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It is shown that a Bose-Fermi mixture of a degenerate gas of spin-polarized fermions, whose number
significantly exceeds the number of bosons, embedded in a strongly anisotropic trap, is described by the
one-dimensional coupled nonlinear Schrödinger equation for the boson component and the wave equation with
external source for the fermion component. Depending on the type of boson-fermion interaction, the system
may display modulational instability and the existence of solitons in the fermion and boson components,
respectively. Such solitons represent either a local decrease �increase� of the density of both the components or
a decrease of the density in one component and an increase of the density in the other component. It is shown
that the type of the effective interactions can be easily managed by varying the trap geometry or by means of
Feshbach resonance.
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I. INTRODUCTION

Stable coherent structures represent one of the main sub-
jects of interest in the mean-field theory of quantum gases at
zero temperature �1�. In quasi-one-dimensional condensates
of bosonic atoms, such structures are conventionally associ-
ated with solitons: dark solitons in the case of repulsive in-
teractions among atoms, and bright solitons in the case of
attractive interactions. Successful experimental generation of
dark and bright solitons has been reported in Bose-Einstein
condensates in Refs. �2,3�, respectively. Considerable
progress has also occurred in the experimental creation of
more sophisticated condensates, in particular, boson-fermion
�BF� mixtures �see, e.g., �4,5��. The first theoretical studies
of such systems have revealed a number of interesting prop-
erties. One such property is an effective attraction that devel-
ops among bosons due to the boson-fermion interaction �6�
which affects the background distribution and the stability
properties of the condensate �7�. Very recently, numerical
work �8� has shown that localized distributions of condensed
atoms, associated with solitonic trains, can form in a strongly
anisotropic trap even when the boson-boson interaction is
repulsive. In Ref. �9� it has been suggested that the respective
localized states can be interpreted as a matter-wave realiza-
tion of quantum dots.

A boson-fermion mixture can exhibit quite different types
of behavior according to the relative ratio of the two compo-
nents. The model explored in �8,9� addresses a mixture of a
relatively small number of fermions embedded in a much
larger bosonic component. In this paper, we consider the op-
posite situation of a relatively smaller number of bosons em-

bedded in a large fermionic component. Such a large fermion
component can become degenerate, and only a small portion
of the fermions in the vicinity of the Fermi surface partici-
pates in the kinetic processes. If the fermions were also spin
polarized, and thus noninteracting, they would represent a
linear system. It turns out, however �6�, that the presence of
bosons, even in a relatively small number, can introduce non-
linearity into the fermion system, thereby significantly
changing the properties of the system. In the present paper
we obtain dynamical equations governing the effectively
one-dimensional �1D� BF mixture, show, in particular, the
possibility of the appearance of two-component �BF� solitons
in a strongly anisotropic trap, and describe some of the sim-
plest properties of the solitonic solutions. It is to be noted in
this context that two natural limits exist for bosons embed-
ded in a Fermi cloud, depending on the relative densities of
the fermions and bosons. One limit is when the boson num-
ber dominates the fermion number and is the subject of the
analysis in Refs. �8,9�. The other limit is when the fermion
number dominates the boson number. The latter case, as well
as a discussion of the differences in the two cases, is consid-
ered in the present paper. The paper is organized as follows.
In Sec. II, we describe the “Bose-Fermi” system. Section III
explains the various length scales of the system. Section IV
shows the reduction of coupled 3D equations to a single 1D
equation that governs the system. In Sec. V we summarize
our main results and discuss their significance.

II. STATEMENT OF THE PROBLEM

A mixture of bosons and spin-polarized fermions, with a
dominant fermionic component, can be described by coupled
mean-field equations for the boson order parameter ��r , t�
and the fermion density n�r , t�=n0�r�+�n�r , t�, where
n0�r�= �1/6�2���2m /�2��EF−VF�r���3/2, which were derived
in �6�:
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m
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� . �2�

Here M and m are the respective masses of bosons and fer-
mions, the two-body interactions are characterized by the
coefficients g1=4��2abb /M and g2=2��2abf /� with scatter-
ing cross sections abb and abf, and �=Mm / �M +m� �see, e.g.,
�7��, n0�r� is the fermion density described by the Thomas-
Fermi �TF� approximation for degenerate Fermi gas with
Fermi energy EF, and �n�r , t� is the departure of the fermion
density from n0�r�, considered to be small enough:
��n�r , t���n0�r�.

We consider the trap potentials V for both components to
be parabolic and strongly elongated along the x direction:
VB= �M�2 /2��	2x2+r�

2 � and VF= �m
2 /2���2x2+r�
2 �. Here

	 and ��1 in the boson and fermion potentials VB and VF,
respectively, represent the high anisotropy, i.e., the respective
aspect ratios of the traps: � and 
 are the linear oscillator
frequencies of bosons and fermions in the transverse direc-
tion, and r�= �y ,z�.

Introducing the dimensionless variables T= 1
2�t and

R=r /a, where a=�� /M� is the transverse linear oscillator
length of the bosons, and rescaling through

��R,T� = 2���abb�a��r,t� ,

�R,T� = 4�a2�abf�n�r,t� �3�

allow the TF distribution for the fermion density n0�r� to be
written as

0 = KF�EF − ��2X2 + R�
2 ��3/2 �4�

where KF= �2/3����abf� /a��m
 /M��3 and EF
=2�M� /m
��EF /�
� is the dimensionless Fermi energy.
Then Eqs. �1� and �2� acquire the form

i
��

�T
+ �R� − �	2X2 + R�

2 �� − 2�1���2� − �2
M

�
� = 0,

�5�

�21

�T2 = �R · �0�R	 �

0
1/31 + ��2���2
� �6�

where 1�R ,T�=�R ,T�−0�R�, �1,2=sgn�g1,2�, �

= 4
3 ��3� /2��M /m�3�a / �abf���2/3 and �=2�abf /abb��M2 /�m�.

The normalization conditions are

 ���2dR = 4�
�abb�

a
Nb and   dR = 4�

�abf�
a

Nf , �7�

Nb and Nf being the total boson and fermion numbers.

III. SCALING

In the present paper we consider the case when the trans-
verse dimension of the Fermi component, RF, significantly

exceeds the transverse dimension of the Bose component,
RB. The orders of the respective scales can be identified as
RF=�EF �which follows from Eq. �4�� and RB= 1

2 , which in
dimensionless units correspond to the transverse oscillator
length of the low density Bose component. Thus we have
EF�1.

Multiple-scale expansions �10�, involving a small param-
eter identified as the ratio between the transverse oscillator
length and the healing length, provide a self-consistent and
controllable approach in the case of a one-component Bose-
Einstein condensate �BEC�, and reduce the 3D Gross-
Pitaevskii equation to an effective 1D model �11�. The use of
1D models, in turn, reveals interesting features of the low-
dimensional dynamics, allows one to obtain approximate
analytical solutions, and results in dramatical reduction of
computational resources in studies of the evolution pro-
cesses. Since BF mixtures are two-component systems char-
acterized by a variety of scales, a natural question arises: Is
such a reduction possible in a Bose-Fermi mixture? This is
the question we address in our present study through a gen-
eralization of the approach of Ref. �11�, when the fermion
number significantly exceeds the number of bosons.

To this end we first identify the small parameter
�=a /��1, where �= �8�nb�abb��−1/2 is the boson healing
length �nb is the maximal boson density�. We restrict our
analysis to fermion numbers large enough to satisfy
RF

2 /RB
2 �EF=�F /�2, where �F�1 is a parameter of the prob-

lem. Then we can describe the condition EF�1, using the
same single small parameter �. This scaling allows us �by
analogy with Ref. �6�� to concentrate on the spatial domain,

limited in the transverse direction by some radius R̃, which

satisfies the condition RB� R̃�RF. Physically, such scaling
is available due to Pauli’s exclusion principle which forces
the fermions to occupy a much larger region relative to the

bosons. Specifically, we impose R̃=�−1/2. The elongation of
the fermion trap is expressed through ���1/2. The spatial
domain of the fermions in the longitudinal direction is de-
fined by the constraint, �2�2X2�1, which gives X��−1,
while for the case of bosons when 	����1/2, we have that
X��−1/2. Thus we consider the situation in which the boson
component is embedded inside the fermion system.

Subject to the above conditions the TF distribution �4� can
be expanded in the Taylor series

0 = KFEF
3/2	1 −

3�2

2�F
��2X2 + R�

2 � + O��3�
 . �8�

We look for a solution in the form of the series ��R ,T�
=��1+�2�2+¯, and �R ,T�=0+�21+¯. To justify the
above expansion, we introduce a characteristic width � of the
bosonic excitation in the axial direction so that the boson
density may be connected to their total number by means of
the estimate Nb���a2n. This allows us to rewrite the small
parameter as ���8N�abb� /�. In the case of a localized dis-
tribution, ���, while for the estimates involving plane
waves and dark solitons ��L where L=a /�	 is the longi-
tudinal dimension of the condensate. Then, for excitations
with ���, from Eq. �7� we readily obtain the estimate
��1�2�1. On the other hand, the scaling we have introduced
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implies ���2��−0� which corroborates the fact that the bo-
son and fermion numbers involved in the dynamics are of the
same order �see also �6��. Indeed in momentum space, the
fermions in question are located in the vicinity of the Fermi
surface; the actual number of fermions, , is much bigger
than its time dependent part 1. In other words �−0��0 is
verified.

IV. ONE-DIMENSIONAL EQUATIONS

The natural occurrence of the small parameter � in the
problem suggests a perturbation treatment in powers of �. A
regular analysis, however, gives rise to secular terms and,
consequently, to an inaccurate description. Hence an applica-
tion of multiple-scale analysis becomes necessary. Following
standard procedures �see, e.g., �11��, we introduce scaled
variables tj =� jT and xj =� jX, regarded as independent vari-
ables. Substituting the above expansions for time and space
into Eq. �5� and gathering the terms of the same order in �
we rewrite the equation for a boson macroscopic wave func-
tion in Eq. �1�, in the form of a set of equations

	i
�

�t0
+ L
� j = Fj , �9�

where j=1,2 , . . ., F1=0,

F2 = − i
��1

�t1
− 2

�2�1

�x0�x1
,

F3 = − i
��1

�t2
− 2

�2�1

�x0�x2
−

�2�1

�x1
2 − i

��2

�t1
− 2

�2�2

�x0�x1

+ 2�1��1�2�1 + �2
M

�
1�1

and j=1,2 , . . . coincides with the order of � at which the
equation is obtained. The operator L in Eq. �9� is given by

L � L� + Lx − �2
M

�
KFEF

3/2,

L� = − �� + ��
2 R�

2 , ��
2 = 1 − �2

3M

4�
KFEF

1/2,

Lx = −
�2

�x0
2 + �x

2x0
2, �x

2 = 	2 − �2
3M

4�
KFEF

1/2�2. �10�

Here the corresponding eigenfunctions of the operators are
defined as L��lm=�lm�lm�R�� and Lx�n�x0�=�n�n�x0�
where �n= �2n+1��x, �lm=2�l+m+1���, and the scaling
chosen guarantees that ���0.

The basic idea of our analysis is to look for a solution to
Eq. �5�, which describes the evolution of the background
state of the mixture, in the form

�1 = �x
−1/4A�x1,t1��0�x0��0�R��e−i
0t0. �11�

The envelope function in Eq. �11� is a function of slow vari-
ables, �x1 ,x2 , . . . , t1 , t2 , . . . �, from which only the most rapid

are indicated explicitly, and is independent of x0, t0,
and R�. In Eq. �11� �0�x0�= ��x /��1/4 exp�− 1

2�xx0
2� and

�0�R��= ��� /��1/2 exp�− 1
2��R�

2 � are the normalized eigen-
functions of Lx and L�, i.e., the ground-state wave functions
of the 1D and 2D harmonic oscillators, respectively. The
factor �x

−1/4 is introduced to provide the requirement
�A�2�1 so that the condition ��1�2�1, established above is
satisfied. By direct substitution one verifies that ansatz �11�
satisfies the equation obtained in the first order of � �j=1�
when 
0=�2�M /��KFEF

3/2− ��x+2���.
The primary goal is the determination of the time evolu-

tion of the envelope function, A�x1 , t1� as a solvability con-
dition �10� for the multiple-scale analysis. To this end we
pass to the second-order �j=2� equation, and find that

	i
�

�t0
+ L
�2 = − i

��1

�t1
− 2

�2�1

�x0�x1
. �12�

Using an ansatz for �2, such that it is given as the expansion
over the complete set of the eigenfunctions �n�x� ,�m�R��
and subjecting it to the initial condition that there are no
excited modes �m�R�� with m=0, �2 can be written as

�2 = �x
−1/4�

n

Bn�n�0 exp�− i
0t0� . �13�

Substituting the above form of �2 into the second-order
equation �9�, we find

�
n

�
0 − 
n�Bn�n�0 = 	− i
�A

�t1
�0 − 2

�A

�x1

��0

�x0

�0.

We can see from the above condition that the amplitude Bn
becomes infinite, when n=0. Such terms are referred to as
“secular terms” �10�. The method of multiple scales allows
us to identify and eliminate such secular terms by requiring
F2 to be orthogonal to �1. From this condition, we can obtain
the solvability condition for A to be �A /�t1=0 and thus A
does not depend on t1. We write A=A�t2 ,x1� and when
n�0, we find the solution to the second order,

�2 = �x
−1/4 �A

�x1
�
n=1

�
�n,0

�0 − �n
�n�x0��0�R��e−i
0t0, �14�

where �n,0=−2�−�
� �n�x��d /dx��0�x�dx.

The equation of the third order, however, involves the
dependence on the fermion density, which means that it must
be solved together with Eq. �6�, which in the new, scaled
variables, after substituting for �1 from Eq. �11�, acquires the
form

�21

�t0
2 = vF

2�R0

2 1 + ���R0,t0��A�2, �15�

where R0= �x0 ,y ,z� and vF
2 =�KF

2/3EF,

�� = �KFEF
3/2�2	�0

2��
2 �0

2 + ��0�2
�2

�x0
2�0

2
 . �16�

In the physical variables, vF
2 = 1

4vF
2�2a2=4EF /32m, and

therefore in what follows, we refer to vF as the Fermi veloc-
ity. Now Eq. �15� acquires a transparent physical meaning.
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Fermions as quasiparticles are excited on the Fermi surface,
and thus propagate with the Fermi velocity along the con-
densate. Their dynamics is described by the wave equation
with a source term, which describes the effect of the boson
distribution on the fermion density.

Because A�x1 , t2� is independent of R�, x0, and t0, it can
be treated as a constant in Eq. �15�. Since �0�x0� changes on
the scale of the longitudinal dimension of the boson compo-
nent, ���, while �0�R�� changes on the scale of transverse
dimension a, the effect defined by the curvature of �0

2�R��
dominates in �� and we can neglect the second term in Eq.
�16�. We are interested in coupled fermion-boson excitations
�in particular, solitons� when 1 is represented by the particu-
lar solution of the inhomogeneous equation �15� as shown
below:

1 = −
�vF�2

�3/2�3/2���A�2e−��R�
2

. �17�

Comparing 1 to �1 from Eq. �11�, given by

�1 =���

�
A�x1,t2�e−��x/2�x0

2
e−���/2�R�

2
e−i
0t0, �18�

we find that 1 is also governed by the same envelope func-
tion A�x1 , t2� as the bosons. Substituting this expression for
1 in F3 we can write the third-order expansion �j=3� for the
bosons as

	i
�

�t0
+ L
�3 = − i

��1

�t2
− 2

�2�1

�x0�x2
−

�2�1

�x1
2 − i

��2

�t1
− 2

�2�2

�x0�x1

+ 2�1��1�2�1 − 	 �vF��

����3/2

M

�

�A�2e−��R�

2
�1.

�19�

Here we have used the fact that �2
2=1. Requiring the absence

of secular terms in the third-order equation of the multiple
scale expansion, which is the same as requiring the orthogo-
nality of F3 with �2 and �1, and employing explict expres-
sions for �1 and �2, given by Eqs. �18� and �14�, respec-
tively, we find that A�x1 , t2� satisfies

i
�A

�t2
+ D

�2A

�x1
2 + �ef f�A�2A = 0, �20�

which is the solvability condition we seek. In Eq. �20�,
D=1+�n=1

� ���n0�2 / ��0−�n��=1/2; �ef f =−�bb+�bf is the ef-
fective nonlinearity characterizing the combined effect of:
direct boson-boson interactions, �bb= �2�1 / �2��3/2���, and
the interactions among bosons induced by boson-fermion
scattering processes, �bf = ��MvF /2�3/2�3/2����. The solu-
tion to Eq. �20� is known exactly. This is the main result of
our analysis and shows that bright and dark soliton solutions
are possible for the envelope function. According to the
method of multiple scales, t2=�2T and x1=�X; thus we can
rewrite the solution, A�x1 , t2� of Eq. �20� in terms of our
original scaled variables X and T as A��X ,�2T�. Equation
�20� along with Eqs. �18� and �17� describes the evolution of
the original system as defined by Eqs. �5� and �6� for times
up to 1/�2 ���1�.

When the boson-fermion interaction is turned off
��bf =0�, we expect the boson and fermion components to be
independent of each other, i.e., Eqs. �5� and �6� are decou-
pled. In such a case, �ef f =−�bb, and from Eqs. �17�, �18�, and
�20�, we see that the fermion density is given by the Thomas-
Fermi approximation, Eq. �4� and the boson system is de-
scribed by the nonlinear Schrödinger �NLS� equation as ex-
pected. When �bf �0, we see that boson-fermion interactions
always lead to attractive �effective� interactions between the
bosons. This qualitatively agrees with earlier results �6�. Our
analysis below shows that the quantitative dependence of the
behavior of the mixture on the system parameters is very
different for the case when the number of fermions is much
less than the number of bosons compared with the case when
the number of fermions is much larger than the number of
bosons.

V. DISCUSSION AND ESTIMATES FOR REAL
CONDENSATES

Since our analysis has resulted in the NLS equation �20�
governing the dynamics of small amplitude excitation in BF
mixtures, we know at once that several well-known conse-
quences of the NLS equation will follow, including modula-
tional instability of plane waves, and existence of bright and
dark solitons, depending on the sign of �ef f. When
D�ef f �0, the envelope function, A is given by the bright
soliton solution �sech��X�� and when D�ef f �0, it is given by
the dark soliton solution �tanh��X��. Since D�0, the bright
or dark soliton solution is solely dictated by the sign of �ef f.
In the case where boson-boson and boson-fermion interac-
tions have different signs, the observable phenomena de-
pends on the relative values of �bb and �bf. One can easily
find the critical value for the boson-fermion interaction at
which both interactions are balanced, i.e., when �ef f =0:

�abf
cr� = 	�

�2

m2�m

M

��

EF

1/2

�aabb. �21�

This value that we obtain differs from that reported in �8�.
This is expected given that the underlying physical condi-
tions are different in the two cases. Note, in particular, the
weak dependence of abf

cr in Eq. �21� on the fermion number,
�abf

cr��NF
−1/12 in contrast to the dependence �abf

cr��NF
−1/2 re-

ported in �8�. This is due to the fact that in our case we
consider a small number of bosons interacting with a large
system of degenerate Fermi liquid and changing the number
of fermions does not have much impact while in �8� the
small number of fermions are trapped by a large system of
bosons. In such a case, the effect of interaction with each
fermion becomes important and hence a large dependence on
the fermion number. In our result, we also find that
�abf

cr���abb while in �8� �abf
cr��abb

2/5.
When �abf� equals the critical value, the system becomes

an ideal gas, described by the linear Schrödinger equation. If
�abf� is larger than the above critical value, �bf ��bb, interac-
tion between bosons and fermions dominates, leading to a
negative effective attractive interaction between the bosons.
This is the case where modulational instability and bright
solitons can be observed. Eq. �21� shows that value of �abf

cr�
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can be manipulated by changing the radial trap size, a. Note
that using the parameters of the 87Rb-40K mixture experi-
ment �4�, �=2��197 Hz, abb= +5.25 nm, and the Fermi
temperature 0.25 �K, allows us to compute �abf

cr��32 nm.
On the other hand, using the data of the 7Li-6Li mixture, Ref.
�5�, �=16.14 kHz, abb=−1.35 nm, the Fermi temperature
4�K, gives us �abf

cr��2.32 nm. An alternative way of making
the boson-fermion interactions to be dominant is to increase
abf �or decrease �abb�� �8�.

An interesting peculiarity of the bright soliton solution of
Eq. �20� follows from Eq. �17�. If the fermion-boson inter-
action is repulsive ��2�0�, the fermion density has a relative
negative sign compared to the boson density and is lower in
the region of the soliton than outside. In this context, the
terminology “bright soliton” does not reflect the situation
precisely, because in the fermionic component one observes
darkening. To illustrate this, we plot the densities of bosons
�solid line� and fermions for �2�0 �dash-dotted line� and
�2�0 �dashed line� along the elongated trap direction �x
direction� in Fig. 1 for a 87Rb-40K mixture �4�, when the
envelope solution of Eq. �20� is a bright soliton ��ef f �0�.
While for attractive boson-fermion interactions one has ei-
ther bright-bright or dark-dark solitons, in the case of repul-
sive boson-fermion interactions one can excite bright-dark
and dark-bright solitons. Here, the first and second term refer
to bosons and fermions, respectively �see also Fig. 1 for the
explanation of the terminology for the fermions�.

For the calculations presented in the present paper, the
choice of an appropriate scaling in finding the small param-
eter � was of primary importance. In order to check its fea-
sibility for experimentally available atomic gases, we take
into account the possibility of a change of the scattering
length by means of Feshbach resonance and consider an ex-

ample using 87Rb-40K mixture �4�, with a radial size of
a�2 �m, and longitudinal extension L�200 �m with the
Fermi temperature of order of 0.25 �K. Taking the number
of rubidium atoms to be 500, the scattering length
abb=0.1 nm, and the width of the soliton ��20 �m, we ob-
tain the mean healing length ��14 �m, which gives
�=0.14, EF=3910�1, and �F�76.6. We also notice that for
the case of the 7Li-6Li mixture �5� with the Fermi tempera-
ture 4 �K we obtain EF=500�1, which also matches with
the conditions of the application of the theory. Figure 1
shows the formation of the two-component soliton for such a
87Rb-40K mixture with �abf�=20 nm, when the boson-
fermion interaction is attractive ��2�0� and repulsive
��2�0�.

VI. CONCLUSION

In this paper we have considered a boson-fermion mixture
where the number of fermions is much larger than the num-
ber of bosons and is confined by a strongly anisotropic trap.
It has been shown that both the boson and fermion systems
are described by an effective 1D nonlinear Schrödinger equa-
tion �20� and thus can display modulational instability and
the existence of bright and dark solitons. Such solitons in-
volve most of the bosons of the system and a relatively small
portion of the fermions in the vicinity of the Fermi surface,
where the soliton propagation is along the axial direction of
the condensate. In a system without coupling between the
bosons and the fermions, the fermions would tend to propa-
gate with their Fermi velocity. However, the coupling to the
bosons that is present in our system forces them to form a
slow �and even static� solitary excitation following the be-
havior of the bosons.

A remarkable feature of the result obtained is that the
soliton dynamics is governed by a single nonlinear
Schrödinger equation, even though, physically, it describes
two separate systems. The soliton solution of the NLS equa-
tion can describe either an increase or a decrease in the den-
sities of the two components. In the case of the attractive
interaction between the components, the solitons may de-
scribe simultaneous increase or decrease of the densities of
both the components of the mixture. In the case of the repul-
sive interactions between the components on the other hand,
they can describe an increase of the density in one compo-
nent and a decrease of the density in the other component.
This is quite an unusual situation: there is only one soliton
solution to the NLS equation for a given effective nonlinear-
ity, however it describes opposite effects in the two compo-
nents. Another feature to be mentioned is that due to the
finite extension of the condensate in the longitudinal direc-
tion, an internal mode is excited. This excitation results in
the effective mass of the bosons, making up the soliton, be-
ing twice as large as the real mass, which does not happen in
the case of infinite extent of the trap. We have explicitly
shown that the type of the effective interactions can be ex-
perimentally manipulated either by just affecting the trap ge-
ometry or by means of Feshbach resonance �the latter option
being also efficient in the opposite case of relatively small
number of fermions �8��. We hope that observational at-
tempts to verify these physical aspects of the results we have
obtained will be made in future experiments.

FIG. 1. Two-component soliton formation along the elongated
trap direction �x direction� for the 87Rb-40K mixture example. The
solid line shows the density of bosons, ���r , t��2, corresponding to
the bright soliton solution for the envelope function. The dashed
and dash-dotted lines show the fermion density �n�r , t� for repul-
sive and attractive interactions between bosons and fermions, re-
spectively. Taking into account the nonzero background, the excita-
tion of fermions in the former case can be associated with a
conventional dark soliton, while in the latter case, it is a bright-
against-a-background soliton.
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