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On the basis of a recently developed formalism utilizing exciton transport equations in
momentum space, experimentally relevant sensitized luminescence quantities are calculated for
specific models of exciton capture by traps in molecular crystals. The quantities studied are host
and trap luminescence (fluorescence or phosphorescence), quantum yield, and energy-transfer
rate. Exact expressions are obtained and the behavior valid for long times is examined. The ef-
fect of variation in the initial condition involved in photon absorption is studied. While most of
the calculations are based on the assumption that the temperatures are low enough to allow the
neglect of detrapping, a brief description of detrapping effects is also given. The analysis is also
applicable to situations other than those involving excitons or luminescence and generally
describes the kinetics of a capture process occurring simultaneously with scattering in a band

" characteristic of motion in a crystal, without reference to the detailed nature of the moving

quasiparticles.

I. INTRODUCTION

Electronic excitations, produced in the molecules
of a molecular crystal as a result of light absorption,
generally travel within the crystal on account of
dipole-dipole or other intermolecular interactions.
The dynamics of such exciton transport may be stu-
died experimentally by the methods of sensitized
luminescence, which consist of monitoring the light
emission from guest molecules introduced into the
crystal. If light absorption by guest molecules is
prevented by the choice of a suitable frequency
range, the guest luminescence will directly reflect the
transport characteristics of the exciton as it moves
from the various host sites to the traps (i.e., the
guest sites). Both sensitized fluorescence'"? and sen-
sitized phosphorescence® have thus been studied ex-
perimentally for many years. The problem presented
to the theorist is of intrinsic interest as it consists of
transport on a defective lattice. The trapping mol-
ecules constitute the defects in an otherwise transla-
tionally periodic structure provided by the host crystal.

Most theoretical analyses of this and related situa-
tions have used transport equations in real space.
Various random walk techniques,*™ master equation
methods,5™1° memory-function approaches,'®!! and
other ways of attack,!?”'* have been used. On the
other hand, wishing to exploit the translational
periodicity of the host crystal from the very begin-
ning, and in the light of the current feeling> !¢ that
exciton motion is coherent in at least some of the ex-
perimentally studied systems, one of us recently
developed!’ a theoretical formalism for exciton trans-
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port based on a Boltzmann-like equation in momen-
tum space. We shall refer to that paper as 1. In this
paper we shall use that formalism for analyzing
specific models for trapping. It has been stressed by
earlier authors? that the mechanism of trapping has
received less attention from theorists than it deserves
and that the idea of exciton capture on the first visit
to the trap can be quite unrealistic. While the situa-
tion we consider in this paper is no doubt also highly
idealized, we shall specifically focus on the trapping
interaction, exploit explicitly the crystal periodicity by
using k-space equations, and obtain exact expressions
for the relevant observables. These are: host and
trap luminescence, energy transfer rate, and the
quantum yield.

The paper is set out as follows: A very brief
description of the basic formalism constructed in I is
given in Sec. Il along with a general exact expression
for the host luminescence (fluorescence or phos-
phorescence). Explicit calculations are carried out in
Sec. III for short-range trapping models. The Laplace
transform of the host luminescence is obtained exact-
ly, thus reducing the problem to quadratures and
making possible an exact calculation of the quantum
yield. For two specific models, luminescence expres-
sions in the time domain are given. Section IV con-
stitutes the asymptotic analysis (valid for long times)
of the luminescence expressions and of the energy
transfer rate. The effect of variation in the initial
condition involved in exciton creation is briefly stu-
died in Sec. V, the consequences of not neglecting
detrapping rates are explored in Sec. VI, and conclu-
sions form the content of Sec. VII.
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II. GENERAL EXPRESSIONS FOR HOST
LUMINESCENCE AND RELATED QUANTITIES

The basic transport equation!” of our analysis in
this paper,

LU/

“E+ Lt anfe= 3 10ufe() = Qunfe D, 2.1)
t T g

describes the probability f,(¢) that the k th state in
the band of the host crystal is excited at a time ¢, the
quantities oy and Q' being, respectively, the trap-
ping rate from the k th state of the host to the trap,
and the scattering rate from the k' to the k state in
the host band, which arises from exciton-phonon or
exciton-impurity interactions. The radiative lifetime
is denoted by 7 and we have suppressed its k depen-
dence for simplicity.

Equation (2.1) would be identical to the usual
linearized Boltzmann equation used routinely for
electron transport in metals and semiconductors if
one were to put ax +1/7=0. Note also that a large
part (if not all) of the subsequent analysis is applica-
ble for the transport of other quasiparticles moving
and being scattered within a band and being simul-
taneously captured by traps.

Equation (2.1) results from a consideration of the
phase space of the system depicted in Fig. 1. Two
coupled equations'’ describing the evolution of fi(¢)
and fy(t), where the latter denotes the probability
that the exciton is captured by the trap, reduce to Eq.
(2.1) above and a separate equation for f,(¢), under
the assumption of temperatures low enough to justify
the neglect of detrapping rates. The general program
consists then of solving Eq. (2.1) and calculating
from f;(#) relevant quantities such as the host or
trap luminescence, the quantum yield, and the

. energy-transfer rate. As in all realistic transport
problems, exact solution of Eq. (2.1) with nontrivial
Ok is almost always out of the question. One there-
fore uses the standard relaxation-time assumption, al-
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FIG. 1. Phase space of the system under consideration
showing the host band, the trap state, the scattering rates
Oy, the trapping rates oy, and the detrapping rates a,}".

beit in a generalized form.!” It has the form
S, O fie(t) = [EQk'k] 3 fie(o)
X k I3

=T, fF() . (2.2)

Here 1/T; is the usual relaxation time obtained from
QOue through standard prescriptions,'® £ is the ther-
mal distribution that f;(¢) would attain from Eq.
(2.1) at long times if there were no traps, and

F(1) =3, fi(2) is the host excitation probability or
the host luminescence that we seek. The extended!’
relaxation-time assumption (2.2) when used in Eq.
(2.1) gives for the Laplace transform of F(¢),

-3 B

|3

or, more simply,

F(e) =

-1
e+L+ak+I‘k kak"h]
T

-1
fk(O)] , (2.3)

T

-1
Jx (0)] (2.4)
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k

e+L 4T +ay
T

x I 2

k
wherein the k dependence of I'; has been dropped
and the thermal distribution f{" has been written as
(1/N), where N is the number of k states in the
band. This reduction from Eq. (2.3) to Eq. (2.4) is
exact under the constant scattering rate condition
(i.e., if Qw are independent of k and k') and
corresponds to high temperatures with respect to the
ratio of the bandwidth and the Boltzmann constant.
More generally I' may be interpreted as an average
relaxation time.

Equation (2.4) has been obtained in I, where de-
tails and a discussion of the validity of Eq. (2.1) and
of the approximations-used may be found. It, or its
more general form (2.3), will constitute the basis of
the analysis in this paper. Several model expressions
for a, will be written down in Secs. III-VI and F (¢)
calculated from them. The four experimentally
relevant quantities of interest in this paper, viz., the
host luminescence F(¢), the quantum yield ¢, the
trap luminescence fo(¢) and the energy transfer rate
k (t) will then be obtained, respectively, by Laplace-
inverting Eq. (2.4) and through

¢=(1/7) j;mth(t) , (2.5)
__ 1 dF() 1
k(1) = O a . (2.6)
dfe(®) | folt) =_[dF(t) LEO] o
dt Te dt T
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[I. MODEL CALCULATIONS
FOR SHORT-RANGE TRAPPING

A. M‘odel and general results

For a linear chain of host molecules with a single
trap introduced interstitially or substitutionally,
straightforward considerations!® of the golden rule al-
low one to calculate the trapping rate as

o, =const X | (k| V|6)|?
2
=const| 3, V,, ¥, etk m=m

m,n

3.1

The constant in Eq. (3.1) contains all temperature
dependences and density-of-states factors but the en-
tire k dependence, which is of primary concern in the
present paper, is displayed explicitly in Eq. (3.1).

The host-trap interaction ¥ has matrix element V,,
between the localized host state |m) (Wannier state)
and the trap state |0), and the factors e™*™ arise from
the expansion of Wannier states in terms of Bloch
states in the crystal.

lim —

N—w N % e+1/7+T+(Vo+2Vicosk)/y  2m

1 1

If the trap state interacts with-a single localized
host state, i.e., if trapping occurs from a single site,
V. is nonzero for only a single value of m, and Eq.
(3.1) gives a constant trapping rate over the band. If,
however, the host-trap interaction is of very short
range but of nearest-neighbor character, Eq. (3.1)
leads to

ak=(V0+2 V] COSk)Z/‘)’ , (32)

where y is the constant factor which will generally
depend on the temperature and on exciton-bath in-
teraction parameters. Expression (3.2) for the trap-
ping rate, which will be used in this section and Sec.
II1 B, is of direct physical interest and it has been
derived and discussed earlier.!® It is to be substituted
in Eq. (2.4). A procedure for calculating the host
and guest luminescence and the energy transfer from
arbitrary a;’s has been given in I. It uses a certain
averaging approximation which replaces the summa-
tion over k’s by a term containing a single average «a.
In this paper, however, Eq. (2.4) will be evaluated
exactly in the limit of a large crystal. The k summa-
tion is thus converted into an integral

1 =S(o . (3.3)

k
E+1/T+F+(V0+2VICOSk)2/’)'

Examination of Eq. (2.4) shows that another quantity of importance for finite as well as infinite crystals is

X ()
](6)—§€+1/1+F+ak '

3.4

Its effects for various initial conditions f,(0) will be studied in Sec. V. In terms of /(e) and of S(€) the general

expression for F(e) is

1

i =~ -~ -
(e) =1(e) 121500

(3.5

In this section we shall use 7(e) =(e+1/7+T +ag) ™', which arises from f;(0) =8 . This result is relevant to
optical absorption, and corresponds to many experimental situations. We evaluate S (€) explicitly from Eq. (3.3)
by splitting the integrand through partial fractions and integrating over the unit circle. The result, when substi-
tuted in Eq. (3.4) gives

o= 1 R V) _ vg—an 2i¥, v
et /r+T +ag| — et+l/r+T (e+1/74+D)y  [(e+1/r+D)y]'"
V¢ —4vi 2iV,

+ |1

T (e+1/7+Dy [(e+1/7+T)y]'2

~1/21-1
” , (3.6)

where the (4+) or (—) sign is to be chosen depending on whether the magnitude of the quantity x given by

1/2 1/2)2
] —4v}

1/2

=—|-Vo+i +
X 2V, ot/ Y Y

e+-l—+F
T

[“V0+i e-kl+I‘
T



20 MOMENTUM-SPACE THEORY OF EXCITON TRANSPORT. 1II . .. 2441

is larger or smaller than 1, respectively.
Equation (3.6) constitutes the exact expression for

the host excitation probability brought to quadratures.

The evaluation of the Bromwich integral is, however,
nontrivial and exact expressions in the time domain
will therefore be obtained below only for the limits
Vo >> Vi and Vo =0. It is possible however to
deduce from Eq. (3.6) certain general results which
hold for arbitrary values of ¥y and Vi:

(i) Since the quantum yield ¢ given by Eq. (2.5)
may be rewritten

¢=ﬂlil%i(‘)] , 6D

the exact expression for ¢ is obtained directly from
Eq. (3.6) without inverting the transform. The con-
dition on the magnitude of the quantity ¥ given
above then becomes a simple relation among the
magnitudes of Vy, Vi, T, and 7.

(ii) If we note from Eq. (3.2) that the trapping rate
o at k =0 equals (Vo +2V,)%/y we find by letting
I'—0 in Eq. (3.6) that, for this situation signifying
little scattering or very coherent exciton transport,

—1gravpy _ W/

F(t)=e e (3.8

Equation (3.8) shows that, as expected, the capture
of the excitation by the trap occurs essentially from
the initially occupied state.

(iii) For the opposite case I' — oo representing
strong scattering one can show from Eq. (3.6) that

The significance of Eq. (3.9) and of the quantity «
becomes clear when one observes that the latter is
the average of a; [see Eq. (3.2)] over the band.
Note that the band averages of cos’k and cosk are,
respectively, % and 0. The result (3.9) is indeed ex-

pected on physical grounds. Strong scattering mixes
the excitation over the band quickly and the capture
process then occurs with an average rate.

(iv) Finally, the limit ¥; —0 of Eq. (3.6) gives

—lVoz ly

F(t)=e'"e (3.10)

For V=0 the trapping rate is k independent, the
energy-transfer rate k (¢) is therefore time indepen-
dent, and F(t) is exponential. There is no depen-
dence on the scattering strength as is expected from
the fact that o, does not vary over the band.

B. Exact results for F(t)

We have mentioned above that an exact inversion
of the Laplace transform in Eq. (3.6) can be per-
formed only in limiting cases. The case Vo >> V is
of obvious physical interest. The trapping range of
the model we are considering is small by assumption.
Furthermore, we may assume it to be so small that
Vo >> V, applies. Here V, would represent the in-
teraction of the trap state with the host Wannier state
localized on the site nearest to the trap site. We then.
neglect quantities such as (¥1/Vy)? and approximate
ay in Eq. (3.2) by (V¢ +4V,V,cosk)/y. This

v 2any2

F(t) = et OO _ pmrtyrva (3.9) reduces Eq. (3.6) to

= 1 r

Flo= 1+

© e+1/7+T+(VE +4VoV)/y [(e+1/7+T +VE/y)2 = @V,V/y)N 2 =T (3.11)
To invert Eq. (3.11) we utilize the relation?
) .
s
g(1) =f(t)+a£dsmf(s)1,[(t2—sz)”2] s | (3.12)

where g (¢) is the Laplace inverse transform of f[(e? —a?)'/] and I,(s) is the modified Bessel function. Along
with the use of standard shift and scale theorems of Laplace-transform theory, Eqs. (3.12) and (3.11) result in

[e—at + Ae-(l"-l-ao)l

= p—tiT
F()=e T+ A

' o —(T¥ap) (1—s)—(T+a) (s—u)
+_‘I:) dsj;due Lo hisu)] . (3.13)

I

Here - Equation (3.13) for the probability of host excita-

— —auy, (2 _ ,2)—1/2 2 __,2)1/2 tion embodies a striking result. The first term on its
h(s.u) =TAe™u(s* —u) ™2 LIAG —u)'P] right-hand side exactly equals the F(¢) calculated in I
through an averaging approximation. The host
luminescence and the energy-transfer rate
corresponding to this term have been plotted in I.
Thus the exact analysis in this paper merely adds the

and A =ag— a. The quantities ag and « are the k' =0
value of the trapping rate a; and the band average
value of ay, respectively. Thus the respective values
are (V¢ +4VyVy)/y and V¢ /y.
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term-containing & (s,u) to the result of I. However,
as we shall see in Sec. III C, the new term results in a
power-law dependence of the energy-transfer rate at
long times which is very different from the result in
I.. The correction term is seen to be proportional to
T'A. The averaging approximation introduced in I is
thus particularly applicable for I' —0 which represents
coherent exciton motion and for A —0 which
represents weak variation of the trapping rate a; over
the band. It is straightforward to take I' within the
integral and show that in the incoherent limit too

(I' — o), the correction terms vanishes. Another in-
teresting result that the model calculation in the
present paper yields is that the band average of a; to
be used in the computation of the average « in the
expressions of I [or of Eq. (3.13)] is an arithmetic

rather than a harmonic average. This question has
been discussed in I.

The averaging approximation introduced in I uses
the replacement Zk e_a"‘=e“"" and thus leads to an
F(t) that is the sum of two exponentials. Highly
nonexponential luminescence decay curves have been
reported®?! in some experiments. Generally the
correction term in Eq. (3.13) is indeed able to give
rise to such departure from exponential behavior.

In addition to the case ¥, >> V; discussed above,
Vo=0 is also of interest. This situation may be appli-
cable when the trap is introduced substitutionally and
there is no single neighboring host site which can
feed the trap more efficiently than others. We then
have oy =(4V{ cos’k)/y. With only slight differ-
ences the calculation proceeds as above and yields

—(T+ap)t
Te '+ oge 0 ¢ S —(Thag) (t=s)—(T+a) (s—u)
— ot/ 0 f 0 '
F()=e e Cds [ du e s (3.14)
where for the case Vo=0. One may easily obtain the
h'(s,u) =Tae u(s?— u) 12 [ [a(s® — u?)17?] coherent and incoherent limits of Eq. (3.16) or Eq.

(3.15)
Note that except for the factor e, the replacement
A—ain h(s,u) gives h'(s,u). Once again the first
term on the right-hand side is seen to reproduce the
average result of Ref. 17, while the second constitutes
the correction.

C. Exact expression for the
quantum yield

The quantum yield ¢, defined as the ratio of the
number of photons emitted by the host to that intro-
duced into it through absorption, is given by Eq.

(2.5). Since simple expressions for F(e) are always
obtainable from our analysis, we can directly compute
the quantum yield even when simple time-domain
expressions for F(¢) cannot be found. This is a

_consequence of Eq. (2.5) and is given in Eq. (3.7).

When Eq. (3.7) is substituted in Eq. (3.11), one
obtains

F+(V0/')’)(V0—4Vl)
F+(V0/y)(V0+4V,)

1/2

2 -1

Z
r+—
Y

4VOV]T
Y

|
=
(3.16)

which applies to the case Vo >> V. Similarly Eq.
(3.14) gives along with Eq. (3.7)
12

x 11+ T

21172
] —Ir

1+I'7

ST\ ToTr +4Viely

x({A+TDA +Tr+4VEie/HIM2—TDt (3.17)

3.17

. s
Il‘llr})d> 1+ogr ' (.18)
e @19

These correspond to Egs. (3.8) and (3.9), respective-
ly. As expected, the quantum yield decreases from 1
to 0 with an increase in the trapping rate, and
changes from the value in Eq. (3.18) to that in Eq.
(3.19) with an increase in the scattering strength. To
exhibit this behavior the expression in Eq. (3.16) is
plotted versus ag7 and I'r, respectively, in Figs. 2(a)
and 2(b). For the sake of comparison with Egs.
(3.16) and (3.17) we display here the quantum yield
approximation given by the averaging approximation
in I or equivalently from the first term in Eq. (3.13)
or Eq. (3.14)

I'r aTt

1+ ‘ i _—

b= 1 ltaer |__ 1 1+I'7
1+ a7 1+ I'r 1+ar 1+ aoT

1 +aor 1+TI7

(3.20)

The limits of Eq. (3.20) are obvious.
One may also recover other limiting results from
Eq. (3.16) such as

1

1Ty 320

¢

for the simple case V1 =0. The observed tempera-
ture dependence of the quantum yield may be inter-
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preted in terms of the above results after microscopic
expressions for y and I'-explicitly involving their
temperature dependence are available. It is expected
that in view of the narrowness of exciton bands the
temperature dependence of y¥ and I' will be more
readily reflected in the observations than the tem-

10 I | | |
(a)

05— —

0.948

0.946

0.944

0.942

0.940

0.938

| | l l |
0936 4 8 i2 16 20 24
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FIG. 2. (a) Dependence of the quantum yield ¢ on the
strength of the trapping interaction in the short-range trap-
ping case as given in Eq. (3.16). The abscissa is
agr = (V¢ +4V,y V) r/y and arbitrary parameters
Vo/V1=20, Tt =1 have been used. (b) Dependence of the
quantum yield ¢ on the strength of the scattering for the
short-range trapping model as given in Eq. (3.16). The
abscissa is I't and arbitrary parameters Vy/V; =20,
¥ r/y =0.055 have been used. Note the limits
¢=1/(1+ay7) and ¢ =1/(1 + a7) for very small and very
large scattering strengths, respectively.

perature variation that would be introduced by using
for our analysis the specific fi" instead of its simpli-
fied form 1/N. :

IV. LONG-TIME ANALYSIS: F(t) AND
THE ENERGY-TRANSFER RATE £ (¢)

The time-domain expressions (3.13) and (3.14)
given in Sec. III are exact but involve convolutions.
Thus, although numerical computation from them
may be easily performed, their qualitative behavior is
not transparent. We shall therefore explore their
asymptotic behavior at long times. We examine the -
case Vo >> V in detail.

The definition

_ y(e+1/7+T) + V¢

4.
4V, V, ’ @1
transforms Eq. (3.11) into
= 1 1
F(s)=—X=
(s) AVoVy s+1 |1 =(Ty/aVyV)(st=1)"12 |
4.2)

which shows a pole at s =—1, two poles at
s=ts,=%[1+(yT/4V, VDI |

and two branch points at s =+1. Standard asymptotic
analysis?? shows that the long-time behavior, which is
dominated by the singularities lying farthest to the right
on the complex s plane, is given by the inverse trans-
form of the limits of Eq. (4.2) as s tends to s,, i.e., of

12
s—1 /

s, +1

1 1 (s—=D2

i - Y _
F(s) s—s, 2

4 Vo V1 Sp

(4.3)

In Eq. (4.3) we have considered contributions from
s =1 as well as s =5,. Standard procedures of La-
place inversion then lead to the long-time expression

F@) = 7’%e"”+Ce’D’)e‘”’ , (4.4)
where
1 1 1
A= —_— , 4.5a
2V2T N7 (4VoVi/y)'? @50
B=T+(V§ +4VoVD/y , (4.5b)
r M2 12
2]-172 [1+ 4V, v ] -1
C=1+ Igzy— ] I — 71172 ,
o 1+|-L2 ] +1
4V, V,
(4.5¢)
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2
+T

12

V2

D=T+-—2—
Y

4V v,y
Y

Equation (4.4) makes clear the nonexponential na-
ture of the host excitation probability. The t=3/2 fac-
tor however makes negligible contribution at ex-
tremely large times because C is larger than D. At
such times exponential behavior sets in.

The well-known energy-transfer rate k(1) (Ref. 23)
defined through Eq. (2.6) may be computed for our
model from the asymptotic expression (4.4)

(4.5d)

k() = (3/2¢ + B) At—32e~B1 4 DCe™D!
B At™32e=Bt CoDt

(4.6)

The above long-time expression for the energy-
transfer rate contains a power-law dependence on
time. This dependence is, however, very different
from the usual? ™2 result. Although the ¢!/
behavior has been often discussed in the literature
and used in fitting observations, doubts have been
continually raised concerning its applicability. For in-
stance Refs. 2 and 21 support the /2 behavior

" whereas it is strongly argued against in Refs. 24-26.

V. EFFECT OF INITIAL CONDITIONS INVOLVED
IN PHOTON ABSORPTION

The above calculations have been performed from
the general expression in Eq. (3.5) under the as-
sumption that f;(0) =8,,. Although optical absorp-

Re erf(—;—b +in w/b]

(o) = < _1)ng=n?ni/s?
(e} _LZV% E( )"e e

j:) dt exp

tion is expected to result in this initial condition as a’
consequence of selection rules, experiments with
higher-frequency photons have also been carried
out.? We therefore study the effect of a more gen-
eral form for f;(0), viz., a Gaussian of arbitrary
width 7~/2/b

_..__b_.__. —b2(k/m)? 1
P ert(5) : 6.1

The error. function in Eq. (5.1) ensures the normali-
zation ) dk f,(0) =1 and Eq. (5.1) reduces to the
completely localized limit f; (0) = 840 for b — oo and
to the completely delocalized limit f;(0) = %n- for
b—0.7

We shall now substitue Eq. (5.1) in Eq. (3.4) and
evaluate Eq. (3.5) for the two cases Vo >> V; and
Vo=0. In the former case the observables depend
only weakly on b, the width of the initial excitation.
This is expected since the trapping rate varies only
slightly over the band in this case. The situation
Vo =0 is more interesting and is analyzed below. We
Fourier decompose f(0) as

/(0 =3 a, ek (5.2)

fi(0) =

which yields from Eq. (5.1)

_ 1 _s2.2p2Reerflb/2+i(nm/b)] 53
a,(0) —e orf(5) ,  (5.3)
where Re denotes the real part of the function.
Substitution of Eq. (5.3) in Eq. (3.4) gives
e+1/7+T+2VE/y
- () , 5.4
2/ () ( ).

where I, is the modified Bessel function of order n. It is ' worth observing that the inverse transform of Eq. (5.4)
equals the host excitation probability for the purely coherent case I'=0. Expressions for finite I' are obtained

from Eq. (3.5).
Equation (5.4) may be inverted exactly to give

00 o Reerf‘-;-b +in1r/b] (422 Y2
- - - IVt 2V{
1) =e™ 3 (=) e 1e? Ry A AR 5.5
()= _E‘,{,( e erf(b) "Iy 5.5
The exact expression for the host excitation probability is then given by
F()=3 4,W,(0) , (5.6a)
n=0
Re erf[lb +in 'n-/b)
2.2,,2 2
A =e™" w“/b , 6
n=e erf(b) , (5.60)
_av? _ 2 z(VZ/Q):
Wo(t)=e"'/’[e Q@v{ /y):+e (r+2(v{ /y)r)J; 1 du Il(u)e(rz‘z“‘z)llz o (5.6¢)



20 MOMENTUM-SPACE THEORY OF EXCITON TRANSPORT. II... 2445

) ¢+l |2V
W”(t)_:_ztﬁj;dtle[‘* ilv 'I,, ——-—]—t

Wo(t - t’)

(n=1) (5.6d)

If the excitation is narrow in k space one need consider only the first few terms in Eq. (5.2) and therefore in
Eq. (5.6a). In the extreme limit f; (0) =38, o only a¢(0) survive with the result

F() =Wy(t) =e

2
l 2 -[I‘+2(V12/'y)]lf2(yl It
e +e

{
du Il(u)e(rz‘z‘“z)m] ) v 5.7)

The opposite limit of a completely delocalized (in k space) initial condition is represented by f;(0) = %w and

gives

2V

-@v2/y 2VE —irr2pn
F(t)=[e LD i I E 'J;duer“(
Y

u2)1/2

I

(tz—uz)l/Z]]e"/’ . (5.8)

We have already mentioned that Eq. (5.5) equals F(¢) for arbitrary width of the excitation in the coherent case

I'=0. In the extreme incoherent limit we obtain

) 1 .
4v? = Re erf[;b +i 'n-/b]

I erf(b)

F(t) =e™ 7|1 -

from (3.5).

The trap luminescence and the energy-transfer rate
may be calculated in a straightforward way, at least in
principle, from the above expressions for F(¢). ‘
While this is also true of the quantum yield we shall
exhibit here the ratio of the value of this quantity for
b =0 to that for b — co:

lim ¢ 12
820 _ | %0 (5.10)
lim ¢ 1/7+T

Here ag=4V{/y as mentioned in Sec. III.

Equation (5.10) shows that there can be substantial
variation in the values of observables with changes in
the width of the initial excitation. We also see that
this variation will be larger for more coherent trans-
port, for larger radiative life-times and for larger trap-
ping rates. All these consequences agree with physi-
cal expectation. For completeness we give the value
of the ratio in Eq. (5.10) for the case Vo >> V)

i 1/2
},l_l?})d’ _ 2((10“"6!) (5 11)
blim ¢ 1/7+T +a ’ ’

then ag= (V¢ +4V,V1)/y and a= V¢ /7y as stated

N () 1 ai ||, o T
F(E)—[g Dy +€+1/70§Dk][1 % Dy

1 )
_2(,,12/7),_ 4v? Reerf{—z—b +l1r/b] .

JT erf(5) € .9)

¥ =
earlier. Equation (5.11) shows that there is a much
weaker dependence of ¢ on b in this case as stated at
the beginning of this section.

V1. EFFECT OF DETRAPPING
INTO THE HOST BAND

In Secs. I-V the temperature has been assumed to
be low enough to allow detrapping to be neglected.
In this section we shall relax this restriction. The
point of departure now is Egs. (1) and (2) of I

d
%* '1‘+“k fe=aifo+ 3 (Quefi — Qentie)
T g
6.1)
_‘_1f_0+ —1‘+Ea/:]fa=zak'fk' . (62)
dt Te k . k'

Here o4t are the detrapping rates related to the trap-
ping rates o (termed o in I) through Boltzmann
factors required by detailed balance.

Substitution of Eq. (2.7) into Eq. (6.1), the use of
the relaxation-time approximation made to derive Eq.
(2.3), and a summation over k give

et+1/7 _‘i_
+ e+1/74 % D, 6.3)

where we have abbreviated € +1/7 +ax + Ty by Di. For very low temperatures o may be set equal to zero in
Eq. (6.3) reducing the equation to the previous result (3.5). The detailed balance expression for af to be substi-
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tuted in Eq. (6.3) is obviously

a’?, _ ake—B(Eg+2.lcosk) ) : (6.4)
where B8=1/kpT, E, is the energy of the trap state measured below the center of the host band, and 4J is the
host bandwidth (see Fig. 1). The main new quantity in Eq. (6.3) is 3, (a¢/Dy). It has been calculated in the
Appendix in the limit N — oo, which has been used in the model expressions in this paper. From Eq. (A7) we
see that

+

. &k, -BE, _ yle+1/7+0) < «
13'—'-“«.% Dy 2me 1,2JB) AV, _Eml,,(ZJB)J; dt exp

y(e+1/7+D) + V3

t YA (6.5

L,(1)

This result applies specifically to the case Vy >> V| which is the only one we shall study in this section.
Equation (6.5), after Eq. (6.3) is substituted in it, contains all the effects of detrapping, in particular the depen-
dence of various quantities on the temperature. Observe that the thermal distribution fi" in Eq. (6.3) equals
e 2/Bcosk/ NT,(2JB). We shall now study the situation 2J << kg T which has been assumed in reducing Eq. (2.3)
to Eq. (2.4) and in the model calculations presented in Secs. I-V. We then have the simple relation
—BE

a,?'=ake 5, (66)
instead of Eq. (6.4) and
o sk , €+—1-+F
lim 3~~~ =2me " &1 - T 7| 6.7
Ve D il (avor, )
e+l 20| |20
T Y Y

instead of Eq. (6.5). For the initial condition f,(0) =38 ¢ (e.g., optical absorption), the Laplace transform of the
host fluorescence is given by

| | ek e+l+l‘
F(e) = ; 72 + ] 27we = 8|1 — ‘r2 .
1 L0 e+ = Ve avor, |’
er oA 7o e+Llar+ 0| |20
T Y Y
1 1 -
r €e+— sE €e+—+T
T - T
x |1- g 21/2++127re ef1 - - . 7
V 4V V €T — Z; VoV
€+_1_+]‘+_.2. — ==t Ty €+l+1‘+__° _ |4
T Y Y T Y Y

6.8)
Needless to say Eq. (6.8) reduces to the previously obtained result (3.11) when the temperature is so low that
- E .
e Rls may be replaced by zero. In the intermediate temperature range Eq. (6.8) gives correction factors:

-1
e+L+T +a . e+ L
= T ., 2me " ® T
F(e) = =y i 1- =12
il (avor, | +1/7, 1 vil' [avor, |
1-r||e+L+r+2| — 22070 1-T||le+=—+r+-2| - |21
T Y y T Y Y
1 1 ZiB
€+ +—+r+——°~]
T T Y
x [1— - =] - (6.9
2
V2
1-r|les L 4rs Zof — 20N
T Y Y
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Note that the first term on the right-hand side of Eq. (6.9) is the right-hand side of Eq. (3.11). If we further
consider in Eq. (6.9) the incoherent limit I' — c we obtain

2
. 1 -BE 1 Vvé
Fle=————— +27e ¢ ,
(e e+1/r+V/y i e+1/7q | y(e+1/7) + V} (6.10)
which is inverted to give
7, ? ,
=t(/7 2 = v ~t/r V2 (/413
10 PPRAARCICIT M) NN ZS— ) P i T | I DN | PRESY Vel iasd 1] I (6.11)
1_1_1 L G
To T Y

Consider now the limit of high temperatures. If kg T >> E, the factor e PEs o 1, the detrapping rates o equal
the trapping rates a; and Eq. (6.8) reduces to

e+L+F
= 1 1 ) T
F(€)= + 1—' T 1172
slype 8 el ] izl [avon,
T y 7o e+ 4T+ — (200
T 44 Y
1 1 -
r €et+— €e+—+T
T
R Ll N 21/2'*' ; 1- N 7| - (6.12)
2 €+ — vé 014
€+_1.+r+i/°_ _|Aon To e+ lir+ 20| |2
T Y Y T Y Y

The result (6.12) may be used directly by attempting to invert it, indirectly through the prescription (2.5) to
obtain the quantum yield, or by studying it in limiting cases. Thus for the incoherent limit I' — oo,

V2
€+ -1— + -2
~ T
Flo= — e VVZ , , (6.13)
e+ _1_+_.1_+__0 €+_° _l__+l +_l.__1_
Te T Y Y Te T T T
which gives, in the time domain, The quantum yield ¢ corresponding to this case is
_ Cl_Ar —cr_ BI_AI _Bt
F(o) g5 °¢ 8¢ , (6.14a) 1 +_V_02_
where
) < 6= Y (6.15)
1. ¥ 11 Vi1, 1
A'=—+—, (6.14b) — |+ =
To Y T T vy |7 T
|12
, 1)1 1, 2v8 1 1P 2w Since 1/7 and 1/75 occur symmetrically in Eq. (6.14a)
8= 2 || +? + y + e T + y ’ one will have the same time dependence of F(¢)
whether 7 > 79 or 7 < 74. This is expected because
(6.14¢) the detrapping rates in the high-temperature limit are
-14c so strong that the origin of light emission can only be
12 distinguished from the frequencies and not from the
, 1l o1 2vd 1 1) 2w ' form of F(t). Particularly when 1/7=1/7,, one ob-
C=Al—+=—+—|-||=——=| +|— : i
217 7 y Te T y tains from Eq. (6.14a)

‘ - 2
(6.14d) F() =L+ @0 i (6.16)
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VII. CONCLUDING REMARKS

If theoretical studies of transport are divided into a
class containing investigations of the basic interac-
tions responsible for motion, and another containing
the examination of the consequences of various tran-
sport equations into which those interactions are fed
as inputs, the theory presented in this paper (as well
as in I) belongs to the second class. The relevant
studies of the first class are those of Forster,2
Dexter,?® and others.’® As in Refs. 4—10 we are in-
terested here in the kinetic problem.

Some of the results obtained in this paper are ex-
pected intuitively but others are surprising. In the
former category belong most of the equations ob-
tained and the quantum yield curves shown in Figs.
2(a) and 2(b). Among the surprises are the fol-
lowing: (i) No 72 dependence of the energy-
transfer rate emerges from the analysis. (ii) The
averaging prescription which had been put forward in
I merely as an approximate procedure turns out to
have a well-defined range of validity. (iii) The
present k-space formalism is unable to reproduce,
even in principle, certain results expected on the
basis of intuition grounded in real-space considera-
tions.

Equation (4.6) shows that there is no ¢ depen-
dence in the energy-transfer rate k (¢). It is impor-
tant to point out that the ~'/2 dependence is by no
means an established experimental observation. A
study of Figs. 3 and 4 of Ref. 2 for instance, will
make it clear that, while a ~~-dependent energy
transfer rate appears fairly well established, the
scatter in the data would allow various other forms
for the time dependence. This observation holds for
other data t0o.! The absence of the ¢~/ dependence
of k(t) should not be considered as a consequence of
using a momentum-space description rather than a
real-space one. In fact, we have been unable to ob-
tain that dependence even from real-space discrete
master equations. The Smoluchowski or Chan-
drasekhar derivations’! that are often quoted as form-
ing the theoretical basis of the ¢~/ dependence use
continuum equations and boundary conditions which
may not describe the usual experimental situation in
sensitized luminescence. It may well be that the
correct dependence is t~'/2 despite these considera-
tions. In that case, the k-space analysis reported in
this paper would be clearly seen to be inapplicable.

The averaging approximation introduced in I re-
placed a sum of exponentials with exponents a; by a
single exponent. Whether this single exponent
should be an arithmetic average, a harmonic average,
or obtained in some different way altogether, was not
clear until the exact results reported here were ob-
tained. We now see [Egs. (3.13) and (3.14)] that the
arithmetic averaging prescription = (1/N) zk ay ap-
plies and that the approximation procedure in I is

-1/2

valid for small A’s and extreme I'’s. The question of
how the single average exponent representing a sum
of exponentials may be computed from the individual
exponents is of importance in various transport prob-
lems. The unresolved issue of resistance versus con-
ductance formulas,’? and the Callaway versus Ziman
limits in thermal-conductivity’? are examples. Our
present analysis by no means settles this issue but
makes an unexpected contribution.

On the basis of real-space considerations one would
believe that, if the strength of the trapping interac-
tion is increased while the host-host interaction
(responsible for the motion of the exciton through
the crystal) is held fixed, the energy transfer from
host to trap would increase. This is borne out by the
present formalism as it results in increased ax’s. On
the other hand, one would also normally expect an
increase in the efficiency of energy transfer if the
host-host interaction is increased keeping the trapping
interaction fixed. This expectation is based on the
fact that the exciton would then move faster and thus
arrive more quickly within the influence of traps.
However the present formalism shows no effect
whatsoever of changes in the host-host interaction.
The reason is that this interaction affects only the
bandwidth 4/ and the bandwidth never appears in a
Boltzmann equation. This presents an interesting
problem in the relation of k-space to real-space trans-
port equations, which will be discussed in greater de-
tail elsewhere. It will suffice to state here that the
role of the bandwidth (i.e., of host-host interactions)
in momentum space is to make the off-diagonal ele-
ments of the density matrix oscillate in time and that
it will therefore never affect analyses such as the
present one, based on closed equations for the diago-
nal elements of the density matrix. It can be shown

~ that the presence of traps generally destroys the

closed character of the Boltzmann equation and con-
nects the diagonal elements to the off-diagonal ones.
The present formalism can be shown to be valid in
the limit of large host-host interactions. The general
situation can be analyzed in terms of k-space (or
real-space) equations containing the full density ma-
trix.3*

The assumptions underlying the analysis in this pa-
per are: (i) Transport equations for the diagonal ele-
ments of the density matrix in k space may be writ-
ten in closed form (i.e., without including off-
diagonal terms) even in the presence of traps. (ii)
The radiative liftime 7 is independent of k. (iii) The
relaxation-time approximation is applicable. (iv) The
temperature 7, the host bandwidth 4J, and the trap
depth E; have such values that E; > kpT > 4J. (v)
The trapping interaction is short ranged and may be
described completely by transition rates from host &
states to the trap state.

Assumptions (i) and (ii) are both valid only.in lim-
iting cases. Of these (i) has been discussed above.
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The radiative lifetime 74 is actually strongly depen-
dent on k at least for those situations in which there
are no exciton-bath interactions. On the other hand
assumption (ii) is perfectly valid if the exciton is
looked upon as a nondecaying particle during its tran-
sport and radiative decay is later appended to the
transport analysis through a lifetime. Such a point of
view certainly constitutes an approximation. How-
ever, it is basic not only to the analysis presented in
this paper but to almost all existing exciton transport
theories.*!* The relaxation time approximation (iii)
is necessary here from a practical standpoint for the
same reasons as in other transport considerations:
the complexity of the transition rates Q. It is
doubtful that exact incorporation of realistic Q’s will
ever be possible analytically. The approximation (iv)

has been relaxed in Sec. VI and therefore will not be

commented upon here. Finally, we have performed

calculations on the effects of long-range trapping on
the luminescence quantities and plan to report them
elsewhere. ,

As we have stated in the abstract, the present
analysis may also be applied, without essential
modification, to other quasiparticles that are scattered
within a band and simultaneously captured by traps.*®
If their lifetime is infinite, as in the case of electrons,
we merely put 7 — oo in our analysis. Quantities such
as the quantum yield then cease to exist but the host
excitation probability and the trap excitation probabil-
ity continue to be relevant.
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APPENDIX

In deriving Eq. (6.5), one needs to examine the consequences of the N — oo limit on various quantities in Eqs.
(6.1) and (6.2). For the sake of completeness we rewrite Eq. (6.1) and its continuous correspondence below

d
%+ %+ak fk=affo+§,(Qkk'fk'—Qk'kfk) aD
and
-dd£+ l+a;’( S = fo +fdk (Quefe — QuweSid) - (a2)
t T

We have used primes to denote the quantities in the continuum limit here but have dropped them in the text of
this paper. To obtain the correct transformation, one has to note that fi, f,, and fg are probabilitics whereas f
is a probability density and that one requires, for normalization

gf,‘=fdkf,; . _ (A3)

Equation (A3) immediately implies that to make the transition from Eq. (A1) to Eq. (A2), fx should be replaced
by 2w/N)fi in Eq. (A1). On the other hand, fg =f, It then follows that ay =ax, af =Q#w/N)a,* and
Ow = (2m/N) Q. With all these Eq. (6.3) becomes

[ ak 17,@/D) + (e +1/797  dk (/DY)

(A4)
= [ dk (Cuf/D) + (e 41/ (e +1/79 [ dk (ait/D)

F(e)—‘

as expected.
Restricting the analysis to the case Vo >> V; and using Eq. (6.4), the expression fdk (af/Dy) can be rewrit-
ten

v
Y

1

€+ +I‘ €+ — +I‘+

dk e—+2Bcosi) | (AS)
21r

+
(43 _
fdk-D—k——-2Tre

“BEg| (" dk_,—2sgcosk _
g f . e cos

4V0
Y

T
f dtexp|—
4V ¥,y

Y
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Using the following integral representation and some properties of the modified Bessel function, e.g.,

Lix+») =3 L&), , (A6)
one obtains
V2
. e+T+L _ e+Llir+|-L
Qg -BE, T had T Y
fdk — =2me = §|[,Q2JB) —— 3 1,(2JB) J; dt exp|— IOt . (A7)
Dk 4 VO 1] —o 4V0 V]

Y
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