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The relaxation time approximation (RTA) is commonly employed in nonequilibrium statistical mechanics to
approximate solutions to the Boltzmann equation in terms of an exponential relaxation to equilibrium. Despite
its common use, the RTA suffers from the drawback that relaxation times commonly employed are independent
of initial conditions. We derive a variational principle for solutions to the Boltzmann equation, which allows
us to extend the standard RTA using relaxation times that depend on the initial distribution. Tests of the
approach on a calculation of the mobility for a one-dimensional (1D) tight-binding band indicate that our
analysis typically provides a better approximation than the standard RTA.

I. Introduction

The Boltzmann equation,1 the work-horse of transport
calculations2 in gas dynamics, solid-state physics, and related
branches of investigation, is essential to the analysis of transport
coefficients such as viscosity, electrical mobility, thermal
conductivity, Peltier coefficients, and Lorenz numbers. The
equation comes in two forms, one linear in the probability
distribution (or density)fk(t), the other bilinear. The latter, the
original form introduced by Boltzmann,1 is important in gas
dynamics where the elemental events involve particle-particle
collisions. The former, important in solid-state physics, focuses
on interaction of the particles with scattering centers or
vibrations and will be the target of our study here

Here,k represents generally a quantum mechanical state and
Qk′k, the transition rate from statek to statek′, is independent
of the f values.

Although linear, eq 1 is not easily solved because of the
summation ink-space which in the continuum limit would make
eq 1 an integral equation. There is, however, an approximation,
traditionally used in many, if not all, practical applications, that
allows one to avoid solving eq 1 numerically: the so-called
relaxation time approximation (RTA). The RTA has served as
a tool throughout the last several decades to such an extent that
it is often thought to be self-evident or even exact in certain
nontrivial cases of carrier transport (see, e.g., refs 4-6).

Despite its widespread applications, inadequacies of the
relaxation time assumption have been recognized in the past.2,8

One of its main drawbacks is the absence of any dependence
on the initial conditions of the probability distributions, and is
the principal issue discussed in this paper. In our attempt to
remove that drawback, we derive a variational principle govern-

ing solutions to the Boltzmann equation that allows us to
determine relaxation times that depend on the initial state of
the system.

The rest of the paper is laid out as follows. In section II, we
present cases in which the relaxation time procedure is known
to be valid. In section III, we explain our variational procedure
and apply it to find an alternative expression for the relaxation
time which depends on initial conditions. The validity of the
prescription we provide to compute the relaxation time in a
specific case is the subject of section IV, while the conclusions
are reported in section V.

II. The Relaxation Time Approximation

In its most common form, the RTA consists of replacing the
actual evolution in eq 1 by

where τk is called the relaxation time andf k
th is the thermal

form to which the distribution tends at long times in the absence
of driving forces. The advantage of dealing with an equation
such as 2 is that it offers analytically tractable results forfk(t)
in the form

Although there are variants, the simplest and most common
prescription for the relaxation time that one finds in the literature
is (see, e.g., refs 2, 4, 5, and 7)

Three clear cases can be cited when this approximation
procedure is valid:

Case (i): If the entire system has just two states, then the
relaxation time procedure is always exact. Calling the two states
k1 andk2, eq 1 takes the form
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dfk(t)

dt
) ∑

k′
[Qkk′fk′(t) - Qk′kfk(t)] (1)

dfk(t)

dt
+

fk(t) - f k
th

τk
) 0 (2)

fk(t) ) f k
th + [fk(0) - f k

th]e-t/τk (3)

1

τk

) ∑
k′

Qk′k (4)
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Using conservation of probability,fk2(t) ) 1 - fk1(t), we see
that this is identical to

which is in the RTA form (eq 2) with 1/τk ) Qk1k2 + Qk2k1 and
f k1

th ) Qk1k2/(Qk2k1 + Qk1k2) and f k2

th ) Qk2k1/(Qk1k2 + Qk2k1) as is
required by detailed balance.

Case (ii). If the transition rates are not dependent on the label
k or k′, in a system of an arbitrarily large number of statesN,
then eq 1 takes the form

which is also of the exact form (eq 2) with 1/τk ) NQ, f k
th

being the infinite temperature limit 1/N as imposed by detailed
balance in light of thek independence of the transition rates.

Case (iii). If one recasts eq 1 in the form of a matrix equation

whereAkk′ ) -Qkk′ + δk,k′∑qQqk, one can formally consider the
matrix A, diagonalize it, and write the solution in terms of
eigenvaluesλi of the A matrix as

where the coefficientsak
i are obtained by the overlap of the

initial distribution fk(0) with the eigenvectors of theA matrix.
There is always an eigenvalue zero, with the correspondingak

i

being the thermal distribution functionf k
th. If we arrange the

terms in the above expansion in ascending order of the values
of λi, we notice that for large times, specifically for times much
larger than the reciprocal of the difference between the third-
smallest and the second-smallest (dominant) eigenvalues of the
A matrix, the distribution function can be written approximately
as

Equation 10 is in the RTA form since it satisfies eq 2 withλ1

as 1/τk.
In all these three cases, the rate 1/τk turns out to benot

dependent onk. This fact ensures that probability is conserved
at all times. On the contrary, solutions of eq 2 will not generally
conserve probability (except whent ) 0 or t f ∞) if the
relaxation rate depends explicitly onk. This can be easily
verified by summing the solution (eq 3) overk. This failure to
conserve probability is not only repugnant in itself but is also
known to lead to practical inaccuracies as in the case of the

Rayleigh problem.8 That problem deals with the motion of a
light particle harmonically bound to a fixed point and colliding
with a gas of heavy particles in thermal equilibrium. When the
ratio of the masses of the bound particle to the heavy particles
is very small, the assumption of the existence of a relaxation
time does not allow conservation of the number of particles in
a collision. This, in turn, leads to the paradoxical result that the
average position of the light particle does not change in time
as would be expected in terms of its average velocity.

The other important shortcoming of the standard RTA is
concerned with the fact that the relaxation time, as traditionally
computed (see, e.g., eq 4), is independent of the initial conditions
of the system. There is no way to have changes in those
conditions reflected in the subsequent evolution of the system
as described by the RTA. In an attempt to remove these
limitations associated with the standard implementation (eq 4)
of the RTA, we develop below a variational principle and obtain
a relaxation time prescription whichdoesdepend on initial
conditions and conserves probability at all times.

III. Variational Prescription for the Relaxation Time

Using techniques from the calculus of variations (see, e.g.
ref 9), we derive in this section a variational principle for the
Boltzmann equation and use it to find an expression for the
relaxation time, alternative to eq 4, that better approximates the
exact solutions of the Boltzmann equation. It is well know that
any function f(t) which satisfies the following variational
condition

where t1 and t2 are the endpoints of the evolution chosen
according to the specific problem,f′ ) df/dt and δ means a
functional derivative of the actionJ with respect tof, is also a
solution to an associated Euler’s equation

generated by the functionalF(f′,f,t). We are here interested in
applying this variational principle to situations in which eq 12
is of the form

where, in general,f may be a vector andR a matrix. Dif-
ferentiating eq 13 once with respect tot, we have

If R is a symmetric matrix, it then follows from mechanical
analogues and Lagrangian insights that a functionalF that
generates the appropriate equation of motion is given by the
expression

To identify eq 13 with the Boltzmann eq 1 and write the
functional in the form of eq 15, it is necessary to rewrite eq 8
in terms of a symmetric matrix instead of the generally
asymmetric matrixAkk′. After gk ) fk(f k

th)-1/2 is defined, eq 8
can be recast in the form

dfk1
(t)

dt
) Qk1k2

fk2
(t) - Qk2k1

fk1
(t)

dfk2
(t)

dt
) Qk2k1

fk1
(t) - Qk1k2

fk2
(t) (5)

dfk1
(t)

dt
+ (Qk2k1

+ Qk1k2
)fk1

(t) ) Qk1k2

dfk2
(t)

dt
+ (Qk1k2

+ Qk2k1
)fk2

(t) ) Qk2k1
(6)

dfk(t)

dt
) Q ∑

k′
[fk′(t) - fk(t)] ) Q - NQfk(t) (7)

dfk(t)

dt
+ ∑

k′
Akk′fk′(t) ) 0 (8)

fk(t) ) ∑
i

ak
i e-λit (9)

fk(t) ≈ f k
th + ak

1e- λ1t (10)

δJ ) δ ∫t1

t2 dt′F(f′,f,t′) ) 0 (11)

∂F
∂f

- d
dt (∂F

∂f′) ) 0 (12)

df
dt

+ Rf ) 0 (13)

d2f

dt2
) R2f (14)

F ) f′2 + R2f2 (15)
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in which the detailed balance relationQkk′f k′
th ) Qk′kf k

th ensures
symmetry of the matrixWkk′ ) Akk′(f k′

th/f k
th)1/2. By calculating

the time derivative of eq 16 it is then possible to express the
functional F in terms of the quantitiesgk and gk′ through the
relation

which is thus of the form of eq 15. The Boltzmann equation of
motion (eq 1) now appears as a consequence of the Euler eq 12
obtained directly from the functionalF defined in eq 17. We
emphasize at this point that with the definition (eq 17) of the
relevant functional, theexact solutions to the Boltzmann
equation obey the variational principle (eq 11), that is, they
extremize the effective actionJ.

We now use this variational principle obeyed by the exact
solutions as a guide to find “optimal” approximate solutions to
the Boltzmann equation, by postulating a family of trial solutions
of simple form and then directly solving the associated Euler-
Lagrange equation, thus minimizing the effective actionJ
associated with them. To this end, we build into our ansatz the
fact that the distribution becomes thermal at long times by
considering a family of trial solutions of the form

where the endpoint conditions require thatf(∞) ) 0 andf(0) )
1. Sincef(t) does not depend onk, conservation of probability
is guaranteed by the condition

whereak ) fk(0) - f k
th is the deviation of the initial distribution

from the thermal distribution. Our ansatz forgk(t) is thus given
by the functional form

Taking into account the detailed balance condition∑s Wks-
(f s

th)1/2 ) 0, the functional (eq 17) simplifies to

The ansatz (eq 18) that best approximates the evolution of the
Boltzmann equation can now be obtained by simply solving
the associated Euler’s eq 12 for the relaxation functionf(t), that
is

where we have rewritten the matrixWk′k and ãk elements in
terms of the originalAk′k andak elements. Since the coefficient
on the right-hand side of eq 22 is always positive, the only
physical solution is a single exponential of the form

Expressing the elementsAk′k in terms of the ratesQk′k, we obtain
the initial condition-dependent decay rate

We thus have found a variational approximation to the solution
of the Boltzmann equation in the form of eq 18 wheref(t) is
exponential and with a relaxation rate which does depend on
the initial conditions as well as the ratesQk′k. Generally, it carries
information about the initial conditions of the system through
fk(0) as can be seen in eq 24. For cases (i) and (ii) explained in
section II, it is a straightforward exercise to show that this initial
condition effect disappears and that eq 24 reduces to the standard
relaxation approximation. Specifically, the exercise proceeds by
restricting thek sum to two states in case (i) and writingQkk′ )
Q in case (ii).

To be noted is the fact that the variational procedure itself
has determined the exponential time dependence of the function
f(t) in eq 18, the functional form of which was not assumed at
the outset.

IV. Study of the Validity of Our Prescription

To assess the validity of our prescription

when the relaxation rate is determined through our variational
procedure (eq 24), we compare the mobility when evaluated
through the use of the approximate solutions in eqs 25 and 3 to
the exact mobility calculated numerically. We will do so for a
specific system.

We are interested in evaluating the diffusion coefficient and
thus the mobility through the Einstein relationµ ) qD/kBT,
whereq is the charge carrier,D is the diffusion coefficient,T
is the temperature, andkB is the Boltzmann constant. The
diffusion coefficient can be evaluated from the Kubo relation10

whereV(t) is the speed of the particle. The velocity autocorre-
lation function in eq 26 is obtained as the Tr{F(V(t)V + VV(t))/
2} with F being the system density matrix. As is well-known,11

and as can be verified by cyclic permutation within the trace,
the autocorrelation function can be recast as the average velocity
Tr(VK(t)) computed for a specific initial condition on the density
matrix K, namely,K(0) ) (VFth + FthV)/2. While K(0) is the
initial density matrix used in this computation,Fth is the thermal
(equilibrium) density matrix of thesystem. These considerations
which apply equally well for classical and quantum systems
are detailed in ref 11.

The system under consideration is a charge carrier undergoing
diffusive motion in the presence of scattering in a 1D tight-
binding band. It is of considerable physical interest in the theory
of quasi-particle transport in organic materials.12,13In thek-state
representation, we haveVk ) p-1 dεk/dk, with the band energy
εk being given by 2V[1 - cos(ka)] with a being the lattice
constant. We consider for simplicity transition ratesQk′k equal
to τ0

-1 if k′ is a state with lower or equal energy to that ofk.

f(t) ) e-t/τ (23)

1/τ ) x∑
k

(∑
k′*k

Qk′kfk(0) - ∑
k′*k

Qkk′fk′(0))2/f k
th

∑
k

(fk(0) - f k
th)2/f k

th

(24)

fk(t) ) f k
th + ake

-t/τ (25)

D ) ∫0

∞
dt〈V(t)V(0)〉 (26)

dgk(t)

dt
+ ∑

k′
Wkk′gk′(t) ) 0 (16)

F(g′k,gk,t) ) ∑
k

{(g′k)
2 + ∑

p,r

Wkpgp(t)Wkrgr(t)} (17)

fk(t) ) f k
th + akf(t) (18)

∑
k

ak ) 0 (19)

gk(t) ) xf k
th +

ak

xf k
th

f(t) ) gk
th + ãkf(t) (20)

F ) ∑
k

{ãk
2 (df(t)

dt )2

+ ∑
p,r

WkpWkr ãp ãr f2(t)} (21)

d2f(t)

dt2
) ∑

k,p,r

AkpAkrapar

f k
th [∑k

ak
2

f k
th]-1

f(t) (22)
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The corresponding downward rate, that is, whenk′ is a state
with higher energy thank, is obtained through the detailed
balance relation. For this form of the rates, the diffusion constant
can be evaluated irrespective of the number ofk states
considered. We display below the case of a Brillouin zone with
7 states,k ) 0, ((π/3a), ((2/3)(π/a), ((π/a), whose thermal
distribution aref 1,7

th ) exp(-2∆)/Z, f 2,6
th ) exp(-3∆/2)/Z, f 3,5

th

) exp(-∆/2)/Z, f 5
th ) 1/Z with Z ) 1 + exp(-∆/2) + exp(-

3∆/2) + exp(-2∆), and∆ ) 2V/kBT

whereV0 ) 2Vap-1. It is straightforward to compare the exact
analytic expression (eq 27) with the corresponding analytic
expressions for the diffusion constant obtained through our
variational prescription and through the standard RTA. We have
done so in Figure 1 where we have plotted the temperature
dependence of the mobilityµ for each case. A larger number
of k-states do not qualitatively change the plot in Figure 1: our
variational approximation overestimates the exact solution at
all temperatures but, in turn, the standard RTA overestimates
the variational solution at all temperatures. A detailed study with
rates that satisfy detailed balance but drop off exponentially in
k-space, as represented byQk′k that contains a factor exp(-|k′
- k|/σ), also shows no qualitative difference from the result in
Figure 1. The value of the mobility for any given temperature
increases in the three cases asσ decreases. Our variational

approximation gets better asσ increases, that is, as the scattering
range gets smaller. We thus conclude that it is definitely more
accurate to evaluate the temperature dependence of the mobility
via the variational implementation of the RTA that we have
presented in this paper rather than the traditional version for
any temperatureand foranyσ. Surely, the conclusion we draw
is specific to the system we have considered and does not apply
universally. Nevertheless, confidence in the applicability of our
prescription is strengthened by the fact that our illustrative choice
addresses one of the most natural systems to which the RTA is
applied in the literature.

V. Conclusions

We have derived a (probability-preserving) relaxation time
prescription for the solution of the linear Boltzmann equation
used in transport theory that accommodates initial condition
effects. The relaxation timeτ we compute depends explicitly
on initial conditions as shown in eq 24. Our procedure is based
on the implementation of a variational technique.

We have tested our formula (eq 24) by analyzing the mobility
of a carrier in a 1D tight-binding band. We have found that our
procedure provides a more accurate representation of the
mobility than the standard relaxation time procedure used in
the literature and that this is true for the system considered for
any temperature and any scattering range. This conclusion is
surely not universal but provides support to the prescription. It
is hoped that the prescription will find use in practical
computations in transport calculations.
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Figure 1. Comparative examination of the validity of our prescription
and of the standard relaxation time approximation (RTA). Plotted is
the temperature dependence of the mobility for a carrier in a 1D band
obtained exactly (solid line), via our prescription (dashed line), and
via the standard RTA (dotted line). Temperature is expressed in units
of half the carrier bandwidth divided by the Boltzmann constant. It is
significant that our prescription is always more accurate than the
standard RTA.
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