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among random walkers. We extend the formalism of generalized Hurst exponents to the
study of nonlinear evolution equations and apply it to several illustrative examples. They

ZI;‘CSS; . includg an ane}lytically solvable case of a nonlinear diffusiop constant gnd thrge nonlingar

45:70:\/“ equations which are not analytically solvable: the usual Fisher equation which contains

05.60.-k a quadratic nonlinearity, a generalization of the Fisher equation with density-dependent
diffusion constant, and the Nagumo equation which incorporates a cubic rather than a
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1. Introduction

Random walks and anomalous diffusion [1-5] have traditionally been approached from the perspective of whether or
not they include memory. Markoffian processes describe random walks with short (e.g., exponentially decaying) memory,
whereas non-Markoffian walks describe the general case of random walks with memory of the (possibly complete)
history [6]. Less work has gone towards the investigation of how interactions among random walkers can change the global
behavior. The presence of even local interactions can dramatically alter global behavior. For example, when the diffusion
equation for Brownian motion governed by a Wiener process is augmented with a convective term whose strength is linear
in the local density of the walkers, the resulting Burgers equation leads to qualitatively different behavior: the principle of
superposition breaks down and Gaussian solutions become unstable. A recent study [7] has generalized the formalism of
Hurst exponents to address the problem in the context of Burgers equation arising from hydrodynamic models of vehicular
traffic flow. Specifically, it was shown that initial conditions become important due to the breakdown of the principle of
linear superposition. In the present paper we extend that study to several further cases of interacting random walkers.

The Hurst exponent quantifies how quickly particles diffuse. For the case of zero drift velocity, the Hurst exponent H
describes how the mean squared displacement of a random walker (x*) ~ t2H scales with time t. Normal diffusion gives
H = 1/2 due to the central limit theorem, which guarantees convergence of the probability density function of the walkers’s
position to a Gaussian. For non-interacting particles, the Fokker-Planck equation for the probability density P (x, t) of a par-
ticle is linear in P. Hence, the propagator of the Fokker-Planck equation contains all the relevant information concerning H.
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However, when particles interact, the resulting evolution equation might be nonlinear; hence Green’s functions and prop-
agators will obviously not exist.

In Section 2 we recall and discuss the findings of Ref. [7] that the usual method of estimating Hurst exponents can lead to
spurious predictions as a result of non-negligible effects of initial conditions. In Sections 3-6 we apply the method to study
an exactly solvable system as well as a number of nonlinear diffusion equations, including the Fisher and Nagumo equations.

2. Hurst exponents for interacting random walkers

2.1. Generalized Hurst exponents

A number of methods can be applied to quantify different aspects of anomalous diffusion. Anomalous diffusion has
been studied using a number of formalisms and approaches. Continuous time random walks [2,8] and generalized master
equations [9] (GMEs) are formally equivalent [10]. Fractional partial differential equations [11,12] are equivalent to GMEs.
Here we use the formalism of Hurst exponents, which can be related to Holder exponents [ 13-16], describing the degree of
differentiability along the trajectories. This formalism has been used to study the anomalous dynamics of different systems.
Recently, this has been applied in the field of finance as well [17].

One can define the Hurst exponent H(q) for a stationary stochastic process [14,16] in terms of the scaling of the absolute
moments of the density:

X = (x) (1
My(t) = (|x — x|%) ~ t#H@ (2)

where the averages are taken over the propagator. Brownian motion and normal diffusion correspond to H(q) = H = 1/2,
whereas anomalous diffusion corresponds to all other cases. As discussed in Ref. [7], one can generalize the concept to allow
a scale dependence [18-20], such that H = H(q, t):

My(t) ~ tH@D, 3)

For instance, the telegrapher’s equation [21] has a mean squared displacement that grows quadratically for small times but
linearly for larger times. The behavior is ballistic at small times, (H(q, t) & 1) but diffusive at large times (H(q, t) — 1/2).
This behavior can also be written in terms of the asymptotically defined Hurst exponent H(q) and a scaling function f, such
that My(t) ~ t™@f(t/t*), t* being the typical crossover time and H(q) = 1/2 with f ~ ¢ fort <« t* and f ~ constant
for t > t*. However, we don’t know, a priori, that such crossovers are generic, which limits the applicability of this scaling
description. Also, for systems for which the Hurst exponent changes continuously in time, it is difficult to write proper
scaling function and thus Eq. (3) gives a natural and more generic way to approach a problem.

2.2. Nonlinear Fokker-Planck equations

Standard methods of deriving Fokker-Planck equations from Langevin equations lead always to linear equations [7].
Consider, for example, the Boltzmann equation for gases, obeyed by the one-molecule distribution function. It is nonlinear,
in contrast to the underlying linear Liouville equation for the N-molecule Liouville density. In the absence of inter-particle
interactions, the Boltzmann equation would be linear. Similarly, if the gas molecules interact with a fixed system of random
scatterers, the Boltzmann equation would be nontrivial but still linear. The standard manner of applying Hurst and Holder
exponents would work here. The case of interacting random walkers is different. If intermolecular interactions are turned on,
nonlinearity enters the picture and immediately makes unavailable the superposition principle and propagator analysis. We
recall the standard manner in which the Hurst exponent H = H(2) is usually obtained from the behavior of the mean squared
displacement for linear equations. In terms of the propagator or the Green function v (x, xo, t) and the initial distribution
P(xp), the Hurst exponent is given by the scaling behavior of

/oo /oo dxdxg (x — x0)% W (%, xg, )P (Xo).

For a translationally invariant (homogeneous) system such as the one under consideration in this paper, this equation
reduces to

()5 = / 2P (x, b) )

because the propagator is a function of the difference x — xo. We use the suffix § in the left hand side of Eq. (4) to emphasize
that the (x?) used here can be considered to be the one calculated for an initially localized initial condition P(xq) = 8(xg).
This can also be used for a collection of many random walkers provided they are non-interacting among themselves: the
initial distribution Py is irrelevant in a linear system of non-interacting particles.
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However, if the particles interact such that P satisfies a nonlinear equation, the nonlinearity prevents us from writing in
Eq. (4) the linear superposition

o0
Pt = [ Polto) (k= . 0. (5)
—00
Following Ref. [7], we compute (x?)p, by substituting xo with the center X, of the distribution at time t = 0:
o0
Win, = [ dr =P po) ©)
—00

where P now depends nonlinearly on the initial condition Py. We no longer expect (x*) p, to remain independent of Py. Other
moments (|x|?) also depend on initial conditions.

Non-normalized distributions and even systems that do not conserve probability can be studied, by defining the moments
explicitly in terms of the distribution P(x) via

J72, dxP(x)]x — x|
J75, dxP(x)

thus allowing one to study, for instance, the Fisher equation.

Mg = (lx —X|%) = (7)

3. Nonlinear diffusion coefficient

The classical diffusion equation has been widely used to study the dynamics of different population species. It assumes
that there are no interactions between the random walkers. However, if the random walkers interact, the diffusivity might
either increase or decrease in the presence of other random walkers. In other words, the diffusion coefficient D may increase
as a result of population pressure or decrease because of mutual attraction.

We study the case where D becomes a function of the density u, leading to the following nonlinear diffusion equation [22]:

du d u\" du
== (=) &) (8)
at ox Up 0x

This nonlinear diffusion equation shows that for m # 0, diffusion is density dependent. Here the sign of D, will dictate
whether the population are moving away from or moving towards each other. If D,, > 0, individuals in a population move
away from each other resulting from the population pressure and D, < 0 corresponds to a situation where they move
towards each other. The strength of such attraction or repulsion is Dy, (u/ug)™, which is a nonlinear function of density. Here
U is the initial density of population. We also note that for m = 0, Eq. (8) reduces to the standard diffusion equation. Taking
o = 1/(2 + m), the above equation allows the following exact solution:

utx 0 = f0g (). W <ot/

=0, |x|>ro(t/t)” (9)

where

X t5x 2\ V/m
g(;) - (1 B (roto‘) ) ’ (10)

_0rG+3)
712l (1 4 1) 07 D(m+2)°
and Q is the initial number of populations released at the origin. Now, substituting x/t* = z, we can write
t* [ dzz(z
) — J dzz(2)
[dzg@)

From the above equation the Hurst exponent is H(q) = 1/(2 + m). For m = 0 we recover the classical diffusion problem
with constant diffusion coefficient.

(11)
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Fig. 1. Evolution of the Hurst exponent H(2,t) form = 1,uy = 1, D, = 1 and for different values of Dy. For Dy = 0, the asymptotic dynamics is
subdiffusive with H(2) = 1/3 as one expects from the exact analysis. For Dy # 0, the dynamics is always diffusive in the long time limit. However, in the
short time limit one finds subdiffusive behavior. The larger the value of Dy, the faster the convergence to the asymptotic diffusive behavior. Parameters are
in arbitrary units.

For the combined case of a diffusion coefficient that contains a constant part and a part dependent on the density, the
dynamics evolves as

8u_D 0 u\" du D 0%u (12)
at ~  Moax \\ug ) ox Oax2
We solve this equation numerically using a semi-implicit method with spatial steps 0.05. In Fig. 1, we plot the Hurst exponent
for ¢ = 2, for m = 1. We observe that for Dy # 0, the dynamics is always diffusive in the long time limit. However, in

the short time limit we observe subdiffusive behavior. The temporal stretch of this subdiffusive behavior decreases with
increasing value of Dy, i.e., convergence to its asymptotic diffusive behavior becomes faster with increasing Dy values.

4. The Fisher equation with fixed diffusion constant

The well-known Fisher equation [23] describes the dynamics of a field u(x, t) subject to diffusive movement and a logistic
reaction term:

du _p 3%u
at Lo

Here Dy is the diffusion constant of the interacting species, a is the growth rate and b controls the competition for the
resources. This equation was originally proposed for the study of an advantageous gene in a population. Eq. (13) allows a
family of travelling wave solutions with speed V > 2./aDg to invade the unstable phase u = 0 from the stable phaseu = a/b.
However, for a steep enough initial condition the selected asymptotic speed is the minimum speed V, = 2./aDq [24].

In order to study invasion dynamics in terms of the Hurst exponent formalism, we numerically solve Eq. (13) using the
method used in Section 3 and taking Dy = 1,a = 0.1, b = 1 in appropriate (arbitrary) units. The initial density has the
form of a step. It is zero everywhere except in the localized patch in the middle where it is uniform and nonzero. In Fig. 2,
we have shown the result of this simulation. The familiar Fisher equation behavior wherein the density step rises to the
saturation value a/b with a subsequent evolution of the front at the Fisher velocity is evident in Fig. 2(a). We see clearly
from Fig. 2(b) and (c), particularly from the inset in the latter, that the Hurst exponent increases to the super-ballistic value
(i.e. larger than 1) and then drops to the ballistic (i.e., 1) value at large times. The motion, which is nearly that characteristic
of standard diffusion (i.e., H = 0.5) at short times, increases as the reaction terms kick in, becomes faster than ballistic and
settles to the latter at long times when the system evolution is completely described by the two fronts traveling at constant
(Fisher) velocity. This behavior of the Fisher equation, made apparent by focusing on the time-dependent Hurst exponent,
is worthy of note.

+ au — bu?. (13)

5. Density-dependent diffusion constant

In many ecological systems the movement of animals depends on the local density of individuals [22,25]. Thus the
diffusion constant in the Fisher equation needs to be replaced by a density-dependent function. This kind of dispersal arises
from the possibility that individuals in a population may prefer to migrate from crowded regions to sparsely populated
regions as mentioned in Section 3. The reverse effect may also occur as a result of attraction between members of a species.
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Fig. 2. (a) Solutions of the Fisher equation at different times starting with a step function initial density. Density has been expressed in the units of a/b
and distance in terms of b/a. It is obvious that the stable phase invades the unstable phase. (b) Moments M(q, t) with time expressed in terms of 1/a. The
plots have been scaled appropriately for the sake of visualization. (c) Local Hurst exponents H(q, t) of solutions of the Fisher equation. Inset: The zoomed
plot in a given time interval for ¢ = 1, 2, 3 and 4 from top to bottom respectively.
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Fig. 3. Plots similar to those of Fig. 2 but with a diffusion constant that depends linearly on density. The density is expressed in units of a/b while distance
is in terms of b/a and t in units of 1/a in this figure as well as in Fig. 2.

We try to capture the first of these density dependences by taking a simple linear relation D(u) = Dgu. This dependence
modifies the diffusion term in Eq. (13) and the corresponding evolution can be written as

au a ou
— = — | Dou— — bu?. 14
ot ax( °”ax>+a” ! (14)

We study the invasion dynamics in this case starting with an initial profile similar to that used for the Fisher equation with
constant diffusion and keeping similar values of the parameters Dy, a and b. The result is shown in Fig. 3. The characteristic
front evolution with inputs from the Fisher nature as well as from the power dependence of D is seen in Fig. 3(a). The resulting
H(g, t) as shown in Fig. 3(b) and (c) displays monotonic increase in contrast to the case of Fig. 2. The motion appears to
remain always sub-ballistic.

6. The Nagumo equation

The Fisher equation assumes that the birth term is linear and the competition term for the resources is quadratic in u. A
number of biological and ecological systems require that instead of the Fisher equation we use the Nagumo equation:
u 0%u
=D— —au+ bu?® — cu. 15
ot 0x2 (15)
Here the birth term is quadratic in the density and the competition term is cubic in the density. The Nagumo equation
provides an additional zero in the nonlinearity relative to the Fisher case. The physical content behind such a term is the



3692 N. Kumar et al. / Physica A 388 (2009) 3687-3694

a 1 T T T b T T T
A 8 q=14
= % /qzz
Zosf 1 £ ‘/q:&
> i /Q=4
= 0 / i
0 1 1 1 1
-200 0 200 -1 2 5 8
X In(t)
Cc 1F T T T
SosH
110 1 40

0 40 80 120
t

Fig. 4. (a) Solutions of the Nagumo equation at different times starting with a step function initial density. (b) Moments M(q, t): The plots have been
scaled appropriately for the sake of visualization. (c) Local Hurst exponents H(q, t) of solutions of the Nagumo equation. Inset: The zoomed plot in a given
time interval for ¢ = 1, 2, 3 and 4 from top to bottom respectively.

Allee effect, in the presence of which, unlike in the logistic case, the zero-u solution is stable. If the density of population u
is small initially, it is attracted towards the vanishing value and if large, it is attracted to the nonzero value. The physical
origin of the Allee effect is the possible increase of survival fitness as a function of population size for low values of the
latter. Existence of other members of the species may induce individuals to live longer whereas low densities may, through
loneliness, lead to extinction. There is a great deal of evidence for such an effect in nature [26,27] and there have been recent
reports [28,29] of theoretical work addressing the effect.

There are three possible homogeneous steady state solutions for u: ug = 0, Upax = (b + +/b* — 4ac)/2c¢ and up, =
(b— +/b? — 4ac)/2c. By performing linear stability analysis of these solutions, we find that ug and up,x are stable while um;,
is unstable. It is convenient to reduce Eq. (15) to dimensionless form by performing the following substitutions:

X — x/1/ U2,/ Do,

t—t/u

U — U/Unax- (16)

2
maxC>

Introducing a quantity ¢ = Upjn/Umax and using b/umax = (o + 1)c and a/ufnax = ac, we get the following equation in the

dimensionless form:

u_ DO wyw-a) (17)

—=—— —u)(u— ).

ot DO ox2
It can be shown that for the steady state homogeneous solution of Eq. (17), u = 0 and u = 1 are stable while u = « is
unstable. However, the selection of one of the stable solutions out of two stable solutions depends on the initial condition.
We study the invasion dynamics starting with an initial profile consisting of nonzero uniform density in the middle (u = 0.4)
and zero on both sides of it and take « = 0.1, D = Dy = 1. The results are shown in Fig. 4. Similarities with Fig. 2 are clear
except for the non-monotonic evolution of the Hurst exponent in the Fisher case.

7. Concluding remarks

In summary, we have extended the formalism of Hurst exponents to cases where the random walkers are in interaction
with one another, the interactions being described via nonlinear Fokker-Planck equations. We have also applied the
formalism to several cases. One of them involves the physical situation in which the diffusion coefficient of the walkers
increases with their density as a result of population pressure. With an assumed power law dependence of the diffusion
coefficient on the density, we have examined the exact analytic expression that can be written down for the Hurst exponent.
We have also studied numerically three different reaction-diffusion equations which are not analytically solvable: the Fisher
equation with diffusion that does and does not depend on the density of the walkers, and the Nagumo equation which has
higher order reaction nonlinearities (Fig. 5). The generalized Hurst exponents obtained from these equations are, needless
to say, consistent with the known behavior of their solutions.

The extension to nonlinear evolution equations of the concept of generalized Hurst exponents allows one to interpret
the behavior of the solutions in terms of the concepts of anomalous diffusion. It would be helpful to have a single method
of defining such generalized Hurst exponents, whether the focus of study is a linear or a nonlinear equation. Attempts that
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Fig. 5. Comparison of the behaviors of the three equations studied. The solid line corresponds to Fisher equation with fixed diffusion constant, the dotted
line is for the density-dependent diffusion while the dashed line corresponds to the Nagumo equation.

we have made to develop such a unified approach have not yet succeeded. It might be worthwhile nevertheless to report
our efforts in passing. For the estimation of Hurst exponents, we note that

In M, (t
Hig, o) = 2M© (18)
qint
so the Hurst exponents represent slopes on double-log plots of the moments M, (t) and our results in this paper are based on
this definition. However, even for linear problems, this definition can lead to errors, due to the effects of the initial conditions.
As an illustrative example, consider the diffusion equation

0 92
o =Pgah (19)

whose integration leads immediately to
(%) = 2Dt + (x*)o (20)

where (x?), denotes the initial value. Except for the special case (x*); = 0 corresponding to a §-function initial condition,
Eq. (18) gives an incorrect value H # 1/2.

This error is an artifact of the method of estimation. Although Hurst exponents do in fact represent the slope in log-log
plots of the moments, the initial value of the moment inside the logarithm leads to spurious estimation of anomalous
diffusion. Only in the long time limit does one obtain the correct value.

Motivated by this methodological problem, one might attempt to estimate the Hurst exponents in a manner which is
effectively immune or insensitive to the initial conditions (at least for the case of linear problems). Consider, for example,
the following “new” definition for estimating Hurst exponents:

HE, 0) = [1 4 I aMx()/6t aMz(t)/at] .
q Int

(21)
By taking a time derivative inside the logarithm, we eliminate the initial values of the moments, since they are constants.
But this reduces the power law exponent gH, by unity; hence we compensate by explicitly adding 1 to get the correct value
for qH,. The above method for estimating H may not work if gH > 1. In this case, in addition to a constant, M; might have a
nonconstant dependence on initial conditions. However, in terms of scaling function f, as discussed in Section 2.1, one can
define, in the long time limit, H(q) = [InMy(t) —Inf(t/t*)]/(qInt) for t > t*. In this limit the scaling function f saturates,
so one can estimate H(q) in the long time (infinite time) limit which works even for nonlinear systems. More generally, we
could try the following definition:

1 [y L aVMq(t)/aty] ’

H(g.t) = 1 Int (22)

with gH — 1 < y < qH. A good choice would be the integer part: y = [gH]. Our reasoning is that for sufficiently large y, all

effects due to initial conditions can be removed. However, even this method does not always work. The question remains
open.
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