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Abstract – We investigate the general problem of how the finiteness of a probing window
for measurements of the movements of a random walker can lead to spurious detection of
multifractality as well as to incorrect values of Hurst exponents, and propose a method for
correcting for these effects. We also study the case in which the roaming region of the walker
is itself of limited extent, when a nonlinear interplay occurs between the roaming area and the
window size. In the context of animal movements, we describe briefly an application of these ideas
to mark-recapture observations in a mouse population, of interest to the important topic of the
spread of the Hantavirus epidemic.
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A classic problem in physics concerns the analysis of the
scaling properties of random walks [1–3]. Indeed, random
walks find wide application in diverse fields. They may
be simple, as in the case of Brownian diffusion [1,2], or
more complex, as in the case of anomalous diffusion [3].
Fractal analysis of these random walks aims at describing
in a quantitative manner scaling behavior observed in
physical [3], biological [3], ecological [4], physiological [5],
sociological [6] and economic [7] phenomena. Accurately
quantifying such scaling behavior helps since parallels may
be drawn among classes of processes where similar scaling
is observed. Our interest is in showing how interpreted
fractal dimensions of a random walk are modified when
observations are limited in space.

Spatially selective observations often arise in ecology
where a random walking animal strays beyond the spatial
region in which the experimental set-up allows detection,
e.g., the line of sight of a camera, a radio transmitter, a
microscope or a telescope. In ecological studies the linear
dimensions of the window may range from a few kilo-
meters, as in the study of tree diversity in a forest [8], to a
few hundred meters when observing animals via trapping
methods [9], to a few centimeters in the case of the motion
of microorganisms in sea water [10]. The measurements

are obviously limited by the sampled area in that data
gathered contain cutoffs beyond which no information
can be collected. Consequently, incorrect conclusions
might be drawn on the walker motion characteristics if
the effects of the window are not accounted for.
To study the effects of the finiteness of the probing
window, we consider a random walk that may be normal
or anomalous. We address the general case of fractional
Brownian motion [11], i.e., assume that the probabi-
lity distribution function of the walker, governed by a
diffusion equation with a time-dependent diffusion coef-
ficient [12] D(t), is P (x, t) = (πρ(t))−1/2 exp(−x2/ρ(t))
wherein ρ(t) = 4

∫ t

0
D(t′)dt′. For simplicity, we consider

throughout this paper a walker in 1D space but our analy-
sis can be trivially extended to higher dimensions. We limit
our considerations to an algebraic dependence ofD(t) on t,
D(t) = αDαt

α−1, where Dα is a generalized diffusion coef-
ficient of dimensions [Length]2[Time]−α, with 0<α< 1
for subdiffusion, 1<α< 2 for (sub-ballistic) superdiffusion
and α= 1 for normal diffusion.
To characterize the fractal dimension d of a random

walker we follow standard usage in the recent litera-
ture [13,14] and introduce a quantity known as the Hurst
exponent H [15] which is related [13] to the fractal
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dimension via d= 2−H. The Hurst exponent describes
the time evolution of the mean-square displacement
of the walker:

∫

∞

−∞
x2P (x, t)dx=

〈

x2
〉

∼ t2H . It is well
known that, if an arbitrary moment of the probability
distribution P (x, t) can be expressed in terms of the

mean square displacement via 〈|x|q〉 ∼
〈

x2
〉q/2 ∼ tqH , a

single (constant) scaling exponent H describes the entire
process. In such a case, the motion is said to be monofrac-
tal. Simple Brownian diffusion has a Hurst exponent H
equal to 1/2 while anomalous diffusion has H smaller for
subdiffusion, 0<H < 1/2, and larger for superdiffusion,
H > 1/2. In contrast to monofractals, the quantitative
description of multifractal [16] random walks [17] requires
multiple scaling exponents. Specifically, the higher and
lower moments may not possess identical scaling, so that
〈|x|q〉 ∼ tqH(q), with the (generalized) Hurst exponent
being in such a case q-dependent.
By comparing the q-th moment of a random walker at

two different times (t1 > 0 and t2 > t1), it is possible to
calculate H:

H(q) = ln

[ 〈|∆x|q (t2)〉
〈|∆x|q (t1)〉

]

1

q ln
(

t2
t1

) , (1)

which reduces, for monofractal walks, to a (constant)
exponent. For fractional Brownian walkers we thus have
H = α/2.
If a walker is observed over all space, the evaluation of
eq. (1) is straightforward since the q-exponent is factored
out and H becomes a constant. On the other hand,
the evaluation is nontrivial when 〈|∆x|q (t)〉 is observed
through a probing window. The presence of a limited
spatial window of observation affects the evaluation of the
q-th moments by cutting off the tails of P (x, t):

〈〈|∆x|q (t)〉〉=
∫ G/2

−G/2
dx0
∫ G/2

−G/2
dx |x−x0|q Px0(x, t)I(x0)

∫ G/2

−G/2
dx0
∫ G/2

−G/2
dxPx0(x, t)I(x0)

. (2)

The presence of the integral over x0 in eq. (2) stems from
the fact that the observations are made over a collection
of random walkers, i.e., many members of the ensemble.
The motion is characterized by averaging over individual
behaviors which translates thus to an average over the
initial location of each individual. I(x0) is the probability
per unit distance of a walker to be located initially in x0
somewhere inside the window of width G centered around
the origin. The cutoff length G in eq. (2) represents the
extent of the finiteness of the probing window. Our study
focuses on the effects of G<∞.
In most situations, I(x0) is a constant either because of

natural homogeneity or because of our own ignorance of
the initial condition of the walker. Equation (2) can then
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Fig. 1: Hurst exponent H(q) as function of q for a collection
of fractional Brownian walkers (α= 3/2 and b= 23/2) observed
inside a spatial window of size G. From top to bottom the
curves are shown with decreasing value of the extent of the
probing window: the values of y (which is proportional to G,
see text) are 6.25, 2.5, 1.25, 0.25, respectively.

be simplified and eq. (1) reduces to

H(q) =
α

2
+

ln

[

yγ( 1+q2 ,y
2)−γ( 2+q2 ,y

2)
byγ( 1+q2 ,b2y2)−γ(

2+q

2
,b2y2)

g(by)
g(y)

]

q ln (t2/t1)
,

y = G/
√

4Dαtα2 , b= (t2/t1)
α/2, (3)

wherein g(z) =
√
πz erf (z)+ e−z

2 − 1, and γ(ν, x) =
∫ x

0
dte−ttν−1 is the incomplete Gamma function.
Equation (3) along with eq. (5) below represent the

primary expressions we have derived and form the basis
of the main analysis in this paper.
It is clear from eq. (3) that the appearance in it of y,
therefore of the extent G of the probing window, makes
H(q) depend on the size of the window. A monofrac-
tal walk which in extended space would actually have a
constant (q-independent)H would be interpreted as multi-
fractal through an analysis on the basis of eq. (3) precisely
for this reason. To make this apparent, we have plotted in
fig. 1 H(q) for different values of G, which decreases as we
go down the curves from top to bottom. It is evident from
the plot how monofractal behavior can be erroneously
interpreted as multifractal. None of the curves is constant
as q is varied. For large q values the average 〈|∆x|q (t)〉
gives information about the tails of P (x, t). Finite G cuts
off those tails. Higher moments of P (x, t) quickly saturate
to the size of the window (∝Gq). For sufficiently large q,
the moments at time t2 change only slightly from those at
time t1, making H(q) decay to zero proportionally to 1/q.
As G increases, H(q= 0) approaches α/2 and the region
where the curve is essentially flat gets larger, pushing the
inflection point further out. Eventually H(q) reduces to
the constant α/2 for any q if G→∞. On the other hand,
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forG sufficiently small, the maximum disappears andH(q)
decays monotonically to zero for large q.
A common characteristic of all the curves in fig. 1 is
H(0)<α/2. Even if the spatial window strongly affects
the higher moments, the renormalization of the window
cut-off also modifies the peak of P (x, t). Its small-q
moments are modified as well. This effect can be verified
analytically by calculating the limit q→ 0 in eq. (3). We
get H(0) = α/2+2 [k(y)/g(y)− k(by)/g(by)] / ln(t2/t1),
where k(z) =

∫ z

0
dse−s

2

ln(s)(z− s). Since k(z)/g(z)
is a monotonic function of z and b > 1, k(y)/g(y)−
k(by)/g(by)< 0 and thus H(0)<α/2. Bounding infor-
mation on the possible values of α and Dα may also
be obtained by studying the Hurst exponent derivative
H ′(q) = dH(q)/dq at q= 0.
A thorough theoretical analysis of the effects of limited

spatial observations in the context of animal movements
was carried out recently by some of the present authors to
determine the home range of mice [18,19]. That analysis
led to the evaluation of the home range area, as well as
the diffusion constant, in a mouse population observed
in mark-recapture experiments in Panama [20] and New
Mexico [21]. We generalize here that analysis to include
arbitrary moments. The presence of the window makes the
q-th moment saturate at large times. However, saturation
may also occur if the walkers themselves roam inside a
confined area. The classic example of such confinement
is when each individual of an animal population lives
inside its own home range [22]. In evaluating the q-th
moment one has to take into account the fact that
each walker is confined to a different region of space
relative to the observation window. For this one takes an
additional average over all possible center positions xc of
the confining area [18], which we will consider here to be
homogeneously placed, for simplicity. We generalize here
the findings of ref. [18] to fractional Brownian motion by
studying the full time dependence of the moments and
using it to estimate the Hurst exponent.
The reduced randomness associated with the confining

home range can be modelled [18] via a Fokker-Planck
equation [23] of the form

∂P (x, t)

∂t
=D(t)

∂

∂x

{

∂P (x, t)

∂x
+
dU(x−xc)
dx

P (x, t)

}

,

(4)

where the dimensionless U is the confining potential
and the time dependence of the diffusion constant D(t)
represents the anomalous diffusion of the walker.
At short times, and independently of the form of U , the

mean-square displacement grows as ∼ tα, while at long
times, it saturates to a value associated with the confining
potential and proportional to

∫ +∞

−∞
dxx2 exp [−U(x−xc)].

In general, the choice of U should be assessed in each case
on the basis of a priori knowledge of the specific animal
behavior. In light of our application to the Peromyscus
Maniculatus mark-recapture data [21] of New Mexico,
where the distribution of mice displacements over time

could be approximated with a Gaussian, we consider the
parabolic potential U(x) = x2/L2, where L is the home
range dimension. In that case,

H(q) =
ln
[

f(t2)
f(t1)

]

2 ln (t2/t1)

+

ln

[

zγ( 1+q2 ,z
2)−γ( 2+q2 ,z

2)
b′zγ( 1+q2 ,b′2z2)−γ(

2+q

2
,b′2z2)

g(b′z)
g(z)

]

q ln (t2/t1)
,

z = G/
(

L
√

2f(t2)
)

, b′ =
√

f(t2)/f(t1), (5)

where f(t) = 1− exp
[

−2Dαtα/L2
]

. Notice that eq. (5)
is a more general form of eq. (3) in that the quan-
tities b, y and α in the latter are replaced by b′, z
and ln [f(t2)/f(t1)] / [ln (t2/t1)], respectively. As the home
range extent L becomes much larger than the length√
Dαtα which characterizes the (fractional Brownian)
motion, specifically, in the limit L2/Dαt

α→∞, eq. (5)
reduces to the simpler eq. (3).
As an illustrative application of our theory we consider
the study of animal motion via mark-recapture observa-
tions, which involves animals being trapped (and released)
periodically [9]. Traps are placed within an area which
is obviously finite. When an animal is captured for the
first time, it is tagged and its position is recorded. If that
animal is subsequently recaptured at t1, we obtain the
first displacement ∆x(t1). One more recapture of the same
animal at t2 gives the second displacement ∆x(t2). Our
theory can thus be applied. Details on how to renormalize
the distribution of displacements given the discrete trap
locations may be found in ref. [21].
Data we have chosen for our illustrative application
are from a long-term (1994–2003) field work study at
four sites in New Mexico [24] of the principal host of
the Hantavirus Pulmonary Syndrome, the deer mouse,
Peromyscus maniculatus. Animals were captured on a
monthly basis for three consecutive nights on each occa-
sion. Only those (adult) mice that were captured during
two consecutive nights (1070) or during the first and third
night (530) constitute the data we will use. We focus here
on the analysis of the mice motion along the East-West
direction [21]. This is because the data statistics along the
North-South direction turn out to be rather poor and do
not allow us to draw meaningful conclusions on the ano-
malous aspects of their motion. Our analysis of the motion
should thus be considered only as an illustration. Further
observations would be necessary in order to draw finalized
conclusions about the anomalous aspects of Peromyscus
maniculatus in the New Mexico landscape.
Since the time during the night at which the various
mice were captured has an uncertainty at most of ±6
hours, we obtain three different fits to the experimen-
tal curve. One corresponds to the case in which all mice
are assumed to have been recaptured halfway through
the night both on the second (t1 = 1 day) and third day
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Fig. 2: Hurst exponent H(q) for the deer mouse, Peromyscus
maniculatus in New Mexico, obtained from mark-recapture
experiments. Corresponding to 3 different recapture scenarios
(see text), 3 different curves —two of them identical to each
other as the solid line— are obtained from a least-squares
fit of eq. (5). The fitting parameters are α and Dα with the
restriction that α< 2. Values of α that emerge (see text) show
that the motion is superdiffusive (α> 1). The inset provides
a zoomed-in view of the 0� q� 23 region. The error bars are
obtained by using three different binning procedures.

(t2 = 2 days). The second case corresponds to all mice
assumed being recaptured at the beginning of the second
night (t1 = 3/4 day) and at the end of the third night
(t2 = 9/4 days). The third situation may occur if all the
mice were recaptured at the end of the second night
(t1 = 5/4 day) and at the beginning of the third night
(t2 = 7/4 days). In fig. 2 we have plotted the Hurst expo-
nent with 3 different fits. The solid, dashed and dotted
curves correspond, respectively, to the three possible
recapture scenarios discussed above. The circles in fig. 2
represent the mean values of the experimental data with
their corresponding error bars. Three different binning
procedures have been used to estimate the distribution of
experimental displacements. From the least-squares fit the
α parameters for the three recapture scenarios are 1.95,
2.00 and 1.71 and their corresponding Dα’s are, respec-
tively, 2568, 3285 and 2185 expressed in units of m2/dayα.
The fitting apparently shows superdiffusive behavior.

However, even though all fitted curves are within reported
error bars, the χ2 is relatively large (≈ 7–8 · 10−3), and
none of the fitting exercises captures an important quali-
tative feature of the data —the presence of a maximum
particularly evident in the inset for small q-values. Surely,
it is also possible that the mice motion is governed by
some kind of anomalous diffusion different from fractional
Brownian motion [25–27].
In summary, we have constructed the theory for inter-
preting data for fractional Brownian random walkers
when observations are confined within a region of space,
and considered effects of the walkers themselves being

physically constrained within a limited region of space.
We have shown how the Hurst exponent depends analyti-
cally on α and Dα, and on the home range dimension and
the size of the probing window. In our application to data,
the statistics happen not to be clear enough to allow un-
ambiguously useful conclusions be drawn. Nevertheless we
have shown explicitly how to carry out the procedure and
have extracted the parameters α and Dα. Apparently, the
results tend to point to the mouse walks being super-
diffusive in the case studied and over the short time scale
of 1–2 days analyzed. We hope that the theory we have
reported will be useful in characterizing the motion of
animals as well as other random walkers in a wide variety
of field contexts. Limited spatial observations, whether of
the mark-recapture type or of more sophisticated nature,
are often an inescapable fact of field observations. There
should be no doubt that this characteristic of realistic
observations must be incorporated in estimation and
parameter extraction.
The new techniques for studying multifractality that
we have developed here have other important physical
applications. We note, for example, the recent interest
in distinguishing genuine anomalous diffusion from
Markovian correlated random walks [28]. In this context,
due consideration of the scales of the relevant probing
windows might lead to greater insight into such questions.
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