PHYSICAL REVIEW B

VOLUME 23, NUMBER 8

15 APRIL 1981

Effect of transport coherence on trapping: Quantum-yield calculations
for excitons in molecular crystals

V.M. Kenkre and Y. M. Wong
Institute for Fundamental Studies, Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627
(Received 27 October 1980)

On the basis of a general transport formalism and two models of the trapping interaction, a description of Frenkel
exciton transport in molecular crystals doped with traps is given in terms of an exact calculation. The analysis is
directed particularly at the coherence question. The observables calculated are the quantum yields (explicitly) and
the time-dependent luminescence intensities (to quadratures). It is shown that the neglect of coherence in
interpretations of yield experiments leads to an underestimation of the exciton diffusion constant, and a prescription
for evaluating the extent of coherence from bulk quenching observations is suggested.

I. INTRODUCTION

Although much formal work has been recently
done in theoretical investigations of exciton co-
herence in molecular aggregates™? it has been
rightly felt® that more calculations addressed
directly to observable quantities are required.
We present here such calculations in two physic-
ally reasonable models, for a specific observable
in sensitized luminescence, viz., quantum yield,
with attention on a particular phenomenon, viz.,
exciton capture by traps. The basis of our cal-
culations is a general formalism®® which is able
to analyze, in a unrified way, coherent and inco-
herent motion of the exciton. The system we
address is a molecular crystal in which guest
molecules (i.e., traps) are introduced inter-
stitially or substitutionally. The output of our
theory consists of explicit simple expressions
for the quantum yield and quadrature expressions
for the time-dependent luminescence. These ex-
pressions clearly show the effects of coherence
of exciton motion in the host crystal. Our analysis
is applicable to sensitized fluorescence situa-
tions™ ¢ as also to sensitized phosphorescence’
observations.

The present analysis differs from our previous
theory® of these processes in that it is a real-
space treatment. It thus complements the mo-
mentum-space treatment of Ref, 8. It is close
in spirit to earlier work by Pearlstein et al .°
and recent work by Huber.!® The experiments
we are interested in here create excitons in the
bulk of the host crystal through illumination, an
appropriate frequency range being chosen to
ensure that only the host (or guest) is excited.
The excitons decay radiatively and also move
within the host. If they arrive within the sphere
of influence of the traps they may be captured.

If they are captured, they later decay radiatively
in a different frequency range. The monitored

luminescence intensities (of the host and the
guest) thus contain information about the motion
of the exciton through the host.

Our theoretical analysis must therefore be
based on a formalism to describe the motion
of the excitons and on assumptions concerning the
trapping of the excitons. For the former we
employ here the generalized master equation’
and for the latter, two trapping models that we
shall describe below. We ignore exciton annihil-
ation'’ and nonradiative processes and concen-
trate our attention entirely on trapping.

The paper is set out as follows. In Sec. II we
give the transport description and introduce the
trapping models. In Sec. III we give general ex-
pressions for the experimental observables in
terms of the exciton propagator. In Sec. IV we
introduce a specific generalized master equation,
calculate the propagator and consequently the
observables, and explore various limits including
the extreme coherent and incoherent ones. In
Sec. V we present a discussion. The Appendix
presents details of the calculation of the propaga-
tor.

II. DESCRIPTION OF TRANSPORT AND TRAPPING
MODELS

In a trapless crystal noninteracting excitons
may be taken to move in accordance with the
equation

%’;—@Jr i,'r"—@: ft at’ Y [W,,(t = 1')P,(t")
T =P, @)

for the probability P, (f) that an exciton occupies
site m at time ¢, T, being the radiative decay

time in the host. The memory functions w,,,(¢)
contain the dynamics of the system. The extremes
of completely coherent and completely incoherent
motion as well as motion with an intermediate
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degree of coherence may all be described by
(2.1) and correspond to different forms of w,,,(¢).
The latter can be obtained®'® '3 from the micro-
scopic Hamiltonian, It has been shown' that
(2.1) is valid for completely delocalized as well
as completely localized initial conditions. The
former are applicable to the experiments of in-
terest here since the k-selection rule does place
the excitons initially more or less uniformly in
the host crystal. To introduce the host-trap
interaction, terms describing exciton capture
must be appended to (2.1). We shall present two
different models of this interaction below.

A. The sink model

In the simpler version of this model we assume
that exciton probability decays to the traps at a
constant rate y whenever the exciton occupies a
host site influenced by the trap. This model,
which should work best for the case of intersti-
tially placed guest molecules, is represented by

Eﬂ+£m-=z(wmn*Pn—wmn*Pm)
dt Ty -

1
—Z(Sm'r Pm ] (202)
y

wherein (and henceforth) asterisks (*) denote
convolutions as in (2.1), the primed summation
extends only over the sites v influenced by traps
and the unprimed summation covers all the host
sites.

Let us consider the simple case of a guest
molecule which traps excitons from the single
host site ». Equation (2.2) may then be solved
exactly with the help of the well known defect
technique'® if the solution of (2.2) without the
trapping terms is known. The details are straight-
forward' s and will not be given here, The re-
sult, expressed in terms of Laplace transforms,

is

P ()=7 (e V- (€)1, (€7)

R R v on) EERCE)
where € =¢+(1/7,), where 175,,, (€) is the solution
of (2.2) for T, == and y=0 and for the initial con-
dition P, (0)=6,,,,, translational invariance of
the W’s appropriate to motion in a crystal being
assumed, and where 7,,(¢) is the solution of the
homogeneous equation, given by

N )= 2 b ()P, 0) . 2.4)

In (2.3) and throughout the paper, tildes denote
Laplace transforms and € is the Laplace variable.
Summing (2.3) over m we obtain the probability
ng(¢) that the host is excited:

oo 1 (0 7€)
n”(e)—e,(l m) (2.5)

In deriving (2.5) we have used the obvious result

> Jz,,,_,,(e)=% 2.6)

which represents the fact that in the absence of
1/7, and of y the probability is conserved. .

If we allow detrapping, the sink model takes
on a slightly less simple appearance. What
multiplies the §,, in the last term of (2.2) is now
(vP,, - ¥ P,) where y’ is the detrapping rate from
the trap to the host site which it influences, and
P, is the probability that the trap is occupied.
The latter has, for its evolution,

-ddit"+% =(yP, -vy'P,) , .7
where 7, is the radiative lifetime in the trap or
guest. Note that while for the sake of simplicity
we have assumed that a guest site communicates
with only one host site and with no other guest
site, it is straightforward to generalize the treat-
ment,

Eliminating the P, in the new version of (2.2)
by using the solution of (2.7) one can see that
for the case of initially unexcited traps all ex-
pressions in the Laplace domain for this version
of the model are obtained from those in the y'=0
version by substituting ¥ by y[e+ (1/75)][e+ (1/7;)
+7']™*. Equation (2.5), with and without this mod-
ification, will be used in Sec. III below to derive
expressions for the experimental observables.

B. The substitutional trap model

An entirely different trapping model suggests
itself if our system has, as it normally does,
substitutionally placed guest molecules. The
index m now runs over the guest as well as the
host sites, the former being denoted by ». There
is no decay of probability our of the totality of
sites m through trapping. The latter is repre-
sented by transfer of the excitons to the sites
7. There is no y but the memory functions w,,,(¢)
are generally modified whenever either m or »
is a trap site. For simplicity we shall further
assume that the memories (or rates) from host
sites to traps (denoting trapping) are unmodified
but that those from the traps to the host sites
(denoting detrapping) are reduced in strength by
the detailed balance factor exp(-fA) where
B=1/k,T, with k, the Boltzmann constant and T
the temperature, and A is the amount by which
the trap energy is less than the host energy.
Thus
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P,
ﬂ—’-—m:z (wmr} *Pn"wnm*Pm>
n

at T,
1 1
=0 | [=— —— +(e‘““—1)2w"* P,
Te Tn r

+(e®® — 1w, *P, . (2.8)

The application of the defect technique®® to (2.8)
also leads to an exact solution. However, unlike
the case of (2.3), we shall present the details
because (2.8) is an unusual case of a problem with
an extended defect region which is exactly sol-
uble., We first have

P(€)=7,(€") = . ()P, (€)
1 1 s ,
RIS )
e B, (), €)B(),  (2.9)

where €'=¢+1/7, as in (2.3). The special case
m=v of (2.9) gives

B @ (- )T e
X[;?bm(e YW, (€”)
- @o(e’)@ Wael€ '))]}‘1 . (2.10)

The evaluation of the right-hand side of (2.10)
requires the evaluation of the expression Z,9,._,
W,y — Vo= W,,. We first rewrite W’s in terms of
@’s through

amn=—wmn m#mn ’ (z'lla‘)

Crm =2 Wom » 2.11b)
n

and use discrete Fourier transforms suggested

by the crystal translational invariance. Thus

with *=3, 9, e, etc.,

D D)W (€) = Do€) D W ()

= fdk @ (e)e+ @)t (2.12)

where we have used the result® §#(¢) =[(e +@*)(2n)]*
describing the fact that 3’s are solutions of the
homogeneous part (2.2) for a localized initial con-
dition. But the right-hand side of (2.12) simpli-
fies immediately to €J,(e)— 1. This result may
also be obtained directly from the left-hand side
of (2.12) by switching site indices through the

use of translational invariance and recognizing
from (2.1) that it is just the Laplace transform

of [dp,(¢)/dt]. Equation (2.10) now simplifies to

B (e)= 7'1,(6'){(%“‘A + J)o(e’)[e'(l —eBA)

+<% _%ﬂ}l . (2.13)

For this model, n,(¢), the probability that the
guest is excited is given precisely by the Laplace
inverse of (2.13) since P,(¢) and n4(t) are identical,
Expressions for the experimental observables

will be deduced below from (2.13).

1II. GENERAL EXPRESSIONS FOR EXPERIMENTAL
OBSERVABLES

The observables are the host and guest lumin-
escence and the host and guest yield. Unlike the
latter, the former are time-dependent quantities.
Called more specifically the differential photon
count rates, they are given, respectively, by

9ut)= -;];n,, ) (3.1a)

95(0)= ;IG—nG © (3.1b)

and in principle from the Laplace inversion of
expressions such as (2.5) and (2.13). While we
have thus reduced the problem of their determin-
ation to quadratures (requiring only a Laplace
inversion), completely explicit algebraic expres-
sions are available for the quantum yields, which
are also more easily accessible experimentally.

The host (and guest) quantum yield, defined,
respectively, as the ratio of the number of ex-
citons that come out radiatively from the host
(and the guest) to the number initially put into
the host through illumination, is given by

by = Fl,,‘ Lwdt n,,(t)=;1;7z,,,(0) (3.2)

1 © 1.
(bG:E-/; dtnc(t)=;;nc(0)=1"¢ll (3.3)

and it should be immediately clear that Laplace
inversions are not necessary for their evaluation.
Equations (3.2) and (3.3) give us general ex-
pressions for the quantum yields ¢, and ¢,. As
these add up to 1 we shall only give expressions
for ¢, below. Inthe case of the sink model, we

have

o =( v Ty ) 1-/1

CTN\L+yef 7 [(1/7 o(1/7 )] [1’” Ty o ) )
(3.4)

and in the case of the substitutional trap model

we obtain, after simplification, the remarkably
similar form
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¢ ( (Ty/75)e® )
= \T3 Gy /o) 1A /70050 /)]

R

We have displayed (3.4) and (3.5) in a manner
which will make their similarities and differences
immediately apparent. The quantity yef7,, which
equals y74 in the absence of detrapping but is gen-
erally given by

YT =yT,(L+y'7er" (3.6)

is the trapping parameter of the sink model. Its
counterpart in the substitutional trap model is
(T4/Tg)e®™. At low temperatures, such that
(T4/Tg)e™ > 1, the correspondence between
(3.4) and (3.5) is perfect. At higher temperatures
however we see that while y*f 7, appears both in
the numerator and the denominator in (3.4),
(74 /75)é*® — 1 appears in the denominator of (3.5).
The analogy between the results for the two
models may be appreciated further if we write in
(3.6), the detrapping rate y' as related to the
trapping rate through detailed balance, i.e., ¥’
=ye ®2, Then, if y'T,> 1, (3.6) shows that the
sink-model parameter y**7, exactly equals the
substitutional trap-model parameter (7,/7,)e®%.
It should be noted that in (3.4) and (3.5) the
motion characteristics are entirely (and only)
placed in the quatities (1/7,4)P,(1/7y) and (1/7,)
7,(1/Tg). The latter controls the initial (illumin-
ation) condition. For experimentally relevant host
excitation the delocalized condition P, (0)=1/N,
where N is the number of sites in the crystal,
applies rather well as a result of the k-selection
rule. We then obtain from (2.4), (3.4), and (3.5),

_ v effTH
d‘”””(l +(yeffm){(l/r,,)zzo(l/r,,)]) ©.7)

for the sink model, and

(Tg/T)e™

%6 =p(1+[(n,/fc)e“ Z1a /r,,)z'poa/r,,n) ©.8)

for the substitutional model, Here p=1/N. We
have shown elsewhere that while the above re-
sults have been obtained for the system with a
single trap site, they apply for a system with a

J

low concentration of traps with the replacement
of (1/N) by the trap concentration. Thus, hence-
forth p will mean the trap concentration,

For initial excitation of the {7ap rather than the
host, 7,(1/7,) is replaced by ,(1/7,) in (3.5).

In the case of the sink model one has to return

to (2.7) because (3.4) explicitly assumes the traps
to be initially unexcited. In this paper we shall
analyze further only the initial host excitation
case,

We emphasize that (3.7) and (3.8) as well as
(3.4) and (3.5) are general results, independent
of the nature of exciton motion within the host.
Given the trapping description of Sec. II, the
applicability of the generalized master equation,
which is always ensured for sufficiently local-
ized o7 delocalized initial conditions, is all that
is necessary for the validity of these results. The
entire information about exciton transport, includ-
ing the extent of its coherence, is present in
$4(1/7y) for the yields, and generally in J ,(€)
for the luminescence intensities. In the next
section we evaluate these z/')o’s for a specific
model describing unified coherent and incoherent
motion,

IV. UNIFIED COHERENT AND INCOHERENT
MOTION

Consider a model for the exciton motion where-
in the crystal has N sites, obeys periodic bound-
ary conditions, and wherein the motion is des-
cribed by the density matrix equation

dpp,(t .
pdt( ) ==-1 Z(Jmspsn _Jns psm)
s

- (1 - Om.n) @ ppmy - (401)

This simple equation describes motion of an
arbitrary degree of coherence quite naturally
and has appeared in many contexts, within exciton
physics'® as well as outside it. The matrix ele-
ments J,,, describe coherent flow from site s to
site m, and & describes a randomizing rate aris-
ing, for instance, from exciton-phonon interac-
tions. The J,,’s satisfy translational invariance.
The exact memory functions W ,,(f) correspond-
ing to (4.1) have been evaluated by Kenkre.!3+17
Their Laplace transform is [see Eq. (3.14) of
Ref. 13]

W (€)= = Z:, <e"’*"”"”/z: [e + @ +i(ghe -—J“)]") . (4.2)

If the site labelsm,n and the crystal momentum labels k,q, whichare both generally vector labels are
now taken to be scalars, i.e., if the crystal is assumed to be one dimensional, if it is taken to be infinite
in extent, and if the matrix elements J are assumed nearest neighbor in character, (4.2) can be eval-
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uated'®'!” as

wmn(t) = sze—at(Ji_"H +J72n—n-1 + 2Jm-n+ 1 mep=r = 2Jﬁ:-n _Jm—nJm—n+2 "'Jm—qu-n-z) (4'3)

wherein the J’s appearing in the parentheses are Bessel functions of argument 2J¢.
Equation (4.3), which reduces to the completely coherent limit [given by putting o= 0 in (4.1)] and the

completely incoherent limit denoted by

W (t) = (2T 2/ @) 6(t) (B ms 1 + Oy

(4.4)

for extreme values of (J/ @) (see Ref. 13 for details), will provide the unified transport description in the
rest of the paper. Our starting point is thus (2.2) and (2.8) with (4.3) for the memory, functions.
The key quantity for sensitized luminescence calculations is the propagator §,(e). It has been given by

Kenkre!'® in the integral form

hol)= (1/2m) [ T 104[(€ + @) + 1672 5in?(9/2)] 2 — @)1, (4.5)

We now evaluate it explicitly as

o

- X (R)

Jole) = [+ 2eca)(e? +2ca+ 16757 * [(e + @)? + 16J2)172

o? (2/m)

T+ aP+ 1677 (Fr2ca+ 16797

where a®= 16J%(e®>+ 2ae + 16J%) " and k= 4J [ (e

+ @)’ +16J2]" and X () and 11(a?% k) are elliptical
integrals of the first and third kinds, respectively,
defined through

%(k) = f q _d;‘z)l,z ((1—k§xz)"2) (4.72)
H(az,k)= 01 a _dxxz)lﬁ (‘(l—kgxz)llz)(l _szz )'
(4.7b)

The evaluation of (4.5) in the form (4.6), carried
out in detail elsewhere,'® has been briefly sketched
in the Appendix.

The conjunction of (4.6) with (3.4) and (3.5) in
general, and (3.7) and (3.8) in particular, provides
an exact calculation of the luminescence observ-
ables, particularly quantum yields, for arbitrary
degrees of coherence. In Fig. 1 we have plotted
the propagator, specifically the quantity
(1/7,)9,(1/7,) as a function of the (in) coherence
parameter (a/J). The significance of that quantity
is that its reciprocal is a rate describing the exci-
ton motion and equals the guest yield ¢, (per con-
centration p) for the case when the trapping rate
yeii7 [or e®2(r,/7,;)] is much larger than this
motion rate. Each one of the curves in Fig. 1
corresponds to a fixed J7,. This figure is thus
useful in deducing quantitatively the extent of
coherence from yield observations if J is known,
for instance, from band calculations or splittings
in optical spectra. Note that all curves rise to
the value one on the right for sufficiently large

I (@% k), (4.6)

values of @/J. This may not be directly apparent
from the figure. We also notice from Fig. 1 that
for a given J the greater the amount of coherence,
the greater the transfer to the traps. In Fig. 2
we have plotted the quantum yield ¢, (per con-
centration p) and for each one of the curves have
held (J2/ ) constant. Since the latter is propor-
tional to the diffusion constant, we see that the
neglect of coherence which corresponds to the
limit (@/J)~« in Fig. 2 always leads to an un-
derestimation of the diffusion constant.

(0 o "]
- Jty=0.1 -
g - -
5 o(?;) r g,
0.5 —
o Jry=l -1
N It =19 J1,=100 ]

o) T S T M o B R N A
107310741072 102 107 10° 10' 102 103 10% 105

G/J.

FIG. 1. Effect of coherence on the guest quantum
yield. The dimensionless “inverse motion rate” (1/7y)
1170 (1/7y) which when small with respect to the trapping
rate equals the reciprocal of the guest yield per guest
concentration is plotted versus the (in) coherence
parameter (&/J) for several values of J 7,4 as shown.
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FIG. 2. Effect of coherence on yield and underestima-
tion of the diffusion constant. The guest yield ¢ per
guest concentration for an arbitrary trapping parameter
v7y =1 plotted versus the (in) coherence parameter
(a/dJ) for several values of ¢/%/a)7y as shown.

We now analyze the exact propagator (4.6) in

various limits. We shall use the following resuilts:

lim X (&)= (w/2)[1 +(&%/4)], (4.8a)
k-0
lim X (¢) = n[4(1 -k?)"1%2] | (4.8b)
kR—>1

lim 1(d? k)= @/2)[1 + (k%/4) + (@®/2)], (4.8c)

k —>0:a2-0

lim (a3 k) =@@/2)[1+ #2/2a®)](1 -a®)'”, (4.8d)

kR->0
lim (a2 k) =(n/4)(1-k2a?)(1- a2)" 2 (1-k2)-3%,
k—>13:a2-1
(4.8¢)

The extreme incoherent case corresponds to
the case (4.4) of (4.3), modified Bessel functions
appear in the propagator in the time domain and
the expression

(/T Po(1/7) = (1 + 4Fr,) 1/ (4.9)

is obtained. The recovery of (4.9) from (4.6) is
immediate. The second term in (4.6) tends to
zero and the use of (4.8d) leads to (4.9) with the
identification of 2J 2/« as the transfer rate F.

The extreme coherent limit corresponding to
the transport equation

dCp,
dt

for the amplitudes C,, has the propagator J2(2J¢)
(for probabilities) and leads to

2 /n) x 4J7,
(1+16J2r2)17 ((1 +16J272)12 J°

(4.11)

= =i (Cray+ Cm_y) (4.10)

(I/Ty) ‘7’0(1/7}1)=

The recovery of (4.11) from the general expres-

sion (4.6) is also immediate since in the limit
a0, the first and third terms in (4.6) merely
drop out.

In both the coherent and incoherent cases above,
one may further ask whether the motion is very
fast or very slow with respect to the radiative
decay. In the coherent case these limits corre-
spond, respectively, to F7,>1 and Fr,<«1 and
lead from (4.9), to

/1R P(1/Tg) = 1/@2VF7y) (4.12a)
(/1) P(1/7)=1=2F7,. (4.12p)

In the coherent case they are represented by
JT,>1 and J7,<« 1 and lead from (4.11), (4.8a),
and (4.8b) to

/T P(1/7 ) = [(2/7)(1 + 16T 273)~ /2]

XIn[4(1 + 167272)'2]  (4.13a)
(/1) Fe(1/70) = (1 + 16727512, (4.13b)

Notice that although we could have simplified
the right side of (4.13b) to 1 —8J27%, we have
retained the original form to emphasize its re-
markable similarity to the general incoherent
case (4.9). Other limiting cases are shown for
the sake of completeness and the event that the
corresponding values of J7 and @7 become rele-
vant for future experiments:

Case (2): for 1« @T,< JTy;
(/7 00o(1/7) =[(3/8V2)VaT)/d74]
+(1/27)(1/IJT)In16J7,/aT,
(4.14a)

which further reduces to (3/8V2)(Va7,)/J T, for
extremely large values of J 7.

Case (b): for aT,< 1< J7,,

;1; 31/ = (1/4nJ7,) In(1677,).  (4.14b)

Case (c): for 1<J7,<I*th<aTy,

Liasm=1-(4L)

= (4.14c)

which should be compared with (4.12b).
Case (d): for 1<JTy<at,<J7y,

W/1)d(1/T)= 1/2V2)Wat, /J1,). (4.14d)

V. DISCUSSION

As stated in the Introduction, this paper addres-
ses a specific observable in sensitized lumine-
scence which is generally affected by the nature
of exciton motion in molecular crystals. This
observable is the (host or guest) quantum yield.
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In terms of our theory it is given by (3.3)-(3.5)
under general conditions and by (3.7) and (3.8)
under spatially homogeneous initial illumination
of the host. These expressions, and indeed our
eéntire analysis, are valid for trap concentrations
that are not too large and this is explicitly clear
in the linear dependence on the concentration
shown in (3.7) and (3.8).

The trapping process has been described in
our theory through the use of two different models
which we have called the “sink model” and the
“substitutional trap model.” In the former the
key trapping quantity is the trapping ratey or
more generally the effective trapping rate yetf,
whereas in the latter it is the energy difference
A. It is remarkable that the two models result
in almost identical expressions for the observable
yields.

In both models the effect of exciton motion is
manifest only in, and entirely in, the propagator
$o(1/7,). This quantity is actually the Laplace
transform of the probability of occupation of an
initially wholly occupied site of the trapless cry-
stal, evaluated by equating the Laplace variable
to the reciprocal of the radiative lifetime of the
host. It equals the effective energy-transfer rate
under the conditions of infinitely fast trapping.
Stated differently, (1/7,)$,(1/7,) equals the re~
ciprocal of the guest yield per concentration under
the limit that $,(1/7,) is small with respect to
the trapping rate.

It is worth observing that almost no restriction
is placed on the motion of the exciton in arriving
at these results. It may be coherent or incoherent,
one, two, or three dimensional, characteristic of
this or that lattice structure. The generalized
master equation that the analysis assumes is
valid under an extremely large class of condi-
tions.'* In future publications propagators par-
ticular to various lattice structures and coherence
conditions will be used in the analysis of experi-
mental data such as those in Refs. 3, 6, and 7.
Here we have illustrated our theory by the unified
description of coherent and incoherent motion in
one dimension given in Sec. IV. Equation (4.6)
for the propagator when substituted in (3.3)—(3.8)
gives the yields for an arbitrary degree of co-
herence, (4.9) and (4.11) representing the respec-
tive incoherent and coherent limits. Figure 1
brings out the effect of coherence graphically
and Fig. 2 establishes the important result that
the neglect of coherence in interpreting data leads
to an underestimation of the diffusion constant of
excitons. Similarly it can be shown that assuming
the trapping rate to be infinite which underlies the
use® of the Chandrasekhar-Smoluchowski'? theory
in the present problem also leads to an under-

estimation of the diffusion constant.

In addition to the application of this theory to
quantum yield experiments and of the expressions
derived for the differential photon count rates to
the time-dependent experiments, there are several
theoretical problems that remain to be tackled
along the lines of this paper. They are (i) clarifi-
cation of the relation of this approach to that of
Huber, '° including in particular the simultaneous
analysis of coherence and randomness,?° (ii)
clarification of the relation of this approach to
our k-space approach® and the construction of a
unified k-space and real-space formalism as was
done for dimers by Rahman ef q¢l.2! in the context
of fluorescence depolarization, and (iii) analysis
of the temperature dependence of the observables
on the basis of microscopic calculations of trans-
fer rates F and trapping rates y, perhaps as in the
analysis of Fayer and Harris” or of Craig and
Dissado.?

In closing we point out that this is one in a
series of papers devoted to the elucidation of
how observable coherence effects may be analyzed
in terms of generalized master equations. The
others in this series have treated effects of exci-
ton coherence on annihilation,!! and transient
grating observations.®
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APPENDIX: EVALUATION OF THE PROPAGATOR

The denominator of (3.4) can be rationalized,
i.e.,

0= [ « )
Yole) = o 27\ €2+ 2ea + 16J sin® (k/2)

21\ € +2ea+16J%sin® (&/2)

2T dk ([(e + @)® + 16J2sin? (k/2)]'2
+fo 2 ).

(A1)

The first term is just of(e? + 2ea@)(e? + 2¢a
+16J2)]7!/2 if one makes use of the identity

dx 1 1
27 C+Dcosx  (CZ-DP)' 7 for C*> D*.

To evaluate the second term on the right-hand
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side, one makes a sequence of change of variables
to obtain the following expression:

1 2 fﬂ/z (A% - cos?k)!”
47 © J, dk B%2—-cos’k ’ (A2a)
where
2 2 2 2
A= (e+c;sz+216J S € +Zlo:53:16J = B21.
(A2Db)

After another change of variables, viz., x = cosk,
(A2a) becomes

12 2y (' __dx 1 1
4J 7 ((Az—B) J; (T=2%7% (AZ-x2)% BZ_ 2
U dx 1
+ jo- A-%)7 (AZ-)F ) (A3)

The second term is k& X (¢) if one defines k=1/A
and uses the definition of (¢), the complete elliptic
integral of the first kind. The first term is

47 o? 1
[e+af+16J2]% +2eca+ 16J2

1672 4J
xII(Ez +2ea+16J% [([e+a )+ 16J2]1’§) (A4)

where I1(a?, k) is the complete elliptic integral

of the third kind. Putting the above results toget-
her, one finally obtains the desired expression
(3.5) in the text.
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