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Through an exact calculation of the memory function in the generalized master equation (GME) which corresponds to
a Form of the stochastic Liouville equation (SLE) used in exciton transport, a relation is established between the GME and
the SLE, which is usetul in trunslating the parameters of one theory into the viher, and which is valid 1or extended systems

such as molecular erystals.

The coupled coherent and incoherent motion of
excitons in molecular apggregates has been analysed in
recent times in terms of stochastic Liouville equations
(SLE) [1.2] on the one hand and gencralized master
equations (GME) [3] on the other. The relations that
these two transport descriptions bear to each other
are of vbvious general interest whether or not one
deals with excitons. These relations have been inves-
tigated from a formal view point [4] as well as in the
vontext of the connection of spectral features to
transport details {5). The formal equivalence is useful
in understanding the paraneters of one kind of theory
in terms of those ol the other. However, as obtained
catlier,[4], it is valid only for motion vn two sites,
L¢., for a molecule pair. In this letter it is generalized
to an extended system such as a crystal increasing
thereby its usefulness in the context of real systems
of experimental interest. 7

As in rell [4] the connection between the two
transport equations is found by expressing the SLE
as a GME and culculating exactly the memory ap-
pearing in the latter. However the present calculation
performs this operation systematically with the help
of projection techniques. The SLIL may be wiitten as:
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where m, n, etc. denote sites in the molecular aggregate,
p is the density matrix, S, and S 4 represent respectively
the coherent and incoherent parts of the evolution and
S, represents the well-known destruction of off-dia-
gonal elements of the density matrix. Note that this
form of the SLE is identical to that of llemenger et

al. {0] and is an approximation to the equation in

refs. {1,2], the approximation consisting in dropping
ap,,, term from the evolution of p,,,,. The application
of the Zwanzig diagonulizing projection operator to
eq. (1) gives ' :
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under the initial diggonality condition |7]. The problem

of establishing the equivilence is thos the problem of
cvaluating the expressions m eq. (5). s casily shown
with the help of eqs. (2) (1) that '
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The demonstration uses the following facts: (i) S 4
drops out of the second term in eq. (5): (i) S 4 is the
sole surviving term in the first term in eq. (5). (iii)
(- ?).8'7 “commytes” with (1 —P)S; in the sccond
term'in eq. (S) and exp [~ir"(0 = P)S, } can be taken
out as a multiplicative factor e~ 7. Egs. (6) and (7)
mean that the SLE (1), or its more familiar form
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is equivalent to the GME
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where P, = p,,.,,, (1) is the probability that the site m
is occupied and where the memory functions W ()
are given by

(wmn(') = Amn&(’) + c—‘Twa:Z""(,) * (IO)

Here WE, (1) is the memory function relevant to the
pure (4 =y = 0) crystal and has been-calculated earlier
[8.9]. Thus, for a finite (onc-dimensional) crystal of
N sites the Laplace transform of W, (1) is given i8]
by 3

W fnn(e) =— ? e—ik(m-n)
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where Jk = %, J, ¢ik™_In terms of the reduction of
eq. (11)in the case of an infinite crystal with nearest -
neighbour J,,,,,'s, which has been obtained recently %

[9], eq. (10) takes the form o
- - 2 2
(wmn(r) - Amna(t) +e ! Um—n+] + 'Im—n-l
2 ) .
+ 2'Imgn+l'lm—>n—l ~2Jn : T
- ‘Im—nJm—n+2 - ‘Im—n'lm—n—le',2 ’ (12) ' &l

involving products of the J-Bessel functions (shown T
in parentheses) whose argument equals 2Jr.
The new results of this letter are eq. (10) for the
general case and eq. (12) for the infinite crystal with -
nearest-neighbour J,,,'s. It will be shown elsewhere
how these results can be used for the computation of
experimental observables. Note in passing that fora  °f
molecule pair W, (1) exactly equals 2J2 as has been
proved earlier {10] and eq. ( 10) therefore shows that
the SLE indeed corresponds to a GME with a memory
that is the sum of a §-function and an exponential.
This is precisely the relations result of ref. {4} that we
have thus generalized in eq. (10).
We have been informed by Kithne and Reineker
that they have also obtained such a relation through
the use of a procedure different from ours and starting -
from the SLE in refs. [1,2] rather than that in ref. fe]. .
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