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Abstract

A theory is provided for the estimation of home ranges of animals from displacement measurement procedures. The theoretical tool

used is the Fokker–Planck equation, its characteristic quantities being the diffusion constant which describes the motion of the animals,

and the attractive potential which addresses their tendency to live in restricted regions, e.g., near their burrows. The measurement

technique is shown to correspond to the calculation of a certain kind of mean square displacement of the animals relevant to the specific

probing window in space corresponding to the region of observation. The output of the theory is a sigmoid curve of the observable mean

square displacement as a function of the ratio of distances characteristic of the home range and the measurement window, along with an

explicit prescription to extract the home range from observations. Applications of the theory to rodent movement in Panama and New

Mexico are pointed out. An analysis is given of the sensitivity of our theory to the choice of the confining potential via the use of various

representative cases. A comparison is provided between home range size inferred from our method and from other procedures employed

in the literature. Consequences of home range overlap are also discussed.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The use of space by animals is the result of a combination
of internal factors, such as the physiology and morphology
of the animal, and external factors such as the environment.
It is well known that mammals, in order to conduct their
daily activity, occupy only part of their available environ-
ment: the so-called home range (Burt, 1943). A recent study
on the scaling of home range size as function of animal body
mass or metabolic rate (Jetz et al., 2004) shows that the home
range dimensions are a trade-off between two ingredients:
the necessity for harvesting resources and the detection and
response to intrusion. On one hand, the home range has to
e front matter r 2005 Elsevier Ltd. All rights reserved.
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be large enough to meet energy requirements; on the other, it
has to be small enough for the resident to be protected from
intrusions of same-species foraging neighbours (Buskirk,
2004). The importance of learning about home ranges stems
not only from the intellectual need to understand animal
movement (Okubo, 1980), but also from the practical value
in the determination of the size of the home range: it is
intimately related to a variety of ecological phenomena
ranging from social organization to mating behaviour and
disease transmission (Wolff, 1997; Yates et al., 2002;
Parmenter and MacMahon, 1983; Abramson and Kenkre,
2002; Abramson et al., 2003; Kenkre, 2003, 2004; Kenkre
et al., 2004). There is already a body of biological literature
on home ranges and related animal movements (Okubo,
1980; Murray, 1993). It is useful to build upon that literature
to provide a comprehensive mathematical description of the
dynamics of ecological systems.
Given the spatial probability density for an individual,

the home range size has been typically defined as the
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contour that contains a fixed percentage (usually 95%) of
the total volume under the distribution (Jennrich and
Turner, 1969; Ford and Krumme, 1979). Home range size
can be estimated from data of recorded locations over a
sufficiently large period of time. These data can be
obtained through a variety of methods including radio
tracking and live trapping. Different techniques have been
proposed for estimating home range size from location
data of single animals (see e.g. the review by Worton
(1987)). The various approaches can be divided into three
categories. In the first, estimates are made using the
peripheral points of the location data. In the second, the
data are fitted to a pre-assumed probability distribution. In
the third, the probability distribution is determined only
from the statistical properties of the data (such as the one
proposed by Anderson (1982)). The first method gives the
maximum extent of the animal’s range while the other two
methods give a profile of the probability density inside the
home range.

In order to obtain reasonable accuracy, all three
procedures have the requirement that the number of
locations recorded for each animal be large (Ford and
Krumme, 1979). Unless unusual efforts are made during
the field sampling, the number of locations for each
individual is typically not very large (e.g. Mares et al.,
1980; Bergstrom, 1988). On the other hand, the number of
individuals is typically quite large. Home range estimation
from location data of many individuals, therefore, avoids
such problems (Ford and Krumme, 1979): the positions are
averaged over all the animals recorded.

The purpose of the present paper is to develop a
theoretical model which gives a simple prescription for
the extraction of home range parameters from location
data of animal population inside a limited region of space.
Such a limited window of observation represents, in the
case of radiotelemetry, simply the region over which the
tracking is performed; in the case of mark-recapture
observations it represents the size of the trapping array,
in which an animal is captured, tagged and then recorded
every time it is recaptured (Parmenter et al., 2003). It is well
known that the former method is preferable by far because
of the absence of the need to account for animal–trap
interaction. Our theoretical procedure applies directly to
radiotelemetry observations but can also be used for
trapping observations if additional assumptions can be
reasonably made concerning animal–trap interactions.

In the model we suggest, the motion of each animal is
represented by diffusion in a confining potential, the latter
representing the attraction of the animal to the home-place,
the burrow. The potential has a characteristic width
associated with the size of the home range, which we call
L. The underlying equation in our approach is the
Fokker–Planck equation for the probability distribution
for each individual (Okubo, 1980; Risken, 1989). The
stationary solution of this Fokker–Planck equation is used
to calculate the infinite-time limit of the mean square
displacement saturation value of all the individuals as
function of L. Comparison with the measured mean square
displacement allows then the determination of the home
range size, expressed here in units of length. The home
range size has been typically denoted in the literature in
term of an area. The relation to our description is simply
that the area is given by the product of L for the two
directions. Application of our procedure to rodent
measurements in Panama and in New Mexico may be
found in Giuggioli et al. (2004), Abramson et al. (2004)
where our model in its simplest form has been successfully
used to extract not only home range sizes but also diffusion
constants from measurements of rodent populations.
The practical output of our present theoretical procedure

is a saturation curve for the observed mean square
displacement as a function of L=G, the ratio of the home
range to G, a length that is characteristic of the size of the
observation window. We predict a sigmoid shape for the
saturation curve. An immediate consequence is that, for
the greatest accuracy in the measurement of the home
range, the observation window should be of the order of
the home range. For certain potentials it is possible to write
down simple analytical expressions for the saturation
curve. For others the curve is obtained through numerical
integration. Our theory also addresses the distribution of
home ranges according to habitat, equivalently home range
overlap, a quantity independently accessible through
allometric scaling arguments (Jetz et al., 2004).
The paper is organized as follows. The general problem

of calculating the average mean square displacement for a
population of individuals, each one living in its own home
range, and observed only inside a spatially limited window,
is addressed in Section 2. The sensitivity of the saturation
curve to the choice of the confining potential is studied in
Section 3 through various representative cases. The case of
a non-uniform distribution of home ranges and considera-
tions for experimentally determining the average inter-
home distance (related to the home range overlap) is the
subject of Section 4. The comparison between home range
size inferred from our method and the so-called convex
polygon method, usually employed in the literature, forms
Section 5, and conclusions are in Section 6.

2. Mean square displacement in a probing window:

general considerations

In order to model the motion of an animal living in its
home range, it is necessary to describe two tendencies of
the animal: to move in a restricted region, including in
some cases biased motion towards its burrow which
provides it with food and safety, and to execute a roaming
motion superposed on that restricted or biased motion. To
incorporate these two features in our description we use a
Fokker–Planck equation for the probability distribution
Pðx; tÞ

qPðx; tÞ
qt

¼
q
qx

dUðxÞ

dx
Pðx; tÞ

� �
þD

q2Pðx; tÞ
qx2

, (1)
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wherein D is the diffusion coefficient of the animal and
UðxÞ is the potential in which the animal is forced to roam.
The potential UðxÞ is a representation of the bias or
reduced randomness associated with the walk. A pure
random walk as in a simple diffusive process has UðxÞ ¼ 0.
When UðxÞa0 we identify its characteristic length with the
home range size L. For a clear demonstration of how biotic
random walks in continuous time in a confining potential
may lead to a Fokker–Planck equation, we refer the reader
to Okubo and Grünbaum (see Okubo, 1980, p. 144).

The two-dimensional counterpart of Eq. (1), written in
polar coordinates, is

qPðr;f; tÞ
qt

¼
1

r

q
qr

r
qUðr;fÞ

qr
Pðr;f; tÞ þD

qPðr;f; tÞ
qr

� �� �
þ

1

r2
q
qr

qUðr;fÞ
qf

Pðr;f; tÞ þD
qPðr;f; tÞ

qf

� �
.

ð2Þ

The description provided by Eq. (2) would be appropriate
for a wide range of animal motion contexts including those
that involve non-circular home ranges which would
correspond to f-dependent Uðr;fÞ. The third dimension
is very rarely required but can be easily incorporated. All
the essential concepts are, however, easily represented
through the description provided by the one-dimensional
version. Therefore, we restrict ourselves in the present
paper to Eq. (1). It is straightforward to generalize all
considerations to higher dimensions if required.

The overall characteristics of the motion can be obtained
by calculating just the moments of the distribution Pðx; tÞ
rather than the full Pðx; tÞ which entails an integration of
the probability. In a typical experiment a probing window
is used, i.e., the animal is observed only inside a limited
region of space. The integration to calculate the moments is
then performed only over the probing window. The second
moment of Pðx; tÞ, i.e., the mean square displacement, is
given by

hDx2ðtÞi ¼

RG=2
�G=2 dxðx� x0Þ

2Px0ðx; tÞRG=2
�G=2 dxPx0 ðx; tÞ

, (3)

where G is the dimension of the window and x0 is the
position of the animal at time t ¼ 0. Because initially each
animal can be anywhere inside G, the numerator and
denominator of Eq. (3) have to be averaged over all the
possible initial positions inside the window. We then have,
for the average,

hhDx2ðtÞii

¼

RG=2
�G=2 dx0

RG=2
�G=2 dxðx� x0Þ

2Pxc ;x0ðx; 0ÞPxc;x0ðx; tÞRG=2
�G=2 dx0

RG=2
�G=2 dxPxc ;x0 ðx; 0ÞPxc;x0ðx; tÞ

. ð4Þ

We have introduced here the label xc to represent the
burrow position of each animal. Eq. (4) is the contribution
to the mean square displacement of an animal whose
burrow is at xc. A further average over the distribution of
burrow positions is necessary. If this distribution is
denoted by rðxcÞ, the observed mean square displacement
within the window of size G is given by

Dx2ðtÞ ¼

R1
�1

dxcrðxcÞ
RG=2
�G=2 dx0

RG=2
�G=2 dxðx� x0Þ

2Pxc ;x0 ðx; 0ÞPxc;x0 ðx; tÞR1
�1

dxcrðxcÞ
RG=2
�G=2 dx0

R G=2
�G=2 dxPxc ;x0ðx; 0ÞPxc;x0 ðx; tÞ

.

(5)

Short-time measurements of Dx2ðtÞ can be used (Giuggioli
et al., 2004; Abramson et al., 2004) to obtain the diffusion
constant D. In the present paper we are interested only in
the home ranges, consequently in the infinite time limit of
Eq. (5) which requires only the steady state solution, and
corresponds to observations of positions that can be
regarded as uncorrelated in time.
Analytic solutions of the Fokker–Planck equation for all

times are known only for very few cases of UðxÞ. However,
steady state solutions are known for any potential explicitly
in terms of an integral (Risken, 1989; Kuś and Kenkre,
1992; Parris et al., 2001)

Pxc;x0ðx; t!þ1Þ ¼
e�Uðx�xcÞ=DR1
�1

dx0e�Uðx0Þ=D
. (6)

Eq. (5) for t!1 can, thus, be written as

Dx2
ss ¼

R1
�1

dxcrðxcÞ
RG=2
�G=2 dx0

RG=2
�G=2 dxðx� x0Þ

2e�
Uðx0�xcÞþUðx�xcÞ

DR1
�1

dxcrðxcÞ
RG=2
�G=2 dx0

RG=2
�G=2 dxe�

Uðx0�xcÞþUðx�xcÞ

D

,

(7)

and further reexpressed in terms of quantities related to
moments of the steady state probability density, equiva-
lently of exp½�UðxÞ=D�:

Dx2
ss ¼ 2

Z 1
�1

dxcrðxcÞ

Z G=2�xc

�G=2�xc

dxe�
UðxÞ

D

 !"(

�

Z G=2�xc

�G=2�xc

dxx2e�
UðxÞ

D

 !
�

Z G=2�xc

�G=2�xc

dxxe�
UðxÞ

D

 !2
359=;

�

Z 1
�1

dxcrðxcÞ

Z G=2�xc

�G=2�xc

dxe�
UðxÞ

D

 !2
24 358<:

9=;
�1

. ð8Þ

Expression (7) can be reduced further if the burrow
distribution rðxcÞ is uniform in space. We obtain

Dx2
ss ¼

G
RG

�G
dyy2gðyÞ � ð

RG

0 dyy3gðyÞ �
R 0
�G

dyy3gðyÞÞ

G
RG

�G
dygðyÞ � ð

RG

0 dyygðyÞ �
R 0
�G

dyygðyÞÞ
,

(9)

where gðyÞ is the convolution of exp½�UðxÞ=D� with itself:

gðyÞ ¼

Z 1
�1

dxce
�

U ½xc�þU ½xc�y�
D . (10)

If the potential UðxÞ remains finite for all finite values
of x, gðyÞ ¼ gð�yÞ, and it is possible to write a simpler
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Fig. 1. Mean square displacement at saturation for four different

potentials: a box potential (dashed line), a harmonic potential (solid line),

and two logarithmic potentials (see text for definition) one with n ¼ 3
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form of Eq. (9):

Dx2
ss ¼

RG

0
dyðG � yÞy2gðyÞRG

0 dyðG � yÞgðyÞ
. (11)

Clearly, the observation window of width G can be
interpreted as a probe into the system whose characteristic
width is L. The mean square displacement depends on the
relative magnitude of L and G of the probe. In the limit of
an infinitely large probe, ðDx2

ssÞ
1=2 measures simply the

characteristic length of the system. It is thus natural to
define the home range length L for arbitrary potentials as
the square root of the limit G!1 of Eq. (9),

L ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiRþ1
�1

dyy2gðyÞRþ1
�1

dygðyÞ

vuut , (12)

when such a limit exists. If the probe is very small
compared to the home range width, the observation
window will measure a quantity associated with the width
of the grid. In fact gðyÞ becomes a constant in the limit
L!1 and Eq. (11) gives G2=6 for the mean square
displacement.1

In a recent article, one of the present authors (Kenkre,
2005) has given an alternate formulation in terms of the
Fourier transform of the steady state probability distribu-
tion (6). It has been shown there that the mean square
displacement is given simply in terms of Fourier-space
integrals of the product of the square of the sine function
(which carries information about the probe) with, respec-
tively, the square, and the derivative of the square, of the
transform of the steady state probabilities (which carry
information about the home ranges). Alternative expres-
sions equivalent to Eqs. (9) and (12), respectively, are given
in Kenkre (2005) as

Dx2
ss ¼ �

R1
�1

dk
q2 bP2
ðkÞ

qk2

½1� cosðGkÞ�

k2R1
�1

dkbP2
ðkÞ
½1� cosðGkÞ�

k2

(13)

and

L2 ¼ �2

q2 bPðkÞ
qk2bPðkÞ

��������
k¼0

¼ 2

Rþ1
0 dyy2e�

UðyÞ
DRþ1

0
dye�

UðyÞ
D

, (14)

where bPðkÞ is the Fourier transform of exp½�UðxÞ=D�.
Clearly, a dimensionless quantity of crucial importance

to the analysis is the ratio z of the home range to the
observational probe length G:

z ¼ L=G. (15)

In the next section we study the functional dependence of
the saturation curve on this quantity z with attention to the
1While definition (12) of the home range L is the most natural, alternate

definitions are possible as used, e.g., in Abramson et al. (2004).
effects of the details of the confining potential, assuming
that rðxcÞ is a constant.
3. Dependence on the details of the confining potential

The precise shape of the confining potential UðxÞ

obviously depends on the detail of animal movement, such
as habitat and distance between neighbours. Since this
detail is largely unavailable, it is important to determine
the sensitivity of the deduced value of the home range size
L to the choice of UðxÞ. It is clear that, when plotted as a
function of z (see Eq. (15)), the mean square displacement
Dx2

ss for each potential starts out as L2 when z! 0 and
saturates to G2=6 when z!1.
Extensive studies we have carried out with different

potentials have made it clear that the curvature at the
bottom and the steepness with which UðxÞ becomes
infinite both play a role in shaping the saturation curve
of Dx2

ss. More precisely, the rise of Dx2
ss is controlled by

the steepness of the potential when x=Lb1: the steeper the
rise to infinity of the potential, the smaller the value of z for
which the saturation curve grows faster than the L2

dependence at L ¼ 0. In addition, the curvature of UðxÞ

for x=L51 determines the way Dx2
ss approaches the

value G2=6: the larger the curvature, the slower it
approaches the asymptote G2=6. In Fig. 1 we show this
dependence by comparing four characteristic potentials: a
box potential, a harmonic potential and two types of
logarithmic potentials.
(dotted line) and the other with n ¼ 8 (dash-dotted line). The inset shows

the corresponding stationary distributions PðxÞ as obtained from Eq. (6)

by putting xc ¼ 0.
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3.1. Box and harmonic potentials

The box potential has the steepest rise among the four
curves in Fig. 1, since it diverges at a finite distance.
Observe also that it is the slowest to reach G2=6, being the
one with the smallest curvature (zero) close to the origin.
Such a potential has been considered in our previous
work (Giuggioli et al., 2004; Abramson et al., 2004) for
extracting home range sizes from mark-recapture data for
two different rodent populations. In those investigations
the saturation curve was numerically simulated. However,
it is possible to calculate analytically all the integrals in
Eq. (8) by selecting judiciously the limit of integration for
the variable xc as function of the relative dimension of the
box width and the probe width. The resulting expression in
terms of z is given by

Dx2
ss

G2=6
¼

18z2

5

ð5� 3
ffiffiffi
6
p

zÞ

ð3�
ffiffiffi
6
p

zÞ
for zo

ffiffiffi
6
p

;

3

5

ð3� 5
ffiffiffi
6
p

zÞ

ð1� 3
ffiffiffi
6
p

zÞ
for z4

ffiffiffi
6
p

:

8>>>><>>>>: (16)

The limiting behaviour is that Dx2
ss ’ L2 for small z and

Dx2
ss ’ G2=6� 4=ð15

ffiffiffi
6
p

zÞ for large z.
The harmonic potential has been used in one of our

previous studies (Abramson et al., 2004) for extracting the
home range size for the deer mouse, Peromyscus manicu-

latus, in New Mexico. It was shown in that work that the
distribution of displacements is found directly from
observations to be approximately Gaussian. This finding
suggests the use of a harmonic potential with
UðxÞ ¼ Dðx=LÞ2. Since the domain where UðxÞ is not zero
extends over the entire real axis, it is convenient to
calculate the convolution in Eq. (10) which gives gðyÞ ¼

L
ffiffiffiffiffiffiffiffi
p=2

p
exp½�y2=ð2L2Þ�. Integrating Eq. (11) gives the mean

square displacement at saturation as

Dx2
ss

G2=6
¼ 6z2 1þ

sinh½ð1=2zÞ2�

sinh½ð1=2zÞ2� �
1

2z

ffiffiffi
p
2

r
eð1=2zÞ

2
erf

1ffiffiffi
2
p

z

� �
8>>><>>>:

9>>>=>>>;,

(17)

with Dx2
ss ’ L2 when z51 and Dx2

ss ’ G2=6½1� ð7=120z2Þ�
when zb1. The intersection in Fig. 1 between the harmonic
potential curve (solid) and the box potential curve (dashed)
becomes evident here given that the former approaches
G2=6 linearly while the latter approaches it quadratically as
z!1.
3.2. Logarithmic potentials

As an example of UðxÞ, whose corresponding steady
state distribution given by Eq. (6) decays to zero slower
(algebraically) than in the box or the harmonic case, we
consider a family of potentials of the form

UðxÞ ¼ D ln 1þ
x2

ðknLÞ2

� �n

, (18)

with kn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 3=2

p
and nX2. These potentials have a

quadratic dependence when x=L51 and a logarithmic
dependence for x=Lb1 such that PðxÞ ’ x�2n as jxj ! 1.
It is straightforward to check that expression (18) is
consistent with definition (12) of the home range L for any
value of n. In the limit of n!þ1 Eq. (18) reduces to the
harmonic case. We have studied, in particular, the cases
from n ¼ 2 to 8 and have obtained analytical expressions
for the mean square displacement. We do not display them
here because they do not add to the understanding. In
Fig. 1 we show the cases n ¼ 3 and 8. Already for n ¼ 8 the
saturation curve for the logarithmic and the harmonic
cases are very close to each other. The inset of Fig. 1 shows
the origin of such similarities by comparing the corre-
sponding steady state probability distributions PðxÞ.
As mentioned above, the PðxÞ associated with the

logarithmic potentials possesses long tails. Probability
distributions with long tails can be appropriate when the
motion of the animal cannot be represented by a simple
random walk. More complex types of walk may occur if
the walker awaits for very long times between jumps, or if
the jumps are of very large distance. Long-tailed PðxÞ are
characterized by the feature that certain moments of the
distribution become infinite. If all the moments beyond
the first are infinite, Eq. (12) is no longer applicable for
defining the home range width. A qualitatively different
behaviour is expected for large values of G. To illustrate
this situation, we consider the potential

UðxÞ ¼ D ln 1þ
x2

s2

� �
(19)

whose corresponding PðxÞ is the Cauchy distribution
(Lemons, 2002) PðxÞ ¼ ð1þ ðx=sÞ2Þ�1=p. Also for this
case the mean square displacement can be obtained
analytically and it is given by

Dx2
ss

G2=6
¼ 6

x

tan�1
1

2x

� �
� x ln 1þ

1

ð2xÞ2

� �� 4x2

26664
37775, (20)

where x ¼ s=G. As x! 0, Dx2
ss=ðG

2=6Þ ’ ð12=pÞs=G in
Eq. (20). A linear growth of the saturation curve emerges,
as depicted in Fig. 2. Notice that L, as defined by Eq. (12),
does not exist for this potential. The home range is
therefore defined as the characteristic length s, the ratio x
being the counterpart of z of Eq. (15). This different
qualitative behaviour with respect to the previously
analysed cases could be exploited for determining the
characteristics of the animal walks by making various
measurements with large grid size. A sufficient number of
these measurements would allow one to discern if the
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by taking three measurements of the same population, using three

windows, of sizes G1, G2 and G3. The measured mean square

displacements are supposed to be Dx2
1 ¼ 0:045, Dx2

2 ¼ 0:029, and

Dx2
3 ¼ 0:041. The corresponding contours intersect at L ¼ 0:5,

a ¼ 0:375, providing these values as a result. Both a and L are displayed

in units of G (arbitrary linear units).
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saturation curve is growing quadratically (as in the
examples of Fig. 1) or linearly (as in Fig. 2).

The examples of this section illustrate that the choice of
UðxÞ in any application of the present theory should be
assessed in each case, based, for example, on a priori
knowledge of the specific animal behaviour. The different
potentials shown here give an overview of the possible
qualitative behaviours of the mean square displacement at
saturation.

4. Inhomogeneous distribution of home ranges: the case of a

periodic arrangement

The results obtained in Section 2, from Eq. (9) onward,
and the examples developed in Section 3, assume a
continuous and homogeneous distribution of burrow
location xc. A more realistic situation invokes the home
ranges arranged in a non-continuous manner, the centres
of adjacent ranges (the burrow locations) separated by
some characteristic distance a. In this section we show an
example of how this feature may be incorporated in our
analysis and how, in principle, a can be deduced from
displacement measurements.

Let us suppose for simplicity that the home ranges are
distributed in a periodic array, with a being the distance
between nearest neighbours. The mean square displace-
ment, measured within a window of linear size G, is now a
function of a and L, besides depending parametrically on
G. As in Section 2, G can be used to rescale the two
coordinates a and L. The function Dx2

ss=ðG
2=6Þ ¼

f ðL=G; a=GÞ is universal and does not depend on the size
of the observation window. We show a contour plot of this
function in Fig. 3, as calculated by numerical simulation of
the harmonic model (Gaussian probability distributions).
At a ¼ 0, the shape of the surface coincides with the curve
calculated in Eq. (17). The contours of equal mean square
displacement are nearly vertical lines in this plot, indicating
that the dependence on the inter-home distance a is very
weak (in particular for small values of the normalized mean



ARTICLE IN PRESS

0.0 0.5 1.0 1.5
0% 

50 %

100%

0 %

50 %

100 %

ov
er

la
p

α = a /L

overlap = 50 % overlap = 0 %

overlap = 100 %

a = L /2

α = 1 / 2

a = 3L /4

α = 3/4

a = L

α = 1

CC

C

BB

B

AA

ex
cl

us
iv

it
y

A

Fig. 5. Illustration of home range overlap situations, and the variables

characterizing them. The schematic diagram shows three cases: 100%,

50%, and 0% overlap, with arrows representing the extent of the home

range of three neighbouring animals, A, B and C. The plot shows the

relation between the overlap, the exclusivity of space use, and the

normalized inter-home distance a ¼ a=L.

L. Giuggioli et al. / Journal of Theoretical Biology 240 (2006) 126–135132
square displacement), except for a region well defined in a,
where the contours shift from one value of L to another.
This feature will certainly be of relevance if an experiment
is designed in order to measure both a and L, since the
uncertainty on a will tend to be large.

In general, given that the function Dx2
ss is nonlinear in

both its variables a=G and L=G, two or more measure-
ments are necessary to determine the home range size and
the inter-home distance. In Fig. 4 we show a hypothetical
situation in which three measurements are supposed to be
taken on the same population, using three windows sizes,
G1 ¼ 1, G2 ¼ G1=2 and G3 ¼ 3G1=4. The results of the
measurement are curves of constant Dx2

ss in the plane ðL; aÞ.
With three measurements, Dx2

1, Dx2
2 and Dx2

3, three curves
are obtained, and the model predicts:

Dx2
1=ðG

2
1=6Þ ¼ f ðL=G1; a=G1Þ,

Dx2
2=ðG

2
2=6Þ ¼ f ðL=G2; a=G2Þ,

Dx2
3=ðG

2
3=6Þ ¼ f ðL=G3; a=G3Þ. (21)

This is a system of three (nonlinear) equations with two
unknowns, L and a, and its solution can be found as the
intersection of three curves. These curves are shown in
Fig. 4, displaying an intersection very near L ¼ 0:5, a ¼

0:375 (within the accuracy of the fluctuations of the
contours). The curves were obtained from the normalized
function, shown in Fig. 3, using the appropriate contours.
As mentioned above, the weak dependence on a may
hinder its determination by the present method. It is clear
that the choice of the appropriate values of the window
sizes is critical to obtain the best results. This must be done
specifically for each situation, with the help of an informed
guess of the range where both a and L lie. Regardless of
this practical difficulty, the procedure we describe provides
a method for an immediate measurement of an important
quantity that is hard to obtain by other means. Addition-
ally, if the population is not well characterized by a typical
inter-home distance, as we suppose here (for example, if the
inter-home distance is bimodal due to gender differences or
other polymorphism), the model can be immediately
modified to incorporate those features.

Moreover, the inter-home distance is closely related to
the overlap of home ranges (or to the exclusivity of space
use). See Fig. 5 for an illustration of three typical
situations. The home ranges of three neighbouring animals,
A, B, and C, are displayed as arrows, schematically
representing the extent of the area occupied by 95% of
the norm of PðxÞ, as usually defined (Worton, 1987). When
a ¼ L=2, the first neighbours, B and C, of A have their
home ranges situated at the border of A’s home range.
Then, A does not have exclusive use of any part of its own
home range (overlap equal 100%). On the other extreme,
when a ¼ L, the home ranges of B and C are completely
outside A’s. In consequence, the exclusivity of A is 100%
(home range overlap 0%). This value of exclusivity,
certainly, is maintained for any value of a4L. An
intermediate situation, in which the exclusivity of animal
A is equal to 50% (as well as its overlap with the
neighbours) is also shown.
The exclusivity of space use has recently been found to

obey an allometric scaling relation with the animal mass by
Jetz et al. (2004). The present theory provides a method to
determine both the home range size and the home range
overlap, and thus to verify the scaling of these and related
magnitudes (West et al., 1997; Banavar et al., 1999).
5. Comparison with convex polygon calculations

Home range sizes have been often deduced from the
measurement of the so-called minimum convex polygon of
an animal position. Although this procedure suffers from a
number of drawbacks (Worton, 1987), it is used rather
widely. Among its drawbacks it is easy to recognize at least
a logical and a methodological one. The surveyed
perimeter provides no information about the use of space
inside it, effectively encompassing areas that may be
inaccessible to the animal, or potentially huge areas of
very low frequency of utilization. The methodological one
is the fact that the measured area converges very slowly to
the actual home range, and as such the observation of a few
tens of positions provides a very bad estimation. Both
kinds of flaws have been recognized in the literature before
(see Worton (1987) and references therein), and suggestions
have been made to compensate for them. These proposals,
such as discarding some fraction of the extreme positions
from a set of observations to compensate for the first, or to
join the perimetral points in a fashion different from the
minimum convex polygon, are surely arbitrary. Further-
more, methodologically, they are obviously subject to
uncontrollable errors.
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In the following we illustrate how the calculation of the
mean square displacement we have given in the present
paper provides a rapidly converging measurement of the
home range size. This is an additional advantage when
displacements of animals belonging to a population are
more readily accessible than repeated measurements of the
position of individual animals. For the sake of the
illustration, we will consider that the probability of space
use of an animal is a bivariate Gaussian distribution of
variance s:

Pðx; yÞ ¼
1

2ps2
e
�

x2þy2

2s2 . (22)

We consider this symmetric distribution for simplicity, but
the discussion applies equally to a distribution with
anisotropic s. Moreover, the conclusions are equivalent
for more general distributions, including those with a finite
cut-off.

If we define the home range of the animal whose space
use distribution is described by Eq. (22) as the area A that
contains the 95% of P (Worton, 1987), a simple integra-
tion gives

A ¼ pR2 ¼ 2ps2ð� ln 0:05Þ � 18:8s2. (23)

This the quantity that we intend to measure by both
methods. In Fig. 6 we show the area of the minimum
convex polygon defined by a set of N points drawn at
random with a bivariate Gaussian distribution of s ¼ 1.
Observe, firstly, that the area grows unboundedly as the
number of observations grows, since P is unbounded.
More relevant from the practical point of view is the fact
that the growth is very slowly, and that the area A
0
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Fig. 6. Area A enclosed by the minimum convex polygon corresponding

to a set of random points with Gaussian distribution in the plane, as a

function of N, the number of points of the set. The line shows the average

of 50 independent realizations. The inset shows a detail of the same

function, with arrows showing the necessary number of points to obtain a

good measurement of the home range, defined as the 95% of the space

occupation which, for s ¼ 1, and A � 18:8, is N ¼ 135 points. The

variance s has arbitrary units of length, and A those of length squared.
(obtained with 95% rule and marked in Fig. 6 with an
arrow) is achieved after the observation contains, on
average, 135 points (see the inset of Fig. 6).
Now consider that one wants to determine A by

measuring displacements, instead of positions. The relevant
quantity to be estimated is the variance s, immediately
derived from the home range size L, accessible through our
present theory explained in Section 2. Expression (23) gives
then the home range area. Fig. 7 shows that the
measurement of the variance, sN , for a finite set of N

observations, converges very rapidly to the actual value
(which is 1 in this case), when the number of observations is
increased. Indeed, with just 10 observations of the
displacement the variance can be estimated with an
accuracy greater than 95%. Ten displacements correspond
to just 11 positions of a single animal, if taken at intervals
long enough that they are uncorrelated, or 10 displace-
ments of different animals for which an average distribu-
tion would be found.
In summary, the mean square displacement provides a

faster convergence to the area of the home range than the
construction of the convex polygon. In addition, the
estimation of the distribution P (unimodal in this case,
but easily generalizable) by that method provides informa-
tion about the use of the home range, which is inaccessible
to the convex polygon procedure.

6. Conclusions

The determination of home range dimensions and spatial
overlap of two neighbouring home ranges from field
observation is a subject of great interest for the under-
standing of animal motion. We have provided here a
general theory to extract such demographic parameters on
the basis of the measurement of displacements of
individual animals in a population.
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The most common techniques for gathering information
of home range size employ trapping of animals and
radiotelemetry observations. It is well known that radio-
telemetry methods constitute by far the superior procedure.
Our theory in the present paper has been constructed with
the specific goal of interpreting data obtained from either

type of observation. To use it with trapping observations, a
further assumption that trapping introduces only a
negligible effect on animal movement needs to be made.
Such an assumption is generally questionable, and in a
specific situation may or may not be valid. On the other
hand no further assumption needs to be made to use our
procedure for radiotelemetry observations.

The motion of an animal inside its own home range has
been modeled by a Fokker–Planck (1), i.e. by diffusion in a
confining potential UðxÞ. While the equations considered
are, for simplicity, one-dimensional, extension to higher
dimensions is straightforward and unnecessary for prac-
tical purposes.

Even though the precise determination of the home
range size L depends on the choice of the potential UðxÞ,
the general sigmoid shape of the saturation curve in our
theory indicates that the difference in the results is not
substantial if the window size is chosen such that LoG.
Eventually, the choice of the right potential is to be
determined for each given case, on the basis of biological
information of the animal population under study. We
have shown that, for those situations in which the second
moment of the distribution PðxÞ ¼ expð�UðxÞ=DÞ is not
finite, the saturation curve for large G grows linearly with
the home range length rather than quadratically as in more
conventional potentials (box or harmonic). Such cases may
arise when the animal motion is not simple but involve a
more complicated random walk such as a Lévy walk or
flight (Morales et al., 2004). This means that our theory
may be used, in principle, to determine whether the animal
population is performing a Gaussian random walk or a
more complicated walk. By measuring the mean square
displacement at saturation with different values of the
probe length G (sufficiently larger than L) it might be
possible to determine if the saturation curve grows
quadratically or linearly.

The obtained parameters that characterize the average
use of space, when obtained via displacement observations
and their interpretation with our present theory, converge
rapidly to the expected values. We have shown in Section 5
that this is not the case in the application of the traditional
minimum convex polygon method.

The other important demographic parameter that
can be extracted within the framework developed here is
the inter-home characteristic distance of the animals, called
a in the present paper. Such a length is simply related to the
mean overlap (or the mean exclusivity of space usage).
We have outlined a procedure to extract this para-
meter quantitatively and provided a general way to verify
directly the scaling of home range overlap as function of
body mass.
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