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Abstract. An atomic cluster moving along a solid surface can undergo dissipation of its translational en-
ergy through a direct mode, involving the coupling of the center-of-mass motion to thermal excitations of
the substrate, and an indirect mode, due to damping of the internal motion of the cluster, to which the
center-of-mass motion can be coupled as a result of surface potential. Focussing only on the less well under-
stood indirect mode, on the basis of numerical solutions, we present, departures from a recently reported
simple relationship between the force and velocity of nonlinear friction. A generalization of the analytic
considerations that earlier led to that relationship is carried out and shown to explain the departures satis-
factorily. Our generalization treats for the system considered (dimer sliding over a periodic substrate) the
complete dependence on several of the key parameters, specifically internal dissipation, natural frequency,
substrate corrugation, and length ratio. Further predictions from our generalizations are found to agree
with new simulations. The system analyzed is relevant to nanostructures moving over crystal surfaces.

PACS. 81.40.Pq Friction, lubrication, and wear – 46.55.+d Tribology and mechanical contacts

1 Introduction

The friction experienced by atoms, small molecules and
adlayers moving on substrates is an active topic of cur-
rent research [1–7,16] because of its relevance to the fun-
damental understanding of a variety of processes such as
those involved in atomic force microscopy [8,9]. Taking
the natural point of view that a thorough understanding
of the motion of idealized atomic structures over ideal-
ized substrates should precede the study of the motion of
realistic atomic entities over realistic surfaces, several in-
vestigators have explored the motion of dimers (two-atom
systems) moving over a fixed surface represented by a sinu-
soidal [10–15] potential. It is perhaps surprising but true
that, in spite of the fact that a number of thorough stud-
ies of more realistic (e.g., extended) systems have already
appeared in the literature, interesting results continue to
be found in the simple dimer system. If a dimer charac-
terized by the mass m of each atom connected by a spring
of spring constant mω2

0 is thrown with an initial center
of mass velocity v0 over a 1-dimensional substrate repre-
sented by a sinusoidal potential of amplitude u0 and wave-
length b, one of these recent numerical investigations [10]
showed that, if the only damping in the system acts on
the internal coordinate of the dimer, the center of mass
motion of the dimer is effectively damped in a remarkable
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fashion represented by a nonlinear friction relation. That
relation states that the effective friction force experienced
by the dimer center of mass motion is inversely propor-
tional to the cube of the center of mass velocity. The pur-
pose of the present paper is to investigate the range of
validity of that friction relation. We carry out numerical
simulations that go beyond the limiting set of conditions
explored in reference [10], show that clear departures are
obtained in the behavior of the dimer including in the de-
pendence of its stopping time on various system parame-
ters, and provide a satisfactory theoretical explanation for
our findings.

The paper is set out as follows. We first investigate nu-
merically the departures from the simple nonlinear friction
relation of reference [10] with change in system parame-
ters (Sect. 2) and then give a simple explanation in terms
of an extended nonlinear friction relation to support our
numerical findings (Sect. 3). In Section 4 we make predic-
tions on the basis of our analysis and find that they are
verified by new numerical solutions. Concluding remarks
are presented in Section 5.

2 Departures from the 1/v3 friction relation

The equations of motion governing the system under
study, a dimer moving on a 1-dimensional periodic
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substrate, are

mẍ1 = k(x2 − x1 − a) +
(

2πu0
b

)
sin

(
2πx1

b

)

−mγ
2 (ẋ1 − ẋ2)

mẍ2 = −k(x2 − x1 − a) +
(

2πu0
b

)
sin

(
2πx2

b

)

−mγ
2 (ẋ2 − ẋ1) (1)

where x1,2 are the coordinates of the two dimer particles
of equal mass m, overdots denote time derivatives, γ is the
damping coefficient and k, a, b, u0 are, respectively, the
spring constant, equilibrium length of the dimer, wave-
length of the substrate potential and half the amplitude
of the potential. Note that the damping of each mass is
proportional not to its absolute velocity but to the veloc-
ity relative to the other mass. This means that damping
acts only on the internal coordinate. Such a situation rep-
resents dissipation of energy through channels internal to
the moving structure. We consider the system at temper-
atures low enough that random (Brownian motion) terms
need not be added in equation (1). This we do for simplic-
ity as in reference [10]. It has been pointed out in various
papers such as reference [11] how the Brownian terms may
be incorporated.

The authors of reference [10] have shown, through
simulations and analytic indications starting from equa-
tion (1), that the dimer dynamics can result in the re-
markably simple nonlinear friction relation:

dv

dt
= −γ

2

(u0

m

)2

sin2
(πa

b

) 1
v3

· (2)

Equation (2) predicts that the stopping time (defined as
the time at which the velocity of the center of mass drops
to zero) would be given as:

ts =
v4
0

2γ
(

u0
m

)2 sin2
(

πa
b

) · (3)

This means that the stopping time for the center of mass
motion should vary inversely as the coefficient γ which
controls the damping in the internal coordinate of the
dimer.

The first of the departures from the friction relation
given by equation (2) that we report in the present pa-
per is the violation of the monotonic γ-dependence of the
stopping time. We plot in Figure 1 the variation, with
change in the damping coefficient γ, of the stopping time
obtained by solving numerically equation (1). The plot
clearly shows that departure. The solution we obtain (solid
curve) coincides with the prediction of equations (2, 3) ini-
tially, showing a decrease in tstop with increasing γ. How-
ever, further increase in γ results in an increase in tstop, in
contrast to the predictions of equations (2, 3). In examin-
ing the dependence of tstop on γ, we have found a striking
linear relationship between γ2 and the relative difference
between tstop and the stopping time ts predicted by the
1/v3 relation set out in reference [10]. We exhibit this lin-
ear relationship in Figure 2.

The second departure from predictions of the relation
in equations (2, 3) that we found involves the frequency-
dependence of the stopping time. While equation (2) is
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Fig. 1. Departure from the friction relation of reference [10]:
comparison between the non-monotonic stopping time tstop ob-
tained from numerical simulations (solid line) with the mono-
tonic prediction (see Eq. (3)) of the 1/v3 relation (dashed line)
of reference [10] for different values γ of damping. Damping is

expressed in units of (1/b)
√

u0/m and stopping time is in units

of b
√

m/u0. Initial velocity v0 is 5
√

u0/m. Other parameters
are a/b = 0.5 and kb2/u0 = 0.02.
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Fig. 2. Linear relationship between γ2 and the relative dif-
ference between the stopping time and the prediction of the
friction relation in reference [10]. The circles represents the
numerical solution while the solid line is an (excellent) linear
fit. Other parameters are as in Figure 1.

independent of the natural frequency ω0 =
√

2k/m of the
dimer, our numerical solutions show that tstop does exhibit
a dependence on ω0, showing a minimum and increase on
either side of the minimum. We display this behavior in
Figure 3, where we plot tstop normalized to its limit t0 as
ω0 → 0. The marked oscillatory behavior to the left of the
minimum in Figure 3 is representative of the resonance as
will be clear from Figure 4 below. The rest of the jagged
nature of the curve in Figure 3 has no physical significance
and arises from numerical sources.
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Fig. 3. Departure from the friction relation of reference [10] as
seen in the dependence of the stopping time on the dimer nat-
ural frequency ω0. Shown is the stopping time (normalized to
its value t0 for ω0 → 0, see text) from our numerical solutions
(solid line) and from the prediction of equations (2, 3) (dashed
line), i.e., of the earlier analysis reference [10]. Frequency is

expressed in units of (1/b)
√

u0/m and γb
√

(m/u0) = 1. Other
parameters are as in Figures 1, 2.

3 Analytic studies from an extended version
of the friction relation

In order to understand the source of the departures from
the 1/v3 relation reported in Section 2, we examine the
equations of motion (1) by following the procedure set
out in reference [10]. By defining a scaled and translated
coordinate ξ, through

ξ =
(x2 − x1)

a
− 1, (4)

we obtain the equation of motion given in reference [10],

d2ξ

dt2
+ γ

dξ

dt
+ ω2

0ξ =
4πu0

amb
sin

{πa

b
(1 + ξ)

}
cos(ζ), (5)

where ζ, the scaled center of mass coordinate

ζ =
π(x1 + x2)

b
, (6)

obeys

d2ζ

dt2
=

[(
2π

b

)2 (u0

m

)
]

cos
{πa

b
(1 + ξ)

}
sin(ζ)· (7)

It was argued in reference [10] that, although equation (7)
predicts an involved dependence of ζ on ξ and, therefore,
eventually on t, the simple linear approximation ζ(t)≈ωat
where ωa = 2πv(t)/b is the so called “washboard” fre-
quency, v(t) being the velocity of the center of mass, leads,
for small ξ (ξ � 1), to

d2ξ

dt2
+ γ

dξ

dt
+ ω2

0ξ =
4πu0

amb
sin

(πa

b

)
cos (ωat) · (8)

With equation (8) as the starting point, approximating
the assumed weakly t-dependent ωa to be a constant, one
can solve for the internal coordinate

ξ(t) =
4πu0

amb
sin

(πa

b

) 1
√

(ω2
0 − ω2

a)2 + ω2
aγ2

cos(ωat − δ)

(9)
where δ is the phase angle given by tan(δ) = γωa/(ω2

0 −
ω2

a). The authors of reference [10] derived the nonlinear
friction law by using a power balance condition. To be able
to address the departures reported by us in Figures 1–3
above, we introduce an important modification in that
argument. Instead of neglecting ω0 and γ terms in

dv
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2
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)2
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) v
[
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]2

+
(
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,

(10)
we elect to use equation (10) as our generalized friction
relation. Clearly, under the approximation that the wash-
board frequency ωa is much larger than both the natu-
ral frequency ω0 and damping γ, one gets the 1/v3 rela-
tion of reference [10]. Instead of simplifying equation (10)
for v� bω0/2π and v� bγ/2π, we solve equation (10) ex-
actly:
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(11)

where, η = γ
2

(
u0
m

)2 sin2
(

πa
b

)
. The definition of the fre-

quency ω = 2πv0/b, which is the initial value of ωa, and
corresponds to the initial center of mass velocity of the
dimer, allows us to rewrite our solution (11) as

t
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=

[
1 −

(
v
v0

)4
]

+ 4
(

γ2

2ω2 − ω2
0

ω2

) [
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(
v
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]

−4
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ω0
ω

)4 ln
(

v
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)
(12)

where ts = v4
0

4η . Equation (12) is one of the principal ana-
lytic results of the present paper.

3.1 Analysis of the γ dependence of the stopping time
for small internal frequency ( ω0 � ω)

The idea of putting v = 0 in equation (12), and calculating
the corresponding stopping time tstop, naturally suggests
itself. However, it is not valid in general: the existence of
the logarithmic term ensures that the velocity has a long-
time tail which means that the stopping time is, strictly,
always infinite. On the other hand, the simulations do
show a stopping time within which the dimer falls into one
of the substrate wells, and then rattles back and forth. A
good estimate of tstop can be obtained from equation (12)
for values of ω0/ω sufficiently small that the logarithmic
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term can be neglected. Then, if the internal vibration fre-
quency is small enough (ω0 � ω), but if specifically we
allow the damping γ to be unrestricted, we obtain

t

ts
=

[

1 −
(

v

v0

)4
]

+
2γ2

ω2

[

1 −
(

v

v0

)2
]

· (13)

Putting v = 0 in equation (13), we get the stopping time

tstop = ts

[
1 + 2

(γ

ω

)2
]
· (14)

Equation (14), another of the new results of the present
analysis, displays the stopping time tstop as the product of
two factors. The first factor is the stopping time ts = v4

0
4η

given by the 1/v3 relation of reference [10]. The second
factor is the correction provided by our present analysis:
1 +2(γ/ω)2. If damping is relatively small, which was the
case treated earlier, (γ/ω)2 may be neglected and there is
negligible correction. If, however, damping is substantial,
tstop as given by equation (14) can increase with γ. Indeed,
(14) leads to

tstop

ts
− 1 =

2γ2

ω2
. (15)

Our analytic result (15) provides the highly accurate fit
to the simulations displayed in Figure 2.

3.2 Analysis of the ω0 dependence of the stopping
time for small damping (γ � ω)

If, in equation (12), we make the approximation that the
damping in internal coordinate is small (γ � ω), but allow
the frequency ω0 to be unrestricted, we obtain

t

ts
=

[
1 −

(
v
v0

)4
]
− (

2ω0
ω

)2
[
1 −

(
v
v0

)2
]

−4
(

ω0
ω

)4 ln
(

v
v0

)
· (16)

Unlike in equation (14) we cannot obtain tstop in this case
by putting v = 0 in equation (16), because, as explained
above, the stopping time is always infinite. To get an esti-
mate of tstop from (16), we put v/v0 equal to a sufficiently
small non-zero value c and solve (16) numerically. We call
the stopping time thus obtained t′stop rather than tstop

(because c �= 0, although small) and display its depen-
dence on the oscillator frequency in Figure 4. The value
of c we have taken is obtained by equating the center of
mass kinetic energy to the substrate potential energy.

The significant feature in the above case is the develop-
ment of long tails of v(t) that arise from the logarithmic
term in the right hand side of (16). In the low-velocity
limit (v � bω0/2π) the denominator of the right hand
side of equation (10) becomes independent of v and we
recover the linear friction relation.

dv

dt
= −γ

2

(
u0

mv2
s

)2

sin2
(πa

b

)
v, (17)
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Fig. 4. Dependence of the apparent stopping time t′stop on
the oscillator frequency ω0 showing close agreement between
the numerical (solid line) and analytic expression given by
equation (16) (dashed line) as explained, for different values
of the natural frequency of the oscillator. The ratio c (see
text) is taken to be

√
2/5. Frequency is expressed in units of√

(u0/m)/b and γb
√

(m/u0) = 1. Other parameters are the
same as in Figure 1. Inset shows the comparison for a smaller
value of c = 0.02 which shows poor agreement of simulation
and theory.

where, vs = bω0
2π is the sliding velocity corresponding to

the natural frequency of the oscillator. By fixing v/v0 = c
and putting dt/dω0 = 0 in our analytic equation (16), we
can obtain a reasonable value of ω0 at which the minimum
of tstop occurs in Figure 4: ω[(c2 − 1)/2 ln c]−1/2.

This manner of getting stopping time would be com-
pletely useless if the results we obtain were strongly de-
pendent on the chosen value of c. We have carried out
numerous calculations for different c′s and found that for
c ≥ 0.2 we get fine agreement between simulation and
analytic prediction. For smaller values, we still find qual-
itative agreement (e.g. in the existence and approximate
location of the minimum) which becomes worse as c is
made smaller (see inset of Fig. 4). The oscillations seen
to the left of the minimum occur when the driving fre-
quency is close to resonance. This is obviously not present
in our simple analytic results. The resonance is between
the natural frequency of the dimer ω0 and the washboard
frequency ωa = 2πv/b (see Eq. (9)).

4 Comparison of the predictions of the
generalized friction relation with simulations

Given the satisfactory agreement of the analytic expres-
sion, equation (12), for the stopping time derived here,
we present Figures 5, 6, where we compare the center of
mass velocity according to our analytic expression (12)
with numerical simulations. In Figure 5 we have kept the
damping coefficient γ unchanged and have varied the nat-
ural frequency of the dimer to produce curves a, b, c from
our analytic prediction for three different values of ω0 as
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Fig. 5. Comparison between our present analytic prediction
from the generalized friction relation (dashed lines) and nu-
merical simulations (solid lines with oscillations) for the center

of mass velocity v(t). Initial velocity v0 is 5
√

u0/m. Other pa-

rameters are a/b = 0.5 and γb
√

m/u0 = 1. The different val-
ues of frequency ω0 are 3.16, 10 and 14.14 expressed in units of√

(u0/m)/b. They correspond to the spring constant k being
in the ratio 1:10:20 respectively. The lines a′, b′ and c′ are the
predictions of the 1/v3 friction relation of reference [10] and
coincide with one another because of the lack of appearance of
the natural frequency in that relation. Velocity is expressed in
units of

√
u0/m and time is in units of b

√
m/u0. Inset shows

the resonance structure that is visible in the main figure around
t = 140.

shown. Our predicted curves sit right onto the simulation
results until the latter break into oscillations which our
analytic predictions cannot describe. Clearly, our present
analysis does considerably better “vis-a-vis” the simula-
tions than the 1/v3 relation which, being insensitive to ω0,
produces the single curve denoted a′, b′, c′ in Figure 5.
The other feature our present simulations show is the reso-
nance phenomenon when the washboard frequency equals
the natural frequency. It is responsible for the structure
seen in Figure 5 around t = 140 (magnified in the inset)
and is the same as the one that produces the structure to
the left of the minimum in Figure 4.

In Figure 6 we have left ω0 constant and varied the
damping. Once again our analytic predictions, curves a,
b, c (for γ = 5, 50, 100 respectively in units

√
(u0/m)/b)

do very well with respect to the simulations. Not only
do they sit on top of the simulation curves (except for
the oscillations) while curves a′, b′, c′ obtained from the
1/v3 relation do not, but they also exhibit non-monotonic
behavior as γ is varied: curve b is to the left of a but
curve c is to the right of b. By contrast, curves a′, b′, c′
exhibit a monotonic tendency in that they move leftward
in the a′-b′-c′ progression.

5 Concluding remarks

The simple system of a dimer sliding on a periodic sub-
strate offers a testing ground for theoretical approaches
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Fig. 6. Comparison between our present analytic prediction
from the generalized friction relation (dashed lines) and nu-
merical simulations (solid lines with oscillations) for the center

of mass velocity v(t) vs. time t. Initial velocity v0 is 5
√

u0/m.
Other parameters are a/b = 0.5 and kb2/u0 = 0.02. The dif-

ferent values of damping γ expressed in units of
√

(u0/m)/b
are 5, 50 and 100. The dotted lines a′, b′ and c′ show the pre-
dictions of the 1/v3 friction relation. Velocity is expressed in

units of
√

u0/m and time is in units of b
√

m/u0.

aimed at understanding the nature of atomic friction on
material substrates. In examining a recently reported non-
linear friction relation [10], we have found, via, our sim-
ulations, departures from the prediction of that relation.
The departures are interesting, are displayed in Figures 1–
3, and can be explained theoretically, as we have shown.
Predictions made on the basis of our analysis are borne out
excellently by simulations as shown in Figures 5, 6. Our
new analytic results are equation (12) for the stopping
time of the dimer when thrown over the substrate with an
initial velocity, its approximate forms equations (13, 16),
and derived expressions such as equations (14, 15). All
these results stem from the generalization, equation (12),
of the friction relation of reference [10].

Much of the behavior seen in the evolution of the cen-
ter of mass velocity can be understood physically from
the concept of resonance. The bell shape of the resonance
given by equation (10) is controlled by damping and the
natural frequency of the dimer. Maximum energy is lost
in the vibrational motion at and close to resonance. At
small values of damping the maximum value of the bell
shape is large but the width is narrow so the internal mode
does not lose much energy and hence the stopping time
is large. Increasing the value of damping brings down the
resonance peak but at the same time increases the width
of the bell shape. Thus the dimer loses more energy as it
spends more time in the resonance region. Large values of
damping destroys the width of the resonance curve and
again the internal mode is not able to lose much energy;
hence the increase in stopping time. The natural frequency
determines the position of the peak. Initially, the driv-
ing frequency is far away from resonance and not much
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energy is being transferred to the internal coordinate. As
the center of mass velocity drops down to close to res-
onance, the transfer of energy reaches a local maximum.
However, because the damping is not large the energy can-
not be dissipated away immediately and hence is trans-
ferred back into translational motion. This back and forth
transfer of energy between translational and vibrational
motion leads to strong aperiodic oscillations at velocities
close to resonance. The nonlinear friction relation given
by equation (10) is not able to capture these oscillations.
The coupling drives the dimer out of resonance window to
where the driving frequency becomes much smaller than
the resonant frequency and hence the velocity decays ex-
ponentially with time (see Eq. (17)) and the oscillations
become periodic. This strong oscillatory behavior can be
washed out by increasing the damping of the system due
to reasons already mentioned before. Increase in the value
of natural frequency shifts the resonance peak to larger
values and thus the dimer goes into resonance region at
larger driving frequencies.

Our aim in the present paper has been to address some
features of atomistic friction. Except for the simplification
that the model is confined to a single spatial dimension,
it has the necessary ingredients to represent a real dimer
or molecule in a controlled microscopic sliding experiment
(e.g. [14]) at low temperatures, to the extent that exter-
nal damping may be considered negligible. Dissipation of
translational energy of an object along a surface can oc-
cur in two ways, directly and indirectly. Indeed, there has
been an ongoing debate in the literature about the rela-
tive importance of the source of sliding friction: whether
it is electronic or phononic. As explained in detail in the
conclusion section of a recent paper by some of the present
authors [11] it might make sense to identify background
linear friction with electronic, and resonance friction with
phononic, sources. For sufficiently large corrugations of
the substrate, the latter (the only channel considered in
the present paper) can dominate in principle. Neverthe-
less if the modulation ratio a/b is small, the channel we
have considered can be unimportant by comparison, and
adlayer velocities relative to the substrate might need to
be as high as 30–300 m/s for the resonance friction to be

appreciable. Experiments reported so far do not involve
such high velocities. Our study has not addressed past ob-
servations but targets realizable future scenarios. We hope
that in the light of the clear analysis presented in this pa-
per and elsewhere [10], the focus on the resonance friction
channel used above will be of help in future observations
where that channel may not be overlooked.

It is a pleasure to thank Birk Reichenbach for numerous dis-
cussions. This work was supported in part by the NSF under
grant INT-0336343.
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11. S. Gonçalves, C. Fusco, A.R. Bishop, V.M. Kenkre, Phys.

Rev. B 72, 195418 (2005)
12. C. Fusco, A. Fasolino, T. Janssen, Eur. Phys J. B 31, 95

(2003)
13. C. Fusco, A. Fasolino, Thin Solid Films 428, 34 (2003)
14. A.H. Romero, A.M. Lacasta, J.M. Sancho, Phys. Rev. E

69, 051105 (2004)
15. O.M. Braun, Phys. Rev. E 63, 011102 (2001)
16. S.Yu. Krylov, K.B. Jinesh, H. Valk, M. Dienwiebel,

J.W.M. Frenken, Phys. Rev. E 71, 065101(R) (2005)


	Introduction
	Departures from the 1/v3 friction relation
	Analytic studies from an extended version of the friction relation
	Comparison of the predictions of the generalized friction relation with simulations
	Concluding remarks
	References

