5)

for the Forster transfer rate. Thus we see that the
inclusion of the two-body self-energy diagram [3]
does not change the effect of transport coherence on
the mean-square-displacement at short times.

V. Conclusion

Though a phenomenological memory has been used
in the GME (2.1), we believe that the time-depen-
dence of (r2(1)> is correctly predicted since {r*(1)) is
intimately related to the time-derivative of the mem-
ory which has quite a universal time-dependence
at short times. Technically such a choice has the
advantage of mathematical tractability as shown in
Sects. 3 and 4.

It is then not surprising that transport coherence has
the same effect of enhancing the (1’(r> for both
periodic and disordered systems lLe. (1)) ~1* goes
over to 2% This is explicitly shown for three
different transfer rates: Forster. Dexter, and Miller-
Abraham. Furthermore, extension to slightly higher
densities i.e. to those corresponding to the inclusion
of the 2-body self-energy diagram, does not alter the
above conclusion at short times.

Appendix. Evaluation of a Useful Integral

The integral to be evaluated is

I(=, Al
B.y)= g e+yxﬂ (A.1)

where (i) y<1 and (ii) > and f can both be multiples
of half-integers. (A.1) can be written formally as




188 Y.M. Wong and V.M. Kenkre: Disorder on Transport with Intermediate Degree of Coherence

o tl
Iz, B.y)=lim [dt ———e™*
(2 5.5) g_.()[)( ex-}-_\‘l”
x0 x
=lim (di————— e~ &+ A2
e 0O {)[ l+_}'€*‘t6 ( )

It is sufficient for us to consider the case when

p<e’?, then tfe'<1 for all ¢ and since y<1 by

definition, (A.2) becomes on expanding in power of
B -t

ytbe

o AL

10 B y)=lim (i 3 2
0 n=0

' [1+nﬂe-(s+n+ln. (A3)
-0 n.

(I) If « and B are integers, using the fact that

o0 1
Jd et =—y (A4)

from any standard Laplace transform table, one ob-
tains

= b (x+np!
1, B.3)= Y. nl (n41)FrrErts

n=0

(A.5)

(I1I) If « and B are multiples of half-integers, to
perform the sum, one has to split the summation
into odd and even parts. In the former case, since
+(2n+1)f is an integer now. the odd sum of (A.3)
becomes

X (=y)**! [x+2n+ DAY

I"dd:"go Cn+)! (n+ @m0 (A.6a)
In the even case,
(=% .
I = A A | di 12+ 2nB g—tz+n+ 1y
wen™ 2 T@m1 e g ¢
20 yZn 20
— llm dttlvl t{z—})+2nﬁe—:r
ngo 2! zon+1 EE
oo 2n 1.9 ~
y d\—i+InB ,
L5 (A e
ng (2 ")‘ Z-n+1 dZ E‘)
00 ,2n 1—1+2nf 1
= Z . lim (——d—) [Ti -
woo 2m1 2z dz 2 Z
o \2n ~ h) !
= ! (z+21p) (A.6Db)

—n=0 (2”)| ('1+1)1+2nﬂf1 .

Expressions (A.5-6) will allow one to calculate
(r3(t)> at short times for both the Dexter and Mil-
ler-Abraham short range exchange transfer rates.
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