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Abstract. We study the transient dynamics of single species reaction diffusion systems whose reaction
terms f(u) vary nonlinearly near u ≈ 0, specifically as f(u) ≈ u2 and f(u) ≈ u3. We consider three cases,
calculate their traveling wave fronts and speeds analytically and solve the equations numerically with
different initial conditions to study the approach to the asymptotic front shape and speed. Observed time
evolution is found to be quite sensitive to initial conditions and to display in some cases nonmonotonic
behavior, ascribable to the disparity in time scales between the evolution of the front interior and the front
tail.

PACS. 82.40.Ck Pattern formation in reactions with diffusion, flow and heat transfer – 47.20.Ky Nonlin-
earity, bifurcation, and symmetry breaking – 05.45.-a Nonlinear dynamics and chaos

1 Introduction

Reaction diffusion models are ubiquitous in science. They
are commonly employed to represent systems whose com-
ponents move diffusively and whose interaction events,
described by the reaction terms, may be represented by
nonlinear expressions in the macroscopic observables such
as the system density. Common examples can be found
in aggregation [1], deposition [2], chemical reactions [3],
flame combustion [4], pulse propagation in nerves [5] and
population dynamics [6,7]. Extensions of reaction diffusion
studies to convective transport [8,9], non-diffusive trans-
port [10,11] and spatially non-local interactions [12,13]
have also been studied in the recent past. Here we re-
strict our attention to a single-species reaction diffusion
equation in 1-D in its simplest form, i.e.,

∂u(x, t)
∂t

= D
∂2u(x, t)

∂x2
+ af(u), (1)

where u(x, t) represents the density profile of the species
expressed here as a dimensionless quantity, D is the diffu-
sion constant, a the growth rate and f(u) the nonlinearity.
We will further assume that f(0) = f(1) = 0, which is a
property of the nonlinearity in many systems of interest.

Equations such as (1) often result in propagating wave-
fronts. The class of reaction terms that allows this feature
is rather broad but three generic types of nonlinearity may
be distinguished [14]. One type, henceforth called the first
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type, corresponds to positive f(u) for 0 < u < 1 with
f(u) ≈ u for u ≈ 0. A well-known example is provided
by the Fisher-Kolmogorov-Petrovskii-Piskunov (FKPP)
equation [15,16] whose reaction term is f(u) = u(1 − u).
Another type, henceforth called the second type, corre-
sponds to negative f(u) for 0 < u < b and positive
f(u) for b < u < 1 such as the Zel’dovich—Frank-
Kamenetsky [17] equation (ZF), also referred to in the
literature as the reduced Nagumo equation [7], for which
f(u) = u(u− b)(1−u) with 0 < b < 1. This change of sign
in the nonlinearity is responsible to what is referred to
in population dynamics as the Allee effect [18]; a density
threshold exists below which an initial population even-
tually gets extinct. Recent work on pattern formation in
the presence of the Allee effect may be found in refer-
ence [13]. Finally, what we will call the third type of non-
linearity has f(u) positive for 0 < u < 1 but is nonlinear
in u for small u. Reaction diffusion equations with these
kinds of reaction terms have been used, for example, in
studying thermal combustion waves [4,19], certain auto-
catalytic chemical reactions [20] and calcium deposition
in bone formation [21]. In thermal combustion, nonlinear
growth may represent the temperature profile [4] as well
as the concentration of the reacting species [19], in chem-
ical reactions, it represents the order of the autocataly-
sis [20], and in calcium deposition, the crystalline clusters
that grow over the bulk of the bone proportionally to the
square of its mass [21].

In the context of models of biological invasion, Allee
effects have been studied extensively (see e.g. [22] and
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references therein) since the early experimental works on
the flour beetles of the genus Tibolium [23] or more recent
ones on the Aphis varians [24] and whales [25]. In general,
Allee effects are defined as strong or weak [26] depending
on whether the per capita growth rate, f(u)/u, is, respec-
tively, negative or positive at low densities. Here, the term
weak refers to the fact that the population does not exhibit
any threshold phenomena. It turns out, however, that lit-
tle is mentioned in the literature about the possibility of
a per capita growth rate equal to zero at zero densities,
a case that should always apply by default to sexually re-
producing individuals. Here we are interested in bridging
the gap that exists in these studies.

If the reaction term is of the first type, as described
above, it has been shown that there exists a minimum
speed for the existence of traveling fronts [15,16]. Such
fronts are termed pulled fronts due to their dynamics be-
ing dictated by the growth and spreading of the front
tail [27–29]. The value of the asymptotic front speed can
be simply obtained by calculating the spreading of small
perturbations around the unstable state u = 0. For these
nonlinearities, initial conditions whose fronts are suffi-
ciently steep eventually settle into the traveling front
shape with speed 2

√
Daf ′(0). On the other hand, ini-

tial conditions with shallower initial profiles either reach
a velocity larger than the minimal one or simply acceler-
ate [29].

Fronts generated by reaction terms of the second type
are called bistable since both u = 1 and u = 0 are lin-
early stable, whereas fronts from the third type of non-
linearity are generally termed pushed [30]. These pushed
fronts derive their name from the fact that the dynamics
in the nonlinear region of f(u) drives the front propaga-
tion [28,29,31], ‘pushing’ the tail front forward. In such
cases, linearization techniques applied to the reaction dif-
fusion equation do not allow one to find the traveling
front speed. The speed selection mechanism differs greatly
between the pushed and the pulled regimes. The long-
time convergence to the traveling front shape and speed
is shown to be exponential in the former case [29,31] and
algebraic in the latter [27,29].

Whereas a great deal of attention has been given in
the reaction diffusion literature to the determination of
the traveling wave front speed [14,32], the speed selection
problem, i.e., the prediction of the asymptotic front speed
from a given initial condition [33,34], and the long-time
rate of convergence to that speed [29,35], the problem of
the full transient dynamics has received little attention.
Our interest is in making some contribution to the study
of this problem. We ask how an initial condition evolves to
the asymptotic traveling front shape and speed. We do so
by analyzing the transient dynamics of reaction diffusion
equations whose f(u)’s belong to the third type.

The paper is organized as follows: in Section 2 we select
three specific forms of the nonlinearity and exhibit their
resultant analytically obtained traveling wave front speed
and shape. Section 3 is devoted to the study of their tran-
sient dynamics. Section 4 contains concluding remarks.
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0

0.15

u

f(
u)

Fig. 1. Plot of the nonlinearities f(u) under consideration.
The solid and dashed curves represent f(u) quadratic in u for
small u as given, respectively, by equations (2) and (4). The
dotted curve represents f(u) given by equation (6) with η =
16/(81

√
3), an example of a nonlinearity cubic in u for small u.

2 Three specific nonlinearities and analytic
traveling wave solutions

For some of the nonlinearities with f ′(0) = 0 one can find
exact analytic solutions for the traveling wave, making
possible an exact description of both its shape and speed.
We exploit the existence of these stable (see Appendix)
pushed front solutions in studying the transient dynamics.
We consider three examples of positive nonlinearity for
0 < u < 1 with f(u) ≈ u2 as well as f(u) ≈ u3 for u ≈ 0.
These are depicted in Figure 1.

2.1 A logarithmic nonlinearity

Consider what we will henceforth call the logarithmic non-
linearity,

f(u) = (u + 1) [2 − ln(2) + ln (u + 1)]

ln2 (u + 1) [ln(2) − ln (u + 1)] , (2)

which is quadratic in u as u → 0 and decreases lin-
early around u = 1. Despite its complicated appear-
ance, we have managed to find exact analytic solutions
of the traveling wave front and speed. The procedure re-
quires the parametrization of the traveling front equa-
tion with ∂u/∂z instead of z (see e.g. Appendix C in
Ref. [29] for the integration procedure). With the result-
ing differential equation solved exactly, an analytic value
of the front speed can then be obtained. Integration of
(∂u/∂z)−1 and its inversion allows the determination of
the exact traveling front profile. We have found the speed
to be c =

√
Da ln (2) and its traveling front shape (cen-

tered around the origin) to have the analytic form, with
z = x − ct,

u(z) = −1 + 2
[
1+ ln(4/3)

ln(3/2) 2z
√

a/D
]−1

. (3)
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2.2 A special case of the ZF nonlinearity

Another example of a reaction term quadratic in u as
u → 0 may be obtained from the Zel’dovich–Frank-
Kamenetsky equation by putting b = 0, i.e.,

f(u) = u2(1 − u). (4)

The exact traveling wave front is given by

u(z) =
1

1 + ez
√

a/2D
, (5)

with c =
√

Da/2 as the front speed. In the following we
call this f(u) the quadratic nonlinearity.

2.3 A cubic nonlinearity

A nonlinearity which is cubic in u as u → 0 can be ob-
tained from a variety of systems including, e.g.,

f(u) = η sin(πu) [1 − cos(πu)] . (6)

Given the periodicity of equation (6), we use it in our
study only for initial conditions such that u ≤ 1. The
speed of the traveling front is given by c =

√
ηπDa and

its traveling front shape is given

u(z) =
2
π

arctan
(
e−z

√
ηπa/D

)
. (7)

The reaction term in equation (6) is a special case intro-
duced to study the dynamics of the angle between the
electric field and the polarization in ferroelectric chiral
smectic liquid crystals [36]. For comparison purposes we
choose η = 16/(81

√
3). This value of η ensures that equa-

tions (4) and (6) coincide at their peak u = 2/3. In the
following we will call the cubic nonlinearity the f(u) in
equation (6) with η as given.

3 Transients during the formation
of the traveling wave fronts

Our procedure for the study of transients consists of (i) as-
suming an initial condition roughly in the form of a ‘right
step’ with u = 1 as x → −∞ and u = 0 as x → +∞,
the form of the switchover being similar in shape, but not
identical, to the eventual traveling front, (ii) computing a
quantity that we call the excess speed, and (iii) studying
the effects of various features of the initial conditions on
the transient dynamics for the three types of nonlinearity
considered. The excess speed is the amount by which the
(eventual) traveling front speed c is exceeded by υ(t), the
instantaneous time rate of change of the area under the
front, i.e., d

[∫ +∞
−∞ dxu(x, t)

]
/dt, as explained, e.g., in ref-

erence [8]. It is a convenient quantity to focus on because
it allows one to calculate how, overall, a front profile ad-
vances independently of how, on a local scale, the profile

moves forward. Throughout this paper we have taken υ to
approach c if the differences is less than 10−8 in units of√

Da.
Our numerical integration of the reaction diffusion

equation is performed via an Adams-Bashforth-Moulton
predictor corrector method with a spatial mesh of step
size 0.08 in units of

√
D/a, which is the characteristic

length of equation (1). We consider the front profile as
separated into a shoulder for most of which u = 1, a tail
which describes the final vanishing of u at long distances,
and an in-between interior part. We construct our initial
conditions by modifying the asymptotic traveling shape
in these three parts separately or in combination. We re-
port results mainly for tail-modified and interior-modified
initial conditions since they are the ones that show the
largest effects.

In Section 3.1 below, we first study initial conditions
for the front obtained simply by replacing the characteris-
tic length parameter

√
D/a in the exact traveling front

shape by a different value, the front shape being thus
steeper or shallower than, but qualitatively identical to,
the exact traveling front. In Sections 3.2 and 3.3, by con-
trast, we consider initial shapes that are different, even
qualitatively, from the eventual traveling front shape. We
obtain them by modifying, in the latter, only the interior
portion in Section 3.2, and both the interior portion and
the tail in Section 3.3.

3.1 Varying the characteristic length

The characteristic length
√

D/a of the reaction diffu-
sion system (1) appears naturally in the exact expres-
sions (3), (5) and (7) for the traveling wave profile for
the three nonlinearities, and controls the steepness of the
front. In this subsection we investigate the transient oc-
curring for initial conditions obtained by replacing

√
a/D

by ξ−1
√

a/D in the respective equations (3), (5) and (7).
The quantity we vary is ξ, the dimensionless ratio of the
length characteristic of the initial condition to

√
D/a. For

values of ξ larger (smaller) than 1, the initial spatial pro-
file is shallower (steeper) than the exact traveling front.

Our finding is that an initial condition constructed in
this way gives rise to a monotonic decay of the front speed
to the asymptotic value along with a change of the front
steepness to the asymptotic shape. The long-time behav-
ior appears exponential and can be fitted on a logarith-
mic scale by a straight line as exemplified in the inset of
Figure 2. We calculate in this way the characteristic ex-
ponent of the decay for each of the three nonlinearities.
We compare them in Figure 2 by plotting the decay time
τ (reciprocal of the exponent) in units of 1/a as a func-
tion of the relative steepness ratio ξ. It is evident from
Figure 2 that the decay time for the cubic nonlinearity is
longer than that for the logarithmic nonlinearity. In turn,
the logarithmic nonlinearity has a decay time longer than
that for the quadratic nonlinearity. This hierarchy in time
scales is due to the relative strength of the f(u)’s: the
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Fig. 2. Long-time decay constant τ of the initial front speed
plotted in units of 1/a for the three nonlinearities depicted in
Fig. 1. The horizontal axis is the dimensionless characteristic
length ξ (see text). The triangles, the circles and the squares
correspond, respectively, to the logarithmic, quadratic and cu-
bic nonlinearity. If ξ > 1 (< 1), the initial front profile is
shallower (steeper) than the asymptotic profile, and the front
speed decreases (increases) monotonically to the asymptotic
speed. The inset shows the evolution in time of the excess speed
υ(t)−c on logarithmic scale for the quadratic nonlinearity. The
solid, dashed, dash-dotted and dotted curves represent, respec-
tively, an initial profile with ξ = 0.250, 1.429, 1.539, and 2.

larger the value of the nonlinearity, the faster the rate of
change of u. For a large portion of the interval 0 < u < 1,
the cubic nonlinearity has u values smaller than the other
two. Similarly, the logarithmic nonlinearity has smaller
values than the quadratic nonlinearity. The flat curve for
ξ < 1 implies that an exponentially decaying front ini-
tially steeper than the traveling wave front approaches the
asymptotic velocity independently of the specific shape at
time t = 0. On the other hand, exponentially decaying
fronts shallower than the asymptotic profile approaches
the final velocity in a time that depends on the initial
front shape: the shallower the longer the relaxation time.
A qualitative similar dependence of the relaxation time
on the initial condition has been reported by Van Saar-
loos (see Fig. 19 in Ref. [31]) in studying front propagation
in what has been termed the nonlinear marginally stable
regime.

3.2 Modification of the interior of the front:
nonmonotonic behavior

Transients dynamics become more complex if the initial
profile and the traveling front profile are qualitatively dif-
ferent. One example studied in this subsection is an initial
profile obtained by modifying part of the interior of the
exact traveling shape with a straight line segment. This
segment starts at the coordinates x = 0, u = 1/2, and
ends intersecting the exact traveling front profile at some
point x < 0 (see the inset of Fig. 3). In other words, the
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Fig. 3. Nonmonotonic behavior of the relative excess speed
[υ(t) − c] /c as function of time. The solid, dashed and dotted
curve represent the evolution of the relative excess speed for the
logarithmic, quadratic and cubic nonlinearities, respectively.
The initial condition is constructed as follows; it is a modifi-
cation of the interior of the exact traveling front profile with
a straight line segment depicted in the inset as dash-dotted.
Only the initial condition for the logarithmic nonlinearity is
shown in the inset since the three initial conditions are very
similar to each other.

initial profile is shallower than the asymptotic one in a lim-
ited region of space. Given that the portion of the asymp-
totic profile in the front interior modified to get the initial
shape is rather small, one might expect a simple effect
including a monotonic decay as in the previous section.
Surprisingly, this does not happen. Rather than the dis-
tortion in the upper part of the interior disappearing, the
shape in the lower part of the interior changes from the ex-
act profile and becomes shallow first. During the transient
dynamics, this situation corresponds to the appearance of
a maximum in υ(t) as shown in Figure 3. At that instant,
the evolution changes and υ(t) decays monotonically to
the asymptotic value as shown in Figure 2. Notice that
similar non-monotonic transients with the appearance of
a maximum in υ(t) can be observed if the initial profile
is taken as a modification of the exact profile for x > 0,
e.g., with an exponential function that is shallower than
the asymptotic front shape. In other words, if the lower,
rather than the upper, part of the initial front interior is
made shallower than the asymptotic shape, qualitatively
similar dynamics are observed.

We define the ratio of the slope of the straight seg-
ment to the slope of the asymptotic traveling front at
u = 1/2 as the relative steepness α. In Figure 4, we plot
the time T1 (in units 1/a) at which the maximum of υ(t)
appears as function of α. The inset shows the value H of
the relative excess speed maximum as function of α. As
α approaches 1, the distortion eventually becomes a small
perturbation. The amplitude of this perturbation decays
monotonically to the asymptotic profile, similarly to the
long-time behavior described in Section 3.1. This explains
why, for α � 0.85, the maximum disappears. Indeed, the
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Fig. 4. Plot of T1 the transient time for the appearance of the
maximum in the relative excess speed as function of the relative
steepness α of the initial conditions displayed in the inset of
Figure 3. The inset shows the height H of the maximum of the
relative excess speed as function of α.

inset shows that the amplitude of the maximum becomes
smaller as α increases. The other extreme corresponds to α
approaching 0 when the initial profile tends to flatten out
for x < 0. In such a case, the dynamics are dominated by
the reaction term since the diffusion becomes negligible. It
is a simple exercise to show that a flat profile for u > 1/2
approaches u = 1 exponentially fast. This explains why,
for α � 0.5, the maximum in the relative excess speed also
disappears.

3.3 Modification of both the tail and the interior

A common characteristic of the three nonlinearities we
study is f ′(0) = 0. This implies that the dynamics in the
tail of the front are slower than the dynamics in the front
interior. Therefore, we may expect an even more complex
transient if the tail as well as the interior of the front are
modified. We show our numerical results for this situa-
tion in Figure 5 for the logarithmic nonlinearity. The ini-
tial condition is chosen as follows. The lower part of the
interior of the exact traveling front is cut off at an am-
plitude A = 0.1 by a straight line whose length depends
on its steepness. This cut-off thus creates a tail which is
infinitely steep. At the same time the rest of the front inte-
rior is modified from the shape of the exact solution by in-
creasing the characteristic length

√
D/a as in Section 3.1.

In other words, the initial condition has an interior part
which is shallower than the exact traveling front with its
lower part modified with a straight line. Such an initial
condition allows one to observe three different transient
regimes. The first is associated with the time necessary
for the interior part of the front to reduce its steepness
and become essentially indistinguishable from the travel-
ing front shape (see the center inset in Fig. 5). The sec-
ond transient is created by the fast upwards propagation
of the shallow straight line profile (see the top left inset
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Fig. 5. Relative excess speed in the case of the nonlinearity
given by equation (2) for an initial condition constructed as ex-
plained in the text. The various insets shows how the evolving
front is different from the exact traveling front shape (dotted
line) at different times. The exact traveling front is plotted by
making the two curves cross each other at u = 1/2.

in Fig. 5) present initially in the lower part of the front
interior. These dynamics are similar to the one observed
in Figures 3 and 4: eventually the interior front shape is
converted into a shallow profile. When that happens once
again υ(t) reaches a maximum. The final transient regime
then corresponds to the monotonic decay to the asymp-
totic speed as shown earlier in Figure 2. Notice that, even
though the initial front has a tail with compact support,
i.e., is infinitely steep, that extreme steepness is not trans-
ferred to the front interior. On the contrary, it is the initial
shallow upper interior that eventually makes the interior
profile shallower than the traveling wave shape during the
transient.

The appearance of the two extrema is also studied
by selecting initial conditions whose interior parts have
a given characteristic length larger than the asymptotic
traveling front, and whose right-most portion is made up
of a straight line segment proceeding from u = A to u = 0.
We keep the projection of the straight segment on the x-
axis fixed and vary A. In the main part of Figure 6, we dis-
play four curves (solid, dotted, dashed and dash-dotted)
with, respectively, increasingly larger values of A. The ef-
fect of the time scale disparity between the tail and front
dynamics can be appreciated from Figure 6. At first, as
A increases, the time lag between the minimum and max-
imum also increases. However, beyond a certain value of
A, a larger portion of the shallow profile sees a rapidly
increasing shape of the nonlinearity f(u). The evolution
of the initial front thus gets increasingly faster as A in-
creases, reducing the time necessary for the profile to be-
come shallow overall. This explains why the maximum
of the dashed and dash-dotted curves move to the left.
The inset of Figure 6 shows the variation of this time lag
called T2 as function of A for the three nonlinearities. This
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Fig. 6. Plot of the relative excess speed for the logarithmic
nonlinearity as function of time for four initial fronts with dif-
ferent value of A (see text). The solid, dotted, dashed and
dash-dotted curves correspond to A = 0.04, 0.06, 0.1 and 0.12,
respectively. The inset shows how the delay time T2 between
the minimum and the maximum changes as function of A for
the three nonlinearities.

transition is visible in all three cases but is more pro-
nounced in the logarithmic and quadratic nonlinearities.

4 Concluding remarks

We have studied the transient dynamics of reaction dif-
fusion systems whose reaction term f(u) is characterized
by being positive for 0 < u < 1 with f ′(0) = 0. Specif-
ically, we have chosen two nonlinearities whose f(u) is
quadratic and one whose f(u) is cubic for u ≈ 0. We have
found analytic expressions for the corresponding travel-
ing front shape and speed. With the help of these expres-
sions, we have analyzed how certain types of initial con-
ditions evolve in time. Our initial conditions are simple
modifications of the exact traveling front shape. Mono-
tonic relaxation to the traveling front speed is observed if
the initial front is qualitatively similar to the asymptotic
profile, being constructed from the latter only by varying
the characteristic length scale of the traveling wave front.
Nonmonotonic behavior instead may be observed when
the initial conditions are qualitatively different from the
asymptotic profile. In such cases, the transient dynam-
ics is dominated by the evolution of the interior part of
the front since the tail evolution is much slower due to the
nonlinear nature of f(u) for u → 0. The ensuing time scale
disparity is responsible for the complicated observed time
evolution of the front profile and front velocity. If part
of the interior is shallower (steeper) than the asymptotic
traveling front, the shallowness (steepness) is transferred
to the whole interior profile, initially. Subsequently the
velocity then decays monotonically to zero with the long
time behavior being exponential.

Despite the complicated dynamics of the transient phe-
nomena observed, the choice of relatively similar nonlin-

earities and sufficiently simple initial conditions have al-
lowed us to identify the mechanisms responsible for the
non-monotonic time dependence of the front traveling
speed and its relation to the shape of f(u). This analysis
should allow one to obtain insights of the front dynam-
ics in presence of more complicated initial conditions by
identifying the relative steepness of the tail and front in-
terior to the traveling wave front shape, as well as to cases
of nonlinearities whose growth term increases with power
exponent bigger than in those cases studied here.

The application of our results should have particular
relevance in the context of species invasion where Allee ef-
fect, also called depensation [37], can dramatically impact
the propagating speed of traveling fronts. By plotting the
per capita growth rate f(u)/u as function of u it is easy to
see that the stronger the Allee effect the slower the propa-
gating speed, lending support to the idea that depensation
slows down the traveling wave fronts in reaction diffusion
systems [26,39].

Transient dynamics in reaction diffusion systems is
rarely studied, mostly due to the difficulty of the problem.
In this work, by comparing three different reaction terms,
and by using sufficiently simple initial conditions, we have
been able to understand part of the front dynamics and
in particular its non-monotonic time dependence. A theo-
retical analysis such as ours becomes crucially important
when the front does not reach the asymptotic traveling
regime. In such cases the concept of a traveling front speed
and shape cannot be applied to experimental observations
and an understanding of the dynamics becomes necessary.
We hope that our study will motivate further research on
the formation of the traveling front profile in reaction dif-
fusion systems.

This work was supported in part by the NSF under grant no.
INT-0336343, by NSF/NIH Ecology of Infectious Diseases un-
der grant no. EF-0326757, by the Program in Interdisciplinary
Biological and Biomedical Sciences at UNM funded by the
Howard Hughes Medical Institute, and by DARPA under grant
no. DARPA-N00014-03-1-0900.

Appendix

In the first part of this section we study the linear stability
of our traveling fronts to perturbation, and in the second
part we study the structural stability of the corresponding
reaction diffusion equations.

In order to study the stability of the traveling wave
fronts to perturbations, we follow the standard pro-
cedure [7,29,30]. We take the normalized version of
equation (1)

∂u(y, τ)
∂τ

=
∂2u(y, τ)

∂y2
+ f(u(y, τ)). (8)

where y and τ are dimensionless variables and we consider
the perturbation v(ς, τ) where ς = y − ωτ with ω the
dimensionless travelling speed. We look at the evolution
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of v(ς, τ) when such perturbation is small, i.e., we take the
perturbed traveling wave front

u(ς, τ) = uω
0 (ς) + εv(ς, τ), (9)

where ε � 1 and where uω
0 (ς) is the traveling wave solu-

tion. We insert equation (9) into equation (8) and Taylor
expand the nonlinearity f(uω

0 (z)+εv(ς, t)) only up to first
order in ε. After some algebra and by assuming, for conve-
nience, v(ς, τ) = ξ(ς)e−ως/2e−λτ , the equation satisfying
ξ(ς) is given by

−d2ξ(ς)
dς2

+
(

ω2

4
− f ′(uω

0 (ς))
)

ξ(ς) = λξ(ς), (10)

where ξ(ς) decays to zero for large |ς| in such a way that
limς→±∞ ξ(ς)e−ως/2 = 0. By defining the operator H =[
− d2

dς2 + ω2

4 − f ′(uω
0 (ς))

]
, equation (10) can be cast into

the form
Hξλ = λξλ. (11)

The determination of the coefficient λ becomes formally
equivalent to the calculation of the eigenvalues of a time
independent Schrödinger equation with a potential energy
V (ς) = ω2/4 − f ′(uω

0 (ς)) and with ξλ the corresponding
eigenfunctions. We now find the eigenfunctions of H that
corresponds to λ = 0 and argue that it is the lowest eigen-
value of H . We point out that the eigenvalue λ = 0 corre-
sponds to a translated traveling wave since the perturba-
tion does not grow and neither decays [7,30]. Expanding
to first order in ε the translated traveling wave uω

0 (ς + ε)
we can identify

ξ0(z) = eως/2 duω
0 (ς)
dς

. (12)

Since the front shapes are monotonically decreasing func-
tions of ς, duω

0 (ς)/dς is always negative. This means that
ξ0(ς) does not have any roots and the wave function corre-
sponding to λ = 0 is nodeless. It is well known in quantum
mechanics that [41] the nodeless wave function would cor-
respond to the ground state of the system with lowest λ.
This implies that all the other eigenvalues are larger than
zero. The traveling fronts in equations (2), (4) and (6) are
thus stable to small perturbations in the moving frame. An
initial condition, which is constructed by infinitesimally
modifying the traveling front profile, will converge to the
asymptotic shape and attain the traveling front speed.

The structural stability analysis allows one to deter-
mine if the traveling front solutions suffer only infinites-
imal change when the nonlinearity f(u) is perturbed in-
finitesimally to δf(u). We are concerned here with two
types of modifications of f(u). A quantitative variation of
the growth term and a qualitative variation of the growth
term. For this purpose we follow in part the renormal-
ization procedure detailed in reference [38] that allows
one to calculate the variation of the traveling speed δω
from the perturbation δf(u) (see Eq. (9) in Ref. [38]). If
δf(u) = εf(u), we find that δω ≈ 0.34ε, δω = 2−3/2ε,
and δω = 2π1/23−9/4ε for the logarithmic, the quadratic

and the cubic nonlinearity, respectively. For a qualitative
modification of the form of f(u) we are interested in mod-
ifications where the power exponent close to u = 0 be-
comes larger than in the original f(u). We consider the
extreme situation where the power becomes infinitely large
and the growth term becomes flat, so as to include situ-
ations when the exponent variation is smaller. We choose
δf(u) = Θ(u − ε)f(u) where Θ represents the Heaviside
step function. For calculating the variation δω in this case,
it is more convenient to simply construct the traveling
front for the modified nonlinearity by joining together the
exact solution for u > ε and the one when u < ε [40] with
the result

δω = − ln(2) +
[ln(2) − ln(1 + ε)] ln(1 + ε)

ε
,

δω = − ε√
2
,

δω =
√

πη

[
sin(πε)

πε
− 1

]
, (13)

for, respectively, the logarithmic, quadratic and cubic non-
linearity. Notice that δω → 0− as ε → 0+, proportional
to ε in the first two cases and proportional to ε3 for the
cubic nonlinearity. We thus have shown that infinitesi-
mal quantitative as well as qualitative modification in the
growth term of f(u) change the traveling front solution
only infinitesimally, pointing to the structural stability of
the equations we have analyzed.
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