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An explicit proposal for experiments leading to abrupt transi-
tions in spatially extended bacterial populations in a Petri dish
is presented on the basis of an exact formula obtained through
an analytic theory. The theory provides accurately the transition
expressions despite the fact that the actual solutions, which involve
strong nonlinearity, are inaccessible to it. The analytic expressions
are verified through numerical solutions of the relevant nonlinear
equation. The experimental setup suggested uses opaque masks
in a Petri dish bathed in ultraviolet radiation [Lin A-L, et al. (2004)
Biophys J 87:75–80 and Perry N (2005) J R Soc Interface 2:379–387],
but is based on the interplay of two distances the bacteria must tra-
verse, one of them favorable and the other adverse. As a result of
this interplay feature, the experiments proposed introduce highly
enhanced reliability in interpretation of observations and in the
potential for extraction of system parameters.

bacteria in Petri dish | Fisher equation

P henomena displaying abrupt transitions are of special inter-
est to a variety of sciences, including physics and biology.

In some physical cases they arise from cooperative interactions
among a large number of constituents (e.g., molecules or spins),
and in others from nonlinearities in interaction inherent in the
system (e.g., in some mechanical systems with only a few degrees
of freedom). In the first form they are known as phase transitions
(1), in the second, as bifurcations (2). Abrupt phenomena also
command attention in the context of extinction of populations, a
subject of obvious interest to biology (3). Transitions in popula-
tions, therefore, constitute an exciting topic of interdisciplinary
science combining physics and biology, and this article reports a
theory and proposes an experiment in this topic. The special fea-
ture of the proposed experiment is that it may be performed with
relatively simple equipment and measurement techniques.

The system to be considered consists of bacteria in a Petri dish,
allowed to grow and move, spatial selection being imposed via
lethal ultraviolet radiation that is incident on the dish, but punctu-
ated by opaque masks that protect the bacteria in chosen regions.
Experiments under such a setup were initiated several years ago
by Lin et al. (4, 5) who used moving masks in response to a the-
oretical analysis (6, 7) that focused on spatial disorder. A quite
different experiment using stationary masks of varying sizes, and
employing bacterial extinction as the key phenomenon, was then
proposed (8). That proposal was carried out experimentally (9)
and the predictions of ref. 8 were verified. Related investigations
on this topic may be found in refs. 10–12, the general problem of
bacterial dynamics in Petri dishes has been addressed in various
articles and contexts (13, 14).

The underlying assumption behind most of these studies is that
the bacteria obey a simple Fisher equation (15) for the time evo-
lution of their dynamics, their population density u(x, t), where x
is the position in a 1-dimensional space (the linear dimension of
the Petri dish), and t is the time, being governed by

∂u(x)
∂t

= D
∂2u(x)
∂x2 + au(x) − bu2(x). [1]

Here, a and b are, respectively, the growth rate and a competition
parameter arising from the resources being limited, and D is the
bacterial diffusion constant.

Eq. 1 generally does not permit analytic solutions for arbitrary
times but can be solved in the steady state explicitly in terms of
Jacobian elliptic functions, if the bacterial population is assumed
to vanish at the edges of a finite region. Physically, this could cor-
respond to an idealization in which, although the mask protects
the bacteria from the lethal effects of the ultraviolet radiation,
the latter is so potent that the bacterial population must vanish
everywhere outside the mask where the radiation impinges on
the bacteria. Mathematically, these are Dirichlet boundary con-
ditions. The elliptic function solution, given independently in a
recent analysis (8), but known decades earlier through the work
of Skellam (16), and elucidated in textbooks (18), leads to the
well-known KISS transition (17): the steady-state bacterial pop-
ulation vanishes for any width of the mask lower than a critical
value that, interestingly, depends on the diffusion constant D and
the growth rate a, but not on the nonlinearity parameter b. The
specific expression for the critical mask width is π

√
D/a. Com-

bining this expression with information about bacterial diffusion
constants and growth rates discussed by Mann (11), Kenkre and
Kuperman calculated the critical mask width to be ≈ 0.5 cm, and
suggested that an experiment be carried out to observe the transi-
tion. Perry (9) followed the suggestion, and reported observing a
transition width of 0.8 cm in his experiments on a nonchemotactic
strain RP9535 of Escherichia coli bacteria. Because the Dirichlet
boundary condition is only an extreme idealization, Perry argued,
appropriately, that it is preferable to invoke the analysis of Ludwig
et al. (19) for quantitative verification. That analysis assumes that
the growth rate a is negative in the region outside the mask (and of
magnitude a1), rather than infinite as would correspond to Dirich-
let boundary conditions, and arrives at the critical mask width
as being L = 2

√
D/a arctan

√
a1/a. The Dirichlet expression is

recovered from this Ludwig formula if the effect of the ultraviolet
radiation outside the mask is “infinitely” lethal.

Proposal for Experiment
Need for the experimental proposal that we present here arises
because the stationary single-mask experiment (8, 9) uses for its
interpretation a number of inputs that suffer from a certain degree
of uncertainty. Some of these uncertainties are about the val-
ues of D and a (11), and others are about the extent to which
other phenomena, such as signaling (9), that occur in bacterial
movement might affect the outcome of the experiment. Because
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Fig. 1. Our proposed experimental setup showing two favorable regions
each of length L separated by a hostile region of length 2d. The focus of
observation is the interdependence of the critical values of L and d at which
extinction occurs.

absolute values of critical lengths may be difficult to obtain with an
acceptable degree of accuracy, we propose here stationary mask
observations that focus, instead, on the interdependence of two crit-
ical lengths. The essential feature of this present proposal is to have
more than one mask in the Petri dish, so that there are two control-
lable lengths, a favorable length associated with a livable region
for the bacteria, and a hostile length associated with an unlivable
region. The double control possible in the proposed experiment
opens the prediction space from a single value to an infinity of
values. The variation of the critical value of one of the lengths
when the other is changed presents an entire relationship that is
directly observable, rather than a single value, and therefore could
lead to a much cleaner and more trustworthy interpretation of the
observations.

The simplest system to study consists of two masks, each of
length L, separated by a distance of length 2d as shown in Fig. 1.
The previously investigated case with a single mask (8, 9) corre-
sponds, obviously, to infinite d. To test the idea behind the new
proposal, we carried out numerical studies of the full nonlinear
Fisher Eq. 1 with given values of D, a, a1, and b (10, 0.1, −0.9
and 1 in appropriate units). All lengths were expressed as ratios to
the diffusion length

√
D/a. The numerical studies used an explicit

finite differences scheme, x being discretized in intervals of 0.1.
The convergence to a steady state was analyzed by measuring the
distance between successive solutions.

The result we found (see Fig. 2) is that the critical value of
the mask width L, that is, the smallest value that can support a
nonzero bacterial population in the steady state, is lowered for a
finite intermask distance d. We considered 10 different values of
the hostile length (the intermask distance d) and varied the favor-
able length (the mask width L.) For each L–d pair, we started
with arbitrary initial conditions and let the program run until no
time dependence was discernible. We repeated the procedure for
each of several sufficiently low values of L and increased L until
the extinction disappeared. We also reversed the procedure start-
ing with high values of L and decreased them systematically until
extinction appeared. Numerous runs allowed us to obtain corre-
sponding pairs of L and d that mark the transition region. The
results are denoted by filled circles in Fig. 2. The shaded area rep-
resents the extinction region and the unshaded area the parameter
region in which bacterial population densities are nonzero in the
steady state. The curve passing through the numerically found
transition points may be considered, at this stage of our discus-
sion, to be simply a smooth joining trace. We will see below that
its exact shape can be accessed through our analytic theory.

It is easy to understand, on the basis of a qualitative argument,
the shape and tendency of the results of the numerical solutions
of the nonlinear equation. Bacteria diffuse from within the mask
to the harsh region and die if they reach that region. Small values
of the mask width or large values of the intermask distance result in
extinction. The extinction effect is worsened by an increase in the
intermask distance for small values of that distance, but the effect
saturates for larger values. Hence, the saturation in the curve.

All of these features can be tested experimentally in our pro-
posed setup. Quantitative comparison with the predictions of the
Fisher equation are possible because we have developed an exact
analytic theory of the interplay of the favorable and hostile dis-
tances as reflected in the transition. What makes the proposed

comparison with experiment significant is that, although the Fisher
equation, whose numerical solution has led us to set out the sep-
aration curve between the extinction region and the rest in Fig. 2,
cannot be solved exactly by analytic means, the separation curve
itself can be obtained analytically. Indeed, we show below that the
curve is given precisely by

L =
√

D
a

[
arctan

√
a1

a
+ arctan

[√
a1

a
tanh

(
d
√

a1

D

)]]
. [2]

This prediction, which is one of the central analytic results of this
article, coincides with the solid curve in Fig. 2.

Analytic Theory for the Twin Mask Setup
Following the ideas of Ludwig et al. (19), but applying them to the
many-mask system, we consider the steady state of the Fisher Eq. 1
and argue that, if there is a transition, the quadratic term in the
steady state u(x) can be neglected at the extinction point in favor
of the linear terms because u(x) itself vanishes at the transition.
We are thus led to seek the solutions of

d2u(x)
dx2 + α2u(x) = 0 [3]

under the two masks, and of

d2u(x)
dx2 − α2

1 u(x) = 0 [4]

outside the masks, with α2 = a/D and α2
1 = a1/D. We take the

masks to lie from x = ±d to x = ±(d + L). By using I and O as
constants, the most general functions for u(x) inside and outside
the mask, respectively, are, as a result of the symmetry (we con-
sider only the right side of the origin, because all considerations
repeat unchanged on the left side by symmetry)

u(x) = I cos(α|x| − φ) [5]

Fig. 2. Basis of the experimental proposal. Shown is the interdependence
of the critical values of the favorable and hostile lengths L and d, respectively.
The former is the width of the mask and the 2d is the distance between the
two masks (see Fig. 1), both lengths being expressed in this plot in units of the
diffusion length

√
D/a, where a is the growth rate under the masks. Outside

the masks a is replaced by −a1 to represent the harsh effect of the ultraviolet
light, the magnitude of a1 being taken, for the purposes of this plot, to be 9
times that of a. We solved Eq. 1 numerically for various different values of the
nonlinear parameter b and found that the results did not depend on those
values provided b was nonzero and positive. The shaded region represents
pairs of L and d values that lead to bacterial extinction in the steady state.
Filled circles mark the onset of extinction and are obtained from the numer-
ical solution. The solid line, constructed simply to smoothly join the circles, is
found to coincide precisely with the prediction of our analytic theory.
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Fig. 3. Our analytic predictions for the dependence of critical values of the favorable length L and the hostile length d, respectively, from Eq. 2. The lengths
are expressed as dimensionless ratios to the diffusion length

√
D/a. (A) Different curves correspond, as shown in the legend, to different values of ξ , i.e.,

to different intensities of the ultraviolet radiation. Note the doubling of L as d passes from 0 to ∞ in all curves. (B) The dependence of L on the ultraviolet
radiation intensity is shown for various values of d. All d values produce the same saturation values of L for infinitely harsh ultraviolet intensity except for
d = 0 for which the saturation value is one half that of the others. See text for explanation.

inside the mask, d < x < d + L,

u(x) = O exp(−α1|x|) [6]

in the extreme outside, in the harsh region, x > d + L, and

u(x) = C cosh(α1|x|) [7]

in the central region between the two masks, −d < x < d. Match-
ing the logarithmic derivative of the solution at the outer and the
inner boundaries leads to

tan[α(d + L) − φ] = α1/α

tan(αd − φ) = −(α1/α) tanh α1d,

and elimination of φ from these two equations leads to Eq. 2
quoted above. Notice how, in light of the behavior of the hyper-
bolic tangent, Eq. 2, one of our central results, reduces to Ludwig
et al.’s (19) single-mask value of L, when d attains infinite val-
ues, and half that value when d vanishes. Both are fully expected
and natural results. It is also instructive to rewrite the transition
relation as

L = arctan ξ + arctan(ξ tanh δξ) [8]

where we express the favorable distance L and hostile distance d
normalized to the growth diffusion length g = √

D/a as L = L/g
and δ = d/g, respectively, and the depletion parameter ξ is the
square root of the ratio of the destruction rate a1 and the growth
rate a.

We display in Fig. 3A our analytic result, Eq. 2, equivalently
Eq. 8. As in other plots the lengths are expressed as dimensionless
ratios to the diffusion length

√
D/a. Different curves correspond,

as shown in the legend, to different values of ξ , i.e., to different
intensities of the ultraviolet radiation. The curve for ξ = 3 from
our theory is shown as the solid line in Fig. 2 and displays exact
coincidence with the numerical findings. Note that the numerical
solutions are of the full nonlinear equation and have been found
for a specific b, whereas the analytic theory is linear and does not
require the use of a value of b, requiring for its application only
the condition b > 0.

It is clear from our Eq. 2 that the variation of the destructive
rate a1 may also be employed for useful experimental exploration,
at least in principle. Although this could have also been done in
the one-mask scenario of ref. 9, we explain the idea here in the
two-mask case. Additional confirmation of the theoretical picture
of the dynamics of the bacteria might be provided by observing
how the critical L–d values change with the intensity of the ultra-
violet light. Even if we do not know the precise dependence of
a1 on the intensity, we can be fairly certain that it increases with

the latter, and undergoes a saturation at high values of the inten-
sity. A variation of the critical value of L with the intensity would
therefore show qualitative behavior similar to the variation with
a1, equivalently with the ratio ξ = √

a1/a. The latter variation is
displayed in Fig. 3B. With one exception, all d values produce the
same saturation value of L for large ξ . The exception is d = 0: its
saturation value is one half that of the others. Mathematically, this
corresponds to the hyperbolic tangent becoming 1 for all nonzero
values of d for large enough ξ , but vanishing if d vanishes. Physi-
cally, this means that, if there is an adverse region between the
masks, bacteria will be killed on arriving there, in light of the
infinitely harsh radiation, reducing the problem to a single-mask
scenario with the given L as the mask width. However, if the inter-
mediate harsh region does not exist at all (because d = 0), one is
reduced to considering a single mask with width twice that of the
given mask.

Our suggestion, thus, is to use both the relative variation of
the favorable and hostile lengths, L and d, and of the intensity
of ultraviolet light in the manner discussed, to check our simple
quantitative predictions.

Multiple Mask Setup and Circular Petri Dish
It is possible and useful to construct setups with multiple masks
for further experimental verification. The theory for this situation
along the arguments of Ludwig et al. (19) that we have developed
here is slightly more tedious to write down. For ease in notation,
let us adopt as we did in Eq. 8, the symbols L and δ to express the
favorable and hostile lengths in units of

√
D/a. Then, the linear

Petri dish formula for an even number of masks is obtained by
executing the following pseudocode.

Let H be an operator defined by the successive operations of
(i) taking the hyperbolic tangent of what it acts on, (ii) multiply-
ing the result by ξ , (iii) taking the arctangent of the result, and
(iv) subtracting the result from L. Define the operator T similarly
through the successive operations of (i) taking the trigonometric
tangent of what it acts on, (ii) dividing the result by ξ , (iii) tak-
ing the hyperbolic arctangent of the result, and (iv) subtracting
the result from 2ξδ.To obtain the required formula for an even
number of masks, start with the product ξδ. Apply H and then
T alternately and successively so that there are as many Hs in
the operation as the number of mask pairs in the system, but one
more H than T . (Thus, do H for a pair of masks, HTH for 4 masks,
HTHTH for 6 masks, and so on.) Finally, equate the result to the
arctangent of ξ to get an implicit formula showing the L–δ relation.
The pseudocode can be expressed succinctly in terms of operators
T and H by stating that the general expression for 2n masks can
be formally written as [H ∏n−1

i=1 (TH)i](ξδ) = arctan ξ . As can be
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verified, this reproduces the 2-mask formula, Eq. 2. The 4-mask
formula is

L = arctan ξ + arctan(ξ tanh(2ξδ − arctanh((1/ξ)
tan(L − arctan(ξ tanh ξδ))))). [9]

Our suggested setup and calculations have taken the Petri dish
to have infinite extension away from the two masks, an assumption
that should be reasonable in light of the destructive effects of the
radiation. We have also analyzed another practical extension of
the theory. Consider the 2-mask situation in a circular Petri dish,
i.e., one in which the boundary conditions are periodic, the hostile
distance between the edges of the masks being 2d on one side as
in the earlier analysis, but now also 2R on the other side. Let the
width of the dish be small enough so that bacterial diffusion can
be considered to still be 1-dimensional but over a total distance of
extent 2(L+d +R). We are not interested, here, in 2-dimensional
considerations appropriate to wide dishes, an example of which
may be found in ref. 20 for experiments with moving masks or
rotating dishes.

It is now possible to arrive at

L =
√

D
a

(
arctan

(√
a1

a
tanh

(
R

√
a1

D

))
+

+ arctan
(√

a1

a
tanh

(
d
√

a1

D

)))
[10]

for the 2-mask case, at

L = 2
√

D
a

arctan
(√

a1

a
tanh(α1R)

)
[11]

for the single-mask case as a generalization of the Ludwig formula
for the circular dish, and, with R = R

√
a/D, at

L = arctan(ξ tanh ξR) + arctan(ξ tanh(2ξδ − arctanh
((1/ξ) tan(L − arctan(ξ tanh ξδ))))) [12]

for the combination of the multiple-mask setup (here, a 4-mask
example) in a circular Petri dish. Further details, including the
manner of derivation and a pictorial representation, may be found
in supporting information (SI) Appendix.

Chemotaxis Effects
In his verification of the theoretical predictions (8) of bacterial
extinction, Perry (9) has stated that he performed his experiments
by using the strain RP9535 of E. coli bacteria because, in contrast
to the strain RW120 used by Lin et al. (4, 5), RP9535 does not
exhibit chemotaxis effects. The analysis we have presented above
applies, in the form given, to the RP9535 strain and all other strains
in which chemotaxis is absent or negligible. It is interesting to ask
what modifications would be required if chemotaxis is at work. We
address this question very briefly here.

Chemotaxis involves repulsion or attraction of the bacteria rel-
ative to another entity such as nutrients or waste. A typical theo-
retical construct (21–24) for its description involves the coupled
equations

∂u
∂t

= D
∂2u
∂x2 + A

∂

∂x

(
u

∂c
∂x

)
+ au − bu2,

∂c
∂t

= Dc
∂2c
∂x2 + hu − kc, [13]

that govern c(x, t), the density of wastes or nutrients, in addition
to the bacterial density u(x, t). In keeping with the experimental
setup that we have proposed, we consider here waste produced
by the bacteria as the additional entity in the chemotactic interac-
tion. The bacteria will be now assumed to perform a random walk
(move diffusively) but in a manner biased away from the waste

Fig. 4. Chemotaxis effects on the steady-state density profile showing
enhanced depletion within the mask. Plotted is the bacterial density u(x)
at steady state, in units of a/b, as a function of the distance x expressed in
units of the critical length L. Solid vertical lines mark that L; dash-dotted lines
mark the (larger than critical) width of the mask for which the plots are con-
structed. Several values of the chemotactic interaction parameter η = αa/Db
are considered. The larger the η, the greater the depletion.

that they produce at their own location at rate h. The waste itself
might diffuse with diffusion constant Dc, and be removed out of
the region at rate k. It is easy to show (23) that, if waste diffusion
is important to consider and the decay rate k is negligible, one
obtains a Burger’s equation (augmented by the reaction diffusion
terms in the u equation above). The situation in the experiments
(4, 5, 9) considered here appears to be the opposite. The waste
is known (11) to drop down from the surface where the bacte-
rial diffusion occurs and then disappear from the region under
description. Thus, it seems appropriate to consider Dc = 0. If the
removal of the waste matter happens faster than the dynamics of
the bacteria, we may use a timescale disparity argument to derive
a single closed equation for the bacterial density,

∂u
∂t

= ∂

∂x

[
(D + αu)

∂u
∂x

]
+ au − bu2. [14]

Chemotaxis, whose strength is controlled by α = Ah/k, simply
modifies the Fisher equation by making the diffusion coefficient
dependent on the bacterial density u. Eq. 14 clearly shows that its
effects will depend on the size of αu/D.

We have carried out a number of numerical investigations based
on Eq. 14 and on Eq. 13, as well, and briefly report our findings.
First, as shown in Fig. 4, chemotaxis results in a higher effective
diffusion constant and, consequently, enhanced depletion of the
bacteria within the mask as they move faster into the lethal region.
And second, the chemotactic effect completely disappears in the
context of the critical length: the type of chemoaxis we have con-
sidered here has no consequence on the analysis of the main body
of the article. This is displayed in Fig. 5, specifically in B.

It is easy to understand both results from an inspection of Eq.
14. The consequence of chemotaxis is only to augment the diffu-
sion coefficient of the bacteria by the factor (1 + αu/D), because
they are repelled from where they have been. The bacteria under
the mask are depleted faster as one increases α, equivalently the
dimensionless chemotaxis parameter η = αa/bD. This can be
seen in Fig. 4. It can also be noted in the decrease in the steady-
state value observed for supercritical masks in Fig. 5. This explains
the first effect. Near the critical region, i.e., near extinction, u is
negligible and therefore the chemotactic addition to the diffusion
constant has no effect. If the mask width is larger than the critical
value L, the extent of the chemotaxis effect can be seen in the
value to which the maximum density in the mask settles at long
times—the larger the η, the bigger the decrease. But even making
the mask width slightly smaller than the value that is critical in the
absence of chemotaxis, we ascertain from the plots (Fig. 5B) that
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Fig. 5. Absence of chemotaxis effect on the critical length. Plotted is the maximum value umax of the bacterial density within the mask, expressed in units of
a/b, as a function of time in units of L2/D for three values of η = αa/Db = 0, 1, 10 as shown. For each of the 6 curves shown, umax starts out with the value
a/b. That initial portion of the evolution, for tD/L2 < 4.8, is not shown. (A) For the supercritical case (mask length slightly larger than the critical length L),
the density tends to a nonzero value, which is larger, the smaller the chemotactic parameter. (B) For the subcritical case (mask length slightly smaller than the
critical length L), all curves show total depletion. No change thus occurs in the critical length L as a consequence of chemotaxis.

chemotaxis has no effect whatsoever on the critical value. This
explains the second effect.

We followed the full simulation procedure used to produce Fig.
2 from Eq. 1, but now from Eq. 14 in the presence of chemotaxis.
We employed a semi-implicit scheme, where necessary, to avoid
instabilities. Within numerical uncertainties, we found precisely
the same curve as in Fig. 2. We also carried out our numerical inves-
tigations of extinction with the coupled Eq. 13 to check whether
the timescale argument is critical and find that it is not so. These
studies confirm our results that chemotaxis affects diffusion but
not the critical mask width. Effects of chemotaxis of other kinds on
bacterial evolution is a vast subject to which we cannot do justice
in this brief analysis. The absence of a chemotaxis effect on the
determination of the critical value L that we have shown should
be of interest to investigate.

Concluding Remarks
The proposal for experimental observations of abrupt population
transitions in patches that we have presented should be of inter-
est for multiple reasons. Patches or spatial inhomogeneities were
studied and emphasized early on in ecology by many authors such
as Murray (22), Levin (25), and Shigesada and colleagues (26–28)
in varied contexts, including traveling waves, and there have been
recent contributions as well on the Dirichlet conditions problem
for general nonlinearity incorporating Allee effects (29).

Our analysis here provides a clean proposal for experiments
that derives its potential for clear interpretation from the use of 2
(or more) controllable distances of travel, one favorable and the
other unfavorable. One should be able to use it for extraction of
parameter combinations in the Fisher equation, which has been
ubiquitous in mathematical ecology. The idea behind the present
proposal should therefore find use in systems other than bacter-
ial aggregates. Indeed, we have found similar abrupt transitions
in infected rodent populations in our study of the Hantavirus epi-
demic. The theory for that system is, however, more complex, and
cannot be developed without approximation. By contrast, the the-
ory we have presented here is, perhaps surprisingly, exact, that is,
analytical. This is so despite the fact that analytic solutions of the

Fisher equation for these situations do not seem to be possible
except as elliptic quadratures. The reason for this happy state of
affairs can be understood from the original arguments of Ludwig
et al. (19), given in their article on spatial patterning of the bud-
worm, or from the lucid explanations given, e.g., in a recent text on
mathematical ecology (18). At the transition, the densities vanish
and, therefore, terms of order higher than the first may be safely
neglected. Our theoretical contribution is only in generalizing that
analysis to multiple masks and nonlinear geometries as shown. The
observable, controllable features our proposal emphasizes, and
directly utilizes, are (i) the interplay of the favorable and adverse
lengths for bacterial traversal; (ii) the variation of the intensity of
ultraviolet radiation that changes the interrelationship of the criti-
cal values; (iii) the multiple-mask setup that reintroduces bacteria
into favorable regions after they have passed into arid areas; and
(iv) the optional use of circular geometry for the Petri dish, which
provides one more controllable length.

We have also seen that our results are robust in that they remain
unmodified in the presence of at least one type of chemotaxis we
have analyzed—involving repulsive interactions of waste mater-
ial. Our analysis may be extended to other forms of chemotaxis
effects, in investigating fluctuation effects (30) that appear from
detailed Monte Carlo considerations and become manifest for
small population densities, in constructing the theory for transi-
tions in partially infected populations of rodents in open terrains,
in analyzing the effects of static disorder in the placement and
size of the masks, and in studying the effects of dynamic (time)
variation of mask size and placement as in ref. 12. The bacterial
experiments proposed above are, however, ready to go and we
hope that observations will be made soon along the lines we have
discussed.
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The detail of how to obtain the L-formulae in the main
paper for the circular Petri dish and the multiple-mask
set-up is as follows.

We now have, as in the analysis in the main paper,
u(x) = I cos(α|x| − φ) inside the right mask, i.e., for
d < x < d + L, but to the right of the right mask, i.e.,
for x > d+L, u(x) is not proportional to exp(−α1|x|) as
in the earlier analysis, but

u(x) = O cosh(α1|x|− ζ). (1)

This expression, which, in the right region under con-
sideration, where x > 0, can be written as u(x) =
O cosh(α1x− ζ), will hold on the left extreme as well but
there it simplifies to u(x) = O cosh(α1x + ζ). The addi-
tional phase ζ is immediately determined from the peri-
odicity in the boundary conditions, i.e., by matching the
logarithmic derivative of the solution at |x| = d + L + R:

η = α1(d + L + R). (2)

Matching also at x = ±d and x = ±(d+L), one arrives at
the new formula for critical L and d, valid for a circular

Petri dish:
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)

)

)
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We see that the circular dish result, Eq. (3) here, and
Eq. (10) in the main paper, is symmetric in the two
hostile lengths R and d as it obviously must be, that it
reduces to the result for the linear dish of infinite extent,
when R becomes infinite since then the new hyperbolic
tangent in Eq. (3) reduces to 1, and that, when R van-
ishes (equivalently when d vanishes), it yields a new ex-
pression for the critical width for the single-mask case
but with twice the width value. If there were simply a
single mask in a circular Petri dish of extent R and no
d, the generalization of the Ludwig formula that would
come out of our analysis would be

L = 2

√

D

a
arctan

(
√

a1

a
tanh(α1R)

)

. (4)

Most importantly, we see that it should be possible in
principle to use the new analytic result(s) for experimen-

2d
L

2R

FIG. 1: The proposed set-up in a circular geometry shown
here with a multiple mask set-up with 3 experimentally con-
trollable parameters: R as well as L and d.

tal probing of the phenomenon under consideration since
one could construct and employ circular Petri dishes of
desirable radius. Needless to say, the added effects dis-
cussed here would not be discernible for R values that
are very large as then bacteria would die in the external
regions quickly enough.

We have also derived the corresponding expressions
combining circular dish geometry with the multiple mask
set-ups. It is straight forward to put the two arguments
together. Then, the 4-mask formula takes the form, R
being R measured in units of

√

D/a,

L = arctan
(

ξ tanh ξR
)

+ arctan

(

ξ tanh
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2ξδ − arctanh
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)

)

)

. (5)

whose reduction to the linear dish formula is obvious as
R becomes infinite. We have verified all these expressions
that we have derived, by comparing their predictions to
numerical solutions of the Fisher equation with explicit
(arbitrary) non-zero b’s.


