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Extinction of refugia of hantavirus infection in a spatially heterogeneous environment
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We predict an abrupt observable transition, on the basis of numerical studies, of hantavirus infection in
terrain characterized by spatially dependent environmental resources. The underlying framework of the analy-
sis is that of Fisher equations with an internal degree of freedom, the state of infection. The unexpected
prediction is of the sudden disappearance of refugia of infection in spite of the existence of supercritical
(favorable) food resources, brought about by reduction of their spatial extent. Numerical results are presented
and a theoretical explanation is provided on analytic grounds on the basis of the competition of diffusion of
rodents carrying the hantavirus and nonlinearity present in the resource interactions.
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I. INTRODUCTION

Abrupt transitions or bifurcations appear in all kinds of
complex systems in a variety of sciences ranging from biol-
ogy and ecology to physics and chemistry. The application of
computational methods developed in the latter simpler disci-
plines to the much more complicated systems encountered in
biology and ecology has great value because of the insight
into basic mechanisms that the methods can provide. We
present such an application in the present paper.

We predict an abrupt transition, observable in principle, in
an ecological system related to a topic of substantial current
interest, viz., the spatial transmission of epidemics. The
source of the transition lies in a blend of nonlinearity, spatial
extent, and interaction, and its specific context is the trans-
mission of the hantavirus epidemic. Known technically as
the hantavirus pulmonary syndrome (HPS), this rodent-borne
zoonotic disease exhibits periodic outbreaks in local or re-
gional settings as a function of complex interactions among
host reservoir populations, habitat quality, and climate con-
ditions [1-6]. Human infection risk increases in domestic
and peridomestic settings when deer mouse populations in-
crease [4], leading to a time-lagged density-dependent am-
plification of virus-infected rodents [1]. These events are as-
sociated with climate-related drivers (e.g., El Nino-Southern
Oscillation dynamics) that increase regional winter-spring
precipitation, leading to enhanced rodent food resources and
habitat quality [1,5,6], allowing rodent densities and hantavi-
rus infections to rapidly increase and disperse across the
landscape.

In the rest of this section, we describe the essential back-
ground of hantavirus dynamics, and follow it with a brief
introduction of a mathematical model [7-11] that has met
with a great deal of success in their theoretical description. In
subsequent Sections we use the model along with numerical
techniques to predict an abrupt transition, the extinction of
infection refugia, and develop a theory to understand the
essence of the transition. The purpose of the further devel-
opment of that theory to be undertaken in subsequent publi-
cations will be to provide the mathematical basis for under-
standing constraints and behaviors of rodent-hantavirus
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interactions through time in spatially variable refugia, with
the ultimate goal of applying these results to new models of
landscape-level disease risk to human society.

Although widely distributed across North America, the
deer mouse in the Southwest exhibits habitat preferences for
mid- to high-elevation forests, shrublands and grasslands.
These habitats are typically found in isolated mountain
ranges, and vary in size and distance from one another. The
temporal dynamics in habitat quality, resulting from precipi-
tation events, has been quantified using remote-sensing sat-
ellite imagery to identify high-risk areas for rodents and han-
tavirus [12,13,15]. Deer mouse populations and distributions,
along with hantavirus infection frequencies, have been hy-
pothesized [7-10] to expand and contract with precipitation
regimes in the vicinity of these isolated areas, one of the
theoretically predicted consequences being traveling waves
of infection [16]. Importantly, these regions have smaller,
high-quality core habitat areas, which we term refugia be-
cause they consistently maintain both high densities of deer
mice and hantavirus infections over many years despite ex-
treme climatic fluctuations [13]. Recent monitoring of satel-
lite imagery for evidence of habitat changes in the vicinity of
deer mouse refugia has led to successful regional predictions
of increased HPS risk to human populations [14]. The analy-
sis below will focus on these infection refugia, in particular
their sudden disappearance as system parameters are varied
across critical values.

The theory developed by some of the present authors for
describing the spread of the hantavirus [7-10] has been
based on the Fisher equation [17] with internal states repre-
senting infection, or its absence, in the mice population. The
total mice population is divided into two groups, susceptible
labeled by S and infected labeled by /. The evolution equa-
tions are [7,8]

0—'MS MSM 2
ot ZbM—CMS— —aMsMI"'DVMs,
oM MM
7’=_CM,— ? +aMgM;+ DV*M,, (1)

and, as is well known, add up to the standard Fisher equation
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M
—=bM—cM—?+DV2M. (2)

Here, 7 is the time, V2 is the Laplacian describing double
differentiation in space, Mg and M; are, respectively, densi-
ties of susceptible and infected mice and M=Mg+M; is the
total mice density, a controls transmission of infection on
encounter, b and ¢ are rates of birth and death, respectively,
and D is the mouse diffusion coefficient. Crucial to the un-
derstanding of the transmission of infection, the latter quan-
tity has been determined for two kinds of hantavirus-carrying
mice by combining mark-recapture observations in Panama
and Sevilleta, New Mexico, respectively [18,19], in terms of
a detailed theory of mice movements [20]. The effect of the
environment (food and other resources) is embodied in the
environment parameter K. The quantity K(b—c) is com-
monly known as the carrying capacity. Although it is
straightforward to carry out the analysis in any number of
spatial dimensions, a 2—d description being appropriate be-
cause rodents move on the terrain, we present a 1 —d descrip-
tion in the rest of the paper. This entails the replacement of
V2 by the single double partial derivative ¢*/dx> where x
denotes the spatial coordinate. We do this only for simplicity
since it is easily shown that a 2—d description provides no
qualitative difference for our purposes. Proportionality fac-
tors of the order of 2 introduced by a 2—d description are of
no practical importance given that the measured quantities in
ecological observations in this system have a far greater
quantitative uncertainty.

Equation (1) possess the characteristic features of the han-
tavirus [1] that mice are not born infected and that they are
unaffected in any other way (for instance, they do not die
faster) when infected. The logistic reaction term in the last of
the Eq. (1) is made up of a linear growth term (b—c)M and
bilinear depletion term —M?/K. The Fisher description of
population dynamics is widespread [21]. The hantavirus
model implied by Eq. (1) has been used for a variety of
investigations including simulation studies [22], the appear-
ance of traveling waves of infection [16], the extraction of
random walk parameters of the rodents [9,20], interesting
seasonality effects [23] and other extensions [10].

In their original investigation [7], Abramson and Kenkre
showed how crucial the value of the environment parameter
K is to the infection. They demonstrated in a space-
independent situation that the infected mouse density under-
goes a transcritical bifurcation, vanishing when K falls below
a critical value K. This value is given in terms of the birth
and death rates of the rodents, » and c, respectively, and of
the infection transmission parameter a [see Egs. (1)]:

b

K. .= ab—o) (3)

Furthermore, this bifurcation behavior leads in space-
dependent situations to the formation of the refugia of infec-
tion mentioned above, in regions where K > K. Refugia are
basically spatial patches in which infection survives in off
periods of the epidemic. The spatial distribution of resources
that leads to these refugia is apparent from Fig. 1 where we
show on the left a Landsat satellite image of the Jemez
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FIG. 1. (Color online) Left: Landsat satellite image of the Jemez
Mountains in northern New Mexico during winter, illustrating the
isolated nature of forested mountain ranges in the southwestern
United States. The Rio Grande valley is to the right of the image,
running from north (top) to south (bottom). Right: Habitats transi-
tion along an elevation gradient within the Jemez Mountains (Valles
Caldera National Preserve). Deer mouse and hantavirus refugia are
typically found within stands of Ponderosa pine/oak and mixed co-
nifer forests, but in high productivity years, mouse populations will
increase and expand in spatial extent; in low productivity years,
mouse populations shrink in size and distribution, potentially lead-
ing to an extinction of the hantavirus infection within an isolated
deer mouse population.

Mountains in northern New Mexico during winter. It illus-
trates the isolated nature of forested mountain ranges in the
southwestern United States. The Rio Grande valley is to the
right of the image, running from north (top) to south (bot-
tom). The refugia are typically found within stands of Pon-
derosa pine/oak and mixed conifer forests. It is observed in
low productivity years that rodent populations shrink in size
and distribution, potentially leading to an extinction of the
hantavirus infection within an isolated patch.

The result of the theory [7], is that as K changes, as shown
in Fig. 2, from a subcritical value K, lower than K, outside a
region to a supercritical value K, higher than K, within it, the
density of infected mice becomes nonzero inside the region
(refugium) but falls off to zero as one proceeds out of the
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FIG. 2. Step-shaped environmental parameter K with supercriti-
cal value K=K, within the region of width L and subcritical value
K=K, outside the region as shown, the critical value K, lying be-
tween K, and K. The inset shows the steady state infected mouse
density M, obtained numerically by solving Eq. (1) displayed as a
log-linear plot: the abscissa in the inset is the distance x (schematic)
while the ordinate is the logarithm of M;. The straight lines away
from the supercritical region show that M; decays essentially in an
exponential manner. Parameters used are arbitrary. In appropriate
units, a=0.1, »b=1.0, ¢=0.5, D=20, K,=30, K,=10, K.=20.
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FIG. 3. Abrupt transition in the infection as the extent L of the
refugium is varied. Steady state mouse density profiles are shown
for different values of L, the infected density M; in (a) and the
susceptible density M in (b) respectively. The infected density de-
creases with a decrease in L (L=100, 40, 20 and 18.4 for solid,
dashed, dotted and dashed-dotted) and vanishes completely at the
critical value, L=18.2 in the units employed. The susceptible den-
sity, on the other hand, does not vanish even for L=0 (L=100, 40,
20, 16, and O for solid, long-dashed, dotted, dashed-dotted and
small-dashed). Values of the densities (infected, susceptible and to-
tal) at the center of supercritical region are plotted in (c) as a func-
tion of L. Only the infected density exhibits a transition. Parameters
are, in arbitrary units: a=0.1, b=1.0, ¢=0.5, D=20.

refugium, the drop-off being gradual as a result of rodent
diffusion (nonzero D). This is shown in the inset of Fig. 2,
where we use a logarithmic scale for the mice density and
see clearly that the drop-off is essentially exponential.

II. NUMERICAL PREDICTION OF EXTINCTION
OF INFECTION

Although the drop-off of M, is gradual from within to
outside the region of supercritical K because of diffusion, our
numerical studies have recently displayed an abrupt transi-
tion in this phenomenon. Let all else be held constant but let
the extent of the supercritical region be varied. As this extent
falls below a finite critical value, the infection vanishes com-
pletely. We display our numerical findings in Fig. 3. The
spatial dependence of the infected mouse density M; is
shown in Fig. 3(a) for four different values of the extent L of
the supercritical region. It is clear that the lower the value of
L, the lower is the amount of infection. What is remarkable is
that when L is less than a critical value L., which is 18.2 for
the given (arbitrary) values of the parameters (see Fig. 2
caption), the infection vanishes everywhere including in the
supercritical region. This is the transition to which we wish
to draw attention.

It appears that the transition we have found from a study
of our model might be closely related to what is known as
the Island Biogeographic Theory [24] in which it is hypoth-
esized that, when island populations of a particular species
become very small, their likelihood of extinction increases
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[25]. Concomitant extinction threats increase on smaller is-
lands (that inherently support smaller populations), and on
islands more distant from other islands (leading to a lack of
recolonization). In the context of deer mouse and Sin Nom-
bre hantavirus populations in mountain refugia in the South-
west, similar arguments might lead one to expect that deer
mouse populations in smaller, isolated refugia may lose their
hantavirus infection when the mouse population becomes too
small to maintain infection transmission.

The spatial variation of the noninfected (susceptible)
mouse density, M, a quantity that does not display a transi-
tion, is shown in Fig. 3(b). To make the infection transition
clear, we plot in Fig. 3(c), the variation of the peak values of
M, Mg and the total M, in the supercritical region (the ref-
ugium) against the extent L. We see the sharp disappearance
of infection as the peak value of M; plummets to O at a finite
value of L. No such behavior occurs for Mg or M. In solving
Eq. (1) numerically, we have used an explicit finite differ-
ence scheme and have analyzed the convergence to a steady
state by measuring the distance between successive solu-
tions. We have taken a periodic boundary condition in a large
spatial domain and have taken an initial distribution where
the infected and susceptible mouse densities have an initial
random value. Other initial conditions give similar results.
The (arbitrary) values of other parameters used for the cal-
culations of Fig. 3 are a=0.1, b=1.0, ¢=0.5, and D=20.

The transition means that, if it were desirable to achieve
the disappearance of refugia in a given landscape, it would
not be necessary to drop the environment resources below
the critical value expected in the absence of rodent diffusion.
It would suffice to make the spatial extent of the favorable
resource regions small enough. The unexpectedness of the
result can be appreciated in light of the fact that diffusion is
not a one-way process. In principle, it cannot only move
infected mice out of the refugium but bring them within it
from outside as well.

Extinction transitions related to the spatial variation of
parameters in the Fisher equation have been reported earlier
[27], including in the study of phytoplankton blooms [26],
bacteria in a Petri dish [28—-32] and effects of internal fluc-
tuations [33]. While closely related to them (as we shall see
below), the transition we report here has the distinguishing
feature that it is an infection transition rather than one in-
volving the total population of the species. It does not arise
from the simple Fisher equation which describes a single
density, but from two coupled equations, [Egs. (1)], one of
which describes the evolution of infected mice and the other
of susceptible mice. From the steady state spatial density
profile for the susceptible mice shown in Fig. 3(b) for five
different L values and, it is clear that Mg does not undergo
extinction for L<<L.. Interestingly, we observe that the pro-
file goes up with increasing L values for L> L. and, for L
<L, it gradually goes down. Thus, the susceptible density in
the middle of the supercritical region shows a peak for L
=L, which reflects the extinction of infected mice density at
L. [see Fig. 3(c)]. For L values very different from the criti-
cal length, the M values are easily predictable. The respec-
tive central values for L—o0 and L=0, are b/a, equivalently
K.(b—c), as the entire space is then supercritical with K
=K,>K,, and K,(b~-c) as the entire space is then subcritical
with K=K, <K..

011920-3



KUMAR, PARMENTER, AND KENKRE

10% ¢
- (a)
I _®
[¢] | /.//
- slope=1//2//r"
] ¢
10 —
10’ 10°
D
102
[} IE\ . 3
50 | -1 \s\li)pe_ 1/2 1
TS
_Io [ ] 101 bl ".......
0 o100 10" 10%]
(b) ° o KP_ C
15 - 1 [ ] —
21 30 40
Ko

FIG. 4. The critical length L, plotted for (arbitrary) parameters
a=0.1, b=1.0, ¢=0.5, K,=10 showing power law dependence
on (a) the diffusion coefficient D where the plot is on a log-log
scale (base 10) and the straight line with slope 1/2 shows the square
root power law dependence L.~ VD, the value of K, » being 30, and
on (b) the environmental parameter K, for the same parameters and
D=20. Although the main plot in (b) is on a linear scale and shows
a complex dependence on K, the inset is on a log-log scale (base
10) and against K,—K_ and the straight line with slope —1/2 shows
the power law dependence L.~ 1/VK,~K..

Clearly, it is important to understand the source and na-
ture of the abrupt transition. A common practice in the study
of phase transitions is to investigate whether a critical quan-
tity such as L. depends in a power law fashion on the various
parameters of the problem one by one, keeping the other
parameters fixed. The nature of the power laws often pro-
vides insights about the underlying mechanism for the tran-
sition. Careful study of the numerical results indeed reveals
an interesting parameter dependence of L. as shown in Fig.
4. In (a) we see that L. increases with the diffusion coeffi-
cient D as a square root power law: L.~ \D. In (b) we notice
a complex dependence of L. on the environment parameter
K, which is seen to reduce to an inverse power dependence
L.~ (K,—K.)~"? near the critical value K... These square root
dependences provide crucial clues to the underlying mecha-
nism and will guide the theoretical analysis. We have also
studied the dependence of L. on other parameters, specifi-
cally, a, b, and c¢. We have found apparent power law depen-
dence in restricted regimes so that Lc~a‘2, b~25* and the
dependence of L. on ¢ appears exponential, but these obser-
vations are less useful in developing the theory we construct
below.

III. THEORETICAL ANALYSIS

As in previous analysis by one of the present authors [8]
[see Eq. (51) of that reference], we recast Eq. (1) into equa-
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tions for the infected and total mouse densities, eliminating
the susceptible density M¢=M —M,. In the steady state, put-
ting the time derivatives equal to zero we obtain, as the start-
ing point of our analysis,

d*M(x) M 2(x)
D 2 +(b-c)M(x)= —K(x) ,
2 X
Ddlj—xlz() + ACOM,(x) = ab2(). (@)

The two differential equations are similar in form but differ
in two respects. The total density can be solved without
knowledge of the infected density but is required as input
into the solution of the infected density, and the linear term
for the infected density, given by

A(x):{—c+{a—$}M(x)}, (5)

is space-dependent whereas in the total density equation, it is
the nonlinear term that is inhomogeneous. Our theory in the
present paper is based on finding the approximate solution of
the total density in Eq. (4), using that solution to obtain a
simplified step profile for .A(x) in terms of three parameters
as will be explained below, and employing the step profile in
an exact analytic argument to deduce extinction conditions
for the infected density. We do this in turn below.

A. Finding M(x) through a linearization procedure

If the diffusion coefficient D were to vanish in Eq. (4), the
steady state solution for the total density would be M(x)
=K(x)(b-c); the other solution, M(x)=0, is an unstable zero.
Representing the environment parameter K(x) as a step func-
tion as discussed in the context of Fig. 1, with constant val-
ues K, and K, respectively inside and outside the refugium,
we would obtain the result that M(x) is also a step function,
with corresponding values K,(b—c) and K,(b—c). To deter-
mine the total density for finite diffusion coefficient, we ex-
pand the solution for M(x) around these values, denoted col-
lectively by M,

M(x) = Mo+ pu(x) (6)

and calculate the correction w(x) via a linearization proce-
dure which neglects its powers higher than linear. The nature
of the linearized equation leads to exponential solutions.
Boundary conditions demand that outside the refugium w(x)
be proportional to e~ to avoid blow-ups at infinitely large
distances. Matching logarithmic derivatives at the borders of
the refugium, we obtain the required solution for the total
mouse density in the linearized approximation:

L
M(x)=K,(b—c)+A sinh(%)e‘”l for |x| > L/2,

M(x) =K,(b—c) — Ae™® cosh ax for |x| <L/2. (7)

The first solution holds outside the extent L of the refugium
while the second applies inside the refugium, the difference
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FIG. 5. Validity of the linearization procedure used to obtain the
steady state spatial density profile of the total mouse density M(x).
Displayed is M(x) expressed in units of Kj(b—c), x being plotted in
units of 1/a=\D/(b-c). The solid lines are numerically obtained
exact solutions of the full nonlinear equation while the dashed lines
are the analytically obtained approximation of the linearized coun-
terpart. The three plots, (a), (b), and (c) correspond to three different
values of aL; in (a) it equals 1.58, in (b) it is twice as large as in (a),
and in (c) it is ten times as large as in (b). The value of K,/ K}, is 3
in all plots. The procedure clearly becomes more accurate as alL
increases.

(K,~Kp)(b—c) in the carrying capacities inside and outside
is denoted by A, and a=\(b—c)/D is the reciprocal of the
diffusion length of the mice, i.e., is the distance traversed by
the random walking mice in the effective growth time
1/(b-c).

To study how good this approximation for M(x) is, as we
vary aL, the ratio of the refugium length to the diffusion
length, we display in Fig. 5 a comparison with exact, i.e.,
numerically obtained M(x). We find excellent agreement for
small diffusion coefficient (large @l) but departures for
larger diffusion (small aL). This is expected since it is dif-
fusion that makes M(x) depart from the step function shape
of K(x).

B. Representing .A(x) as a step function

The onset of extinction of infection can now be calculated
by substituting M(x) as obtained in Eq. (7) in the expression
for A(x) appearing in Eq. (5) followed by the analysis of the
second Eq. (4) for M,. Near the extinction point, one may
argue, following an idea proposed by [34] in their budworm
work, that the quadratic term in M, can be safely neglected in
favor of the linear term since M,(x) vanishes at the transition
point. This is an exact argument [in contrast to the approxi-
mate analysis of the calculation of M(x)] that has been re-
cently applied [32] in an unrelated context of the dynamics
of bacterial populations. To use that argument in the present
infection extinction context, we focus on the second Eq. (4).
Extinction requires that .A(x) be negative outside the ref-
ugium leading to a depletion rather than growth of infection.
The onset of extinction further requires that the depletion
rate be large enough in magnitude for the vanishing of infec-
tion outside to overwhelm the growth inside the refugium.
Among the several possibilities that exist for the construction
of an analytic theory, including an approximate Airy function
treatment [35] of the problem by representing the x variation

PHYSICAL REVIEW E 82, 011920 (2010)

A(X)

FIG. 6. Schematic representation of the proposed approximation
approach for finding the critical length. Plotted is the spatial depen-
dence of A(x) as obtained from the calculated M (x) (solid line), and
in its step profile representation with the constant values A inside
and —A, outside the refugium (dashed line). The result is the deter-
mination of L, from the actual L.

of the infection growth term in Eq. (5) as a linear drop, we
select here the simplest: we represent A(x) by a step function
with constant values inside and outside the refugium deter-
mined by averaging Eq. (5) separately inside and outside the
refugium, using the expressions for M(x) we have obtained
above.

Figure 6 shows the spatial dependence of A(x) arising
both from the substitution in Eq. (5) of the exponentials in
Eq. (7) and the step nature of K(x): the dependence is that of
a hyperbolic cosine within the refugium, drops abruptly at
the refugium boundaries, and then decays exponentially out-
side the refugium. Our interest is in replacing this depen-
dence by a simplified step function characterized by three
quantities, the two respective values A, and —A; of A(x)
inside and outside the refugium, and the effective extent L,
of the refugium. Because M(x) decreases to the value K
(b—c) and maintains that value throughout the (infinite) ex-
tent of the region outside the refugium, it is clear that

Ai=a(K,—K,)(b-c). (8)

We obtain the value inside the refugium by averaging
M(x) from our expressions Eq. (7),

L2

— M(x)dx=K,(b-c)-S(K,-K,)(b-c), (9)
L) ),

where S is a switching factor depending only on the ratio of
the refugium extent to the diffusion length,

inh(alL/2
S=e_a1‘/2{%] (10)

The switching factor S varies from O to 1 as diffusion in-
creases, the limits being respectively valid for aL>1 to
aL < 1. Correspondingly, the average value of M(x) within
the refugium varies from K,(b—c) to K, (b—c). The general
expression for the effective growth rate of infection within
the refugium for arbitrary alL is

Ay=a[(K,-K)(b-c)—SA]. (11)
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Finally, the effective extent L, is calculated by equating
the area under the approximated step profile (dashed line in
Fig. 6), which is L,;{(Ay+.A;) to the area under the calcu-
lated profile (solid line in Fig. 6) with the consequence that

- (= a)S
1-(1-2)s |’
depends on aL as well as on aK, and aK,. Although this
parameter dependence is quite complex, it is easy to see that
L,y is identical to L in the limit of small diffusion coeffi-
cient, more appropriately in the limit VD(b—c)/L—0 when
the switching factor S vanishes. In the same limit, the brack-
eted factor in Eq. (11) describing A, becomes equal to the
carrying capacity within the refugium, K,(b—c).

Ley=L (12)

C. Determining the onset of extinction of infection

Extinction conditions are now obtained in a straightfor-
ward fashion from the representative M; equations

a*m
D= =+ AgM = aM?, (13)
X
a’M, 5
D=5 =AM =aMj, (14)

by neglecting the quadratic terms (without approximation)
because one is interested only in extinction for which they
are indeed negligible, solving the linear equations in terms of
trigonometric and exponential functions inside and outside
the refugium respectively, and matching them at the effective
boundaries of the refugium. This matching leads to the result
that extinction occurs, i.e., infection disappears everywhere,
if the refugium extent falls below an effective length given

by
D A,
Logy(Le) =24 m arctan( \/ AL ) ) (15)

where L is replaced by the critical length L. in the expres-
sions Egs. (12) and (11) for L,; and A, respectively. Be-
cause Eq. (13) is of order 2, both M, and its derivative are
matched, equivalently the logarithmic derivative of M. This
leads to the arctan factor in Eq. (15). For low diffusion co-
efficient values, i.e., when aL>1, Eq. (15) reduces to the
simple explicit formula

DI(b-¢) K.-K,
L,=2+/————— arctan — . (16)
a(K,-K,) K,-K.

IV. COMPARISON OF ANALYTIC THEORY TO
NUMERICAL SIMULATION

The origin of the power law dependence of the extinction
length L. on the diffusion coefficient D and on the difference
K,—K, displayed from the numerical simulations in Fig. 4 is
now transparently clear from the simple formula, Eq. (16), of
our theory. Consider, for instance, the illustrative case in
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FIG. 7. (Color online) Comparison of our analytic theory with
numerically obtained values for the dimensionless extinction length
alL, as a function of the quantities K;, K, and K. in (a), (b), and (c),
respectively. In (a), K:=2, KZ:I, in (b) K;=3, K:=2 and in (c)
K;=3, K,=1. The filled circles are obtained numerically from the
full nonlinear time-dependent Eq. (1) and the black solid line is the
analytic prediction of our theory as given by Eq. (15). In each of the
three figures we also display, as dotted line, the prediction of the
simple Eq. (16). That simplified theory qualitatively reproduces the
correct behavior and is valid for small diffusion.

which the carrying capacity within the refugium exceeds the
critical value by the same amount as the excess of the latter
over the carrying capacity outside the refugium. The argu-
ment of the arctan is then 1, and the first factor in Eq. (16)
clarifies both square root dependences observed in Fig. 4.
Although Eq. (16) applies for small diffusion (large aL,), it
captures the essence of the power law. The same tendency is
present in the more accurate and general Eq. (15).

Equation (16) that emerges as the small diffusion (large
aL,) limit of the general result Eq. (15), would also be ob-
tained if we had refrained from carrying out the calculation
of the steady state total density M(x) [see Eq. (7)] and had
simply taken it to be a step function with value K,(b—c)
inside and K;,(b—c) outside the refugium. This would capture
some of the essence of the problem but would neglect diffu-
sion. In Fig. 7 we now display the prediction of the simple
formula (16) for L, (dotted line) and find that it describes the
qualitative feature of the actual dependence of the extinction
length on the environment parameters. The actual depen-
dence, obtained via extensive numerical solutions of the time
dependent Eq. (1) in which no linearization is carried out and
the parameters varied until extinction is found to occur, is
denoted by dark circles in Fig. 7. The abscissa in the three
plots is the dimensionless quantity K*:(JKB, with B=p,b,c.
To bring quantitative agreement between theory and simula-
tion, we see that it is important to go beyond the simple
expression Eq. (16) and to use the detailed theory resulting in
the full formula (15). This is represented by the solid line.
We see a satisfactory degree of agreement. The departures
arise from the simplifications we have had to make to tackle
this very complex extinction problem that can be solved only
approximately. By contrast, extinction of total densities,
where infection is not involved, that appear for instance in
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bacterial population dynamics, are amenable to an exact
theory [32].

V. CONCLUSION

The aim of the present paper has been the application of
the methods of mathematics and physics to gain insights into
an important problem in epidemiology and ecology, follow-
ing the tradition of interdisciplinary science [36,37]. Our
starting point in this paper was Eq. (1) for the dynamics of
the rodents responsible for the spread of the hantavirus. Nu-
merical investigations on their basis revealed an extinction
transition whose nature is considerably more complex than
that of simpler similar phenomena encountered, for instance,
in bacterial populations [28—31]. While for those simpler
cases one can construct an exact theory [32], it is only pos-
sible to develop an approximation scheme to treat the infec-
tion transition case. This we have presented here. Our final
result is Eq. (15) for the extinction length of the refugium
expressed in terms of the rodent diffusion coefficient and
carrying capacities. The success of the theory in reproducing
features of the transition, including the power law depen-
dence of the extinction length on system parameters, is visu-
ally clear from Fig. 7.

A tacit assumption made in the analysis is that the rodents
perform ordinary random walks. It is obviously important to
ask whether that simplification is valid. Extensive studies
carried out by Giuggioli ef al. [18] regarding the movements
of Zygodontomys brevicauda in the site in Panama men-
tioned in that reference and by Abramson e al. [19] concern-
ing the movements of Peromyscus maniculatus in the site in
New Mexico studied in that latter reference have shown that
field observations are largely compatible with that assump-
tion within the margin of normal experimental error. We refer
the reader particularly to the discussion related to Figs. 4 and
5 of Abramson et al. [19]. For any new case, the statistics of
the field observations can be examined to ensure that the
departure from Gaussian behavior, i.e., the assumption of
ordinary random walks, is not too large. If, however, it is
found to be significant in a particular case, the effects can be
incorporated in principle in the analysis by changing the dif-
fusion equation by introducing an appropriate memory in the
transport equation. This is, however, outside the scope of the
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present paper. The clear evidence for ordinary random walks
found in refs [18,19]. gives us sufficient justification to base
our analysis on the diffusion equation alone.

The square root power law behavior originates from the
fact that mice perform random walk motion on the terrain.
Because the mice are random walkers, their average dis-
placement tends to grow as the square root of the number of
steps they take. It is this feature that results in the power law,
as is clear from an inspection of the present theory. Quanti-
tative information about the random walks of the mice are
available from the published literature. Observational evi-
dence for the quantitative as well qualitative aspects of the
random walk movement of the rodents has been gathered in
a number of earlier papers. We would like to point out in
particular, the study of the movements of the mouse Peromy-
scus maniculatus in New Mexico and clear findings that their
diffusion constant is of the order of 475+ 50 m? per day;
and those of the movements of Zygodontomys brevicauda in
Panama where the mice were found to move slower, viz.,
with a diffusion constant of 200+ 50 m? per day. The details
of the extraction of the diffusion parameters and the experi-
mental set-ups will be found respectively in Refs. [19,18].

A simple way to interpret our mathematical results in
terms of the ecology of the mouse, virus and habitat is to
notice that deer mice get infected during fights (horizontal
transmission), and that when resources are low, the popula-
tion of mice declines and reduces the chances of a fight,
consequently virus transmission. Thus the total mouse den-
sity can remain positive but the infected density can drop to
zero. These ideas, basic also to the well-known Island Bio-
geographic theory [24], find an analytic description in terms
of the development presented here. With the theoretical un-
derstanding well in hand, it is important to carry out system-
atic field observations of the extinction transition. We are in
the process of collecting such observations, exemplified by
plots of the densities of infected mice versus total mice, and
hope in the future to present a comparison of the theory to
field data.
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