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The sliding friction of a dimer moving over a periodic substrate and subjected to an external force is studied
in the steady state for arbitrary temperatures within a one-dimensional model. Nonlinear phenomena that
emerge include dynamic bistability and hysteresis, and can be related to earlier observations for extended
systems such as the Frenkel-Kontorova model. Several observed features can be satisfactorily explained in
terms of the resonance of a driven-damped nonlinear oscillator. Increasing temperature tends to lower the
resonant peak and wash out the hysteresis.

DOI: 10.1103/PhysRevB.72.195418 PACS number�s�: 81.40.Pq, 46.55.�d

I. INTRODUCTION

The friction experienced by atoms, small molecules, and
adlayers moving over substrates is an active topic of current
research.1 One reason is the desire to understand, at a funda-
mental level, the origin of friction. The other reason is the
wish to acquire expertise in developing nanodevices like na-
nomotors, nanowires, and nanoprobes. Besides, sliding fric-
tion is related to other atomistic processes at surfaces, such
as diffusion of atoms and molecules,2–5 and motion of long
chains6–10 over periodic substrates. It is worth mentioning
that although the Einstein relation establishes a simple con-
nection between diffusion and sliding friction for a free
Brownian particle, it is not valid in general for a dimer or
chains, when sliding over substrates. That microscopic slid-
ing friction can exhibit nonlinear behavior depending on the
sliding regime has been shown in the recent theoretical lit-
erature. Strunz and Elmer6 have studied in detail the nonlin-
ear friction of the Frenkel-Kontorova model and identified
the origins of such friction as being the resonance of the
sliding velocity with the internal vibration modes of the
chain, and the formation of kinks. The latter phenomenon
was also studied by Braun et al.8,10 More recently, Fusco and
Fasolino11,12 have identified the same resonance phenomenon
in the friction of a smaller object, a dimer moving over a
periodic substrate. Goncalves et al.13 have analyzed a closely
related system in the relaxation regime, i.e., in the absence of
external forces, and have given a simple physical explanation
of the observed results. Persson14 has predicted that a friction
force proportional to �−3 is to be expected �in addition to the
linear one� in the large-force regime for a sliding system of
any size, ranging from a single atom to an infinite chain. In
the present paper, we restrict our study to the steady state
friction of a dimer, but investigate all force regimes. We
identify several separate regimes exhibiting resonance, bista-
bility, and hysteresis. We provide a simple but original ex-
planation for these phenomena analytically in terms of the
resonance of a driven-damped oscillator, and show how they
depend on the substrate corrugation, damping and tempera-
ture.

II. MODEL AND SIMULATION RESULTS

At zero temperature, the equations of motion for the two
particles constituting the dimer sliding over a periodic poten-
tial, in the presence of external force F, are12,13

mẍ1 + m�ẋ1 − k�x2 − x1 − a� =
2�u

b
sin�2�x1

b
� + F

mẍ2 + m�ẋ2 + k�x2 − x1 − a� =
2�u

b
sin�2�x2

b
� + F , �1�

where x1,2 are the coordinates of the two particles each of
mass m, and k ,a ,b ,u are, respectively, the spring constant,
equilibrium length of the dimer, wavelength of the sub-
strate potential, and half the amplitude of the potential. We
integrate these coupled equations numerically using the al-
gorithm of Verlet modified to allow for velocity-dependent
forces.13 The underlying characteristic physical quantities
in this system are the equilibrium dimer length a, the sub-
strate wavelength b, the free dimer characteristic time
1/�0=�m /2k, and an energy that describes the dimer oscil-
lation such as kb2. In our numerical integrations we use a
time step �t equal to 0.03�0

−1.
The procedure is as follows: For a fixed value of F we

obtain the center of mass velocity �, averaged over several
thousand time steps in the steady state. Repeating the proce-
dure for several hundreds of different values of the force, we
construct a characteristic curve of force versus velocity,
F / �m�� versus �, �see Fig. 1�.

The following features are evident from Fig. 1 as emerg-
ing from our numerical simulations:

1. Existence of a static threshold: There is a minimum
value of the externally applied force required to make the
dimer slide. It arises from the fact that, at zero temperature,
the substrate potential has to be overcome.

2. Linear behavior in the asymptotic large-force regime:
For sufficiently large forces, the dimer slides at velocities
high enough to make the substrate potential a negligible per-
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turbation. The linear asymptote is shown in Fig. 1 as the
dashed line.

3. Nonlinearity in the friction exhibiting a maximum:
This arises from resonance effects when the washboard fre-
quency 2�� /b is close in value to the dimer frequency �0
=�2k /m.

The first two of these features are expected in light of previ-
ous reports in the literature. The third appears to be interest-
ing. Previous related reports have been on the driven diffu-
sion of a dimer,12 and of a Frenkel-Kontorova model in the
presence of an external force,6,7 but for specific damping
regimes, fixed commensuration relations �between chain and
substrate�, and zero temperature. A thorough analysis is how-
ever lacking. We provide such an analysis below in the spe-
cific case of the dimer. We relate our results to observations
made by other authors in the context of the Frenkel-
Kontorova model, and suggest that the essential features of
the nonlinear friction of the infinite linear chain can be un-
derstood in terms of the dimer dynamics we describe.

III. SIMPLE THEORETICAL CONSIDERATIONS

A transformation of the coordinates of the two dimer
masses to the center of mass coordinate x+= �x2+x1� /2, and
the internal coordinate x−= �x2−x1� /2, converts Eqs. �1� to

ẍ+ + �ẋ+ =
2�u

mb
sin�2�x+

b
�cos�2�x−

b
� + F/m ,

ẍ− + �ẋ− +
k

m
�2x− − a� =

2�u

mb
sin�2�x−

b
�cos�2�x+

b
� .

�2�

If in the last equation we define �= �2x− /a�−1= �x2−x1� /a
−1, we get

d2�

dt2 + �
d�

dt
+ �0

2� =
4�u

mba
sin��a

b
�1 + ���cos�2�x+

b
� �3�

as in the analysis of Ref. 13. Contrary to that analysis, how-
ever, here our interest lies in the steady state reached after

the application of the external force. In that state, the center-
of-mass velocity �+�t� oscillates around a constant value �.
Considering only situations in which ���t�= ��+�t�−����, let
us neglect ���t� and decouple the equations. The internal
coordinate then satisfies

d2�

dt2 + �
d�

dt
+ �0

2� =
4�u

mba
sin��a

b
�1 + ���cos��t� , �4�

which describes a damped nonlinearly driven oscillator. The
natural frequency is �0=�2k /m, the damping is �, and the
driving frequency � is proportional to the constant compo-
nent of the center of mass velocity: �=2�� /b which is the
so-called washboard frequency.

A. Linear analysis in zeroth order

Equation �4� cannot be solved analytically because of the
nonlinearity in the sine term. The simplest approximation,
valid in zeroth order in powers of �, leads to the equation of
a driven-damped linear oscillator

d2�

dt2 + �
d�

dt
+ �0

2� =
4�u

mba
sin��a

b
�cos��t� , �5�

with an exact solution in the steady state

��t� =
4�u

mba
sin��a

b
� 1

���0
2 − �2�2 + �2�2

cos��t − 	� , �6�

where 	 is the phase angle given by tan�	�=�� / ��0
2−�2�. In

order to compute the dependence of the friction on the
center-of-mass velocity, we must resort to the power balance
condition which, in terms of the averaged center-of-mass and
internal velocity, can be written as

F��+� = m���+
2� + m���−

2� . �7�

Defining f =F /m, and using the previously made assumption
that ��+

2�	�2, leads to

f = �� + �
��−

2�
�

. �8�

We see that, generally, the steady-state friction the center of
mass of the dimer experiences is nonlinear in the velocity.
Using the steady state solution for ��t� as given by Eq. �6�,
we calculate

��−
2� =

1

2
�2�u

mb
�2

sin2��a

b
� �2

��0
2 − �2�2 + �2�2 . �9�

Substitution of ��−
2� given by Eqs. �9� in �8�, yields

f

�
− � =

1

2
� u

m
�2

sin2��a

b
� �


�2 − �b�0/2��2�2 + �2�b�/2��2 .

�10�

The right-hand side of Eq. �10� focuses on the nonlinear
component of the friction. In Fig. 2 we plot Eq. �10� together
with the exact results from the simulations. We see that our
zeroth-order theory captures the essence of the resonance

FIG. 1. �Color online� Force-velocity �f /� versus �, f =F /m�
relation obtained from numerical integration in the steady state.
Parameter values are u=0.038kb2, �= �2/3��0, and a /b=1/2. No-
tice that the maximum friction at resonance occurs when 2�� /b
	�0, therefore for abscissa values which are around �2��−1.
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behavior, approximates well the location of the peak, is ex-
cellent quantitatively for larger velocities, and fails only to
describe the low-velocity threshold.

In the limit of high velocities ��
b�0 /2� ,b� /2��, the
leading term in the resonance denominator is quartic in �,
resulting in the following nonlinear friction:

f

�
− � =

1

2
� u

m
�2

sin2��a

b
� 1

�3 . �11�

This agrees with the 1/�3 result of the sliding friction of the
purely internally damped dimer studied recently.13 In the
other limit, in the low-velocity regime ���b�0 /2��, the de-
nominator of the right-hand side of Eq. �10� is independent
of � �it is of fourth order in �0�, so f /�−� in this case
becomes linear

f

�
− � =

1

2
� u

m�s
2�2

sin2��a

b
�� = 2�4� u

kb2�2

sin2��a

b
�� .

�12�

Here �s=b�0 /2� is the sliding velocity near resonance.
Thus, in the limit of typical velocities of experiments, like
the microbalance experiment, we recover the linear regime in
which 1

2��u /m�s
2�2 sin2��a /b� represents the part of the fric-

tion directly contributed by the interaction with the substrate
potential. However, the threshold effect in the dimer problem
at T=0 prevents this regime from being observed. For an
extended object and/or at T�0, where the threshold could be
vanishing, it would be possible in principle to observe this
regime.

B. Parametric oscillator in the first order

The zeroth-order description fails when a /b is commen-
surate, i.e., when it takes integer n values. In this case the
zeroth-order approximation cannot be applied and one is
forced to go to the next order, since neglecting � in the sine
terms predicts an erroneous �vanishing� nonlinear friction. In
such cases, and if ��1

sin��a

b
�1 + ��� = �− 1�n sin�n��� 	 �− 1�nn�� . �13�

Substitution converts the driven-damped harmonic oscillator
Eq. �4� into the equation for a parametric oscillator

d2�

dt2 + �
d�

dt
+ ��0

2 + �− 1�n+14n�2u

mba
cos��t��� = 0. �14�

For this equation an exponential increase of � is expected in
an instability window around �=2�0. Thus, in this regime,
��−

2� would increase indefinitely and the friction force would
be infinite, which is of course unphysical. In fact, in the full
system Eq. �2�, the coupling between the center-of-mass and
internal motion drives the center of mass out of the instabil-
ity window characterizing the parametric oscillator, and this
is enough to make the increase of � saturate,11,12 yielding a
finite value of ��−

2�. Besides, if � increased because of the
resonance, the assumption �13� that leads to the parametric
oscillator Eq. �14� would not be valid.

The zeroth-order approach predicts that the shape of the
resonance is proportional to sin2��a /b�. Accordingly, there
are two extreme cases worth discussing: a /b=0.5+n� in
which the resonance is maximum, because the counter phase
movement of the particles makes this the most energy effec-
tive case; in contrast a /b=n� is the less effective one, since
the in phase movement does not excite the internal vibration,
thus yielding purely linear friction. The latter case is pre-
cisely the one discussed in this section. Figure 3 illustrates
the previous discussion showing how the resonance is actu-
ally affected by the commensuration ratio a /b. Those are
results of the numerical integration of Eqs. �1�, where we can
see that the zeroth-order approximation is very good indeed.
In the case a /b=1, although the friction is not exactly the
linear one, there is no resonance at all and the f −� charac-
teristic is very close to the linear one. In the inset however,
we can see that there is nonlinear friction which goes asymp-
totically �−3 to the linear regime, due to the parametric reso-
nance. We emphasize that the dependence of the nonlinear

FIG. 2. �Color online� Resonance effect in the nonlinear friction
of the dimer and comparison of the simulations with the zeroth
order theory. Plotted is the nonlinear part, f /�−� of the character-
istic curve for a dimer sliding over a periodic substrate. Circles are
from numerical integration at the steady state. The solid line is the
zeroth order theory for the uncoupled equation for �. The param-
eters in this case are u=0.028kb2, �= �2/3��0, and a /b=1/2.

FIG. 3. �Color online� Force-velocity relation obtained from nu-
merical simulation for different values of a /b. Notice how the reso-
nance is attenuated as a /b takes on increasing values from 0.5 to 1
and how the case a=b is very close to the linear regime. The dif-
ference can only be appreciated in the inset where f /�−� versus �
is plotted on log-log scale. Parameter values are u=0.0056kb2, �
= �1/6��0.
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friction of the dimer on the commensuration ratio, namely,
the sin2��a /b� term, was obtained analytically and numeri-
cally confirmed by simulations varying the a /b ratio. On the
other hand, the corresponding expression found by Strunz
and Elmer6 for the Frenkel-Kontorova model has no such
dependency. However their simulations do not explore the
possible dependency on the commensuration ratio.

C. Nonstandard description in higher order

A nonstandard approximation procedure may be devel-
oped through an iterative procedure by noticing that, as the
value of an arbitrary variable y increases, the expression
cos

 cos�y��, where 
 is a constant, oscillates around the
value J0�
�, whereas sin

 cos�y�� oscillates around 0, J0 be-
ing the Bessel function of order 0. We have seen that, con-
sidered in zeroth order, Eq. �4� predicts that ��t� oscillates
sinusoidally with frequency � 
see Eq. �6��. Writing
p=�a /b, we may use the fact that

�sin�p
1 + ��t��
� 	 �sin�p�cos
p��t���

= sin�p�J0
pA sin�p�Z���� , �15�

where A=4�u /mba and Z���=1/���0
2−�2�2+�2�2. This

procedure can be followed iteratively to whatever degree is
desired. The successive approximations to the steady state
��t� are thus

�0�t� = A sin�p�Z���cos��t − 	�

�1�t� = A sin�p�Z���J0
pA sin�p�Z����cos��t − 	�

�2�t� = A sin�p�Z���J0�pA sin�p�Z���J0�pA sin�p�Z����


�cos��t − 	� ¯ . �16�

Generally, this may be expressed by defining
�=A sin�p�Z��� and writing the approximation as

��t� 	 �J0�p�J0�p�J0
p�J0�p�…��
�cos��t − 	� . �17�

The spectrum predicted through this approximation is seen to
be proportional to �2�2J0

2�p�J0�p�J0
p�J0�p�¯ ��
� to
whatever degree of approximation one requires, except for
p	n�, in which case the approximation is not valid, for the
same reason explained in the previous section.

The top panel of Fig. 4 shows a comparison of different
orders of this nonstandard approximation with the numerical
solution of Eq. �4�, shown as a solid line. The zeroth-order
approximation in this procedure, shown as a dotted line,
overestimates the height of the resonance peak, while the
first-order approximation, shown as a dashed-dotted line, un-
derestimates it. In the second order, shown as a dashed line,
our procedure is already able to essentially coincide com-
pletely with the numerical solution. It is important to realize
that our nonstandard procedure does very well within the
second order when viewed as an approximation to Eq. �4�,
for which it has been developed, rather than to the original
Eqs. �1�. The bottom panel shows the comparison of the
numerical solution of Eq. �4�, in which the center-of-mass
velocity is a constant, with the simulation based on the origi-

nal Eqs. �1�. One can see a low-velocity departure arising
from the static threshold and a high-velocity departure aris-
ing from bistability. Such differences arise from the fact that
in Eqs. �1� the center-of-mass velocity is itself decided by the
dynamics, therefore not being a free parameter as in Eq. �4�.

IV. FURTHER NONLINEAR RESULTS

A. Bistability and hysteresis

The nonlinearities present in our system give rise to bista-
bility. This can be seen in Fig. 5 where it is clear that one
value of the force can correspond to two distinct values of
the velocity, in a certain region. In order to gain deeper in-
sight into this issue, we plot in Fig. 5�b� the prediction for
the characteristic curve based on expression �10� as u in-
creases. We see features typical of bistable systems such as
encountered in the pressure-volume �p-V� diagram of a van
der Waals gas. The bistability of the dimer is directly related
to hysteresis. Figure 6 shows the presence of two regions,
identified by the dashed lines, where hysteresis occurs when
the force is first increased from f =0 and then is decreased in
small steps down to f =0. The first hysteresis at low veloci-
ties is due to the bistability between the locked and the run-
ning state and has a static origin, being associated with the
energy threshold that the particle has to overcome in order to
move. The same kind of hysteresis is also found in the un-

FIG. 4. �Color online� Validity of a nonstandard approximation
procedure. Plotted is f /�−� versus �: �a� Comparison between the
numerical simulation of Eq. �4� for the internal coordinate �, with
the nonstandard approximation in various orders, showing excellent
convergence within the second order. �b� Comparison between ex-
act solution of system �1� with the solution of Eq. �4�, in which the
center of mass velocity is a free parameter; notice that except for
the discontinuities the agreement is excellent. Parameter values are
u=0.016kb2, �= �1/4��0, and a /b=1/2.
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derdamped monomer.15 On the other hand, the second hys-
teresis at intermediate values of � is of a purely dynamical
nature, and it is related to the bistability between two running
states in that region. Let us discuss the latter hysteresis in

more detail. Five regions, denoted by roman numbers, can be
identified there: �I� the mechanically stable region where �
increases with F up to a point where the force begins to be
bivaluated; �II� the metastable region where � increases with
F up to the local maximum; �III� the mechanically unstable
region where � decreases with F up to the local minimum;
�IV� the metastable region, where � increases with F from
the local minimum up to a point where the force ends to be
bivaluated; and �V� the mechanically stable region where �
increases again with F and it is monovaluated. Regions I and
V are both obtained either increasing the force from zero or
decreasing it from a high value. Region II, however is acces-
sible while increasing the force from zero but not when the
force is decreased from a high value. Complementary, region
IV is obtained while decreasing the force from a high value
but not when the force is increased from zero. Region III is
mechanically unstable, i.e., the velocity decreases when the
external force is increased. For a given value of the external
force, the system goes to a stable point, therefore when the
force goes beyond the value at the local maximum there is a
jump from regions II to V. Conversely when the force is
decreased from region V the system enters the metastable
region IV until at the local minimum it jumps to region I.
Notice that, except for the unstable region III, all the hyster-
esis features of the system are excellently reproduced by the
solution of Eq. �4�.

Figure 7 shows the behavior of the center-of-mass veloc-
ity for two different, but close, values of the external force
near the region of bistability. In the early stages of the dy-
namics the velocity is practically the same in the two cases,
but after some time the velocity corresponding to the lower
force attains a steady state value that is much smaller than
the one corresponding to the larger force. This clearly illus-
trates the dynamical origin of the bistability. Furthermore,
the oscillations of �+ in the steady state are much smaller for
the larger force. The bistable behavior of the dimer critically
depends on the parameters u , �0, and �: For fixed �0 and �,
it is observed when u exceeds a critical value, which can be
estimated in the framework of the zeroth-order approxima-
tion as the value for which the local maximum and the local

FIG. 5. �Color online� Force-velocity curves f /� versus � for
different values of the corrugation amplitude u expressed in units of
kb2. Parameter values are a /b=0.5, �= �1/6��0. �a� Simulation re-
sults 
numerical integration of Eqs. �1��. �b� Zeroth-order approxi-
mation 
Eq. �10��. Notice in both panels that the critical value of u
�i.e., the value at which the bistability develops� is around 0.004kb2

for the chosen values of parameters.

FIG. 6. �Color online� Hysteresis in the force-velocity relation.
Symbols are results from simulations of the system Eqs. �1�: ���
increasing the external force, ��� decreasing the external force. The
solid line is the result of numerical integration of the Eq. �4�. I and
V indicate the stable regions �overlap of the two symbols�, II and IV
are metastable regions, while III denotes the unstable region. The
arrows indicate the forward jumps �→� and backward jumps �←�.
Plotted is f /� versus �. Parameter values are u=0.023kb2,
�= �1/6��0, and a /b=1/2.

FIG. 7. �Color online� Bistable behavior exhibited in the time
evolution of the center-of-mass velocity for slightly different values
of the external force F �in units of kb�. Notice that, up to time
t=60�0

−1, the two curves follow almost the same dynamics, but then
separate, respectively, to a low and high limit. Parameters are
u=0.011kb2, �= �1/6��0, and a /b=1/2.
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minimum in the velocity-force characteristic, given by Eq.
�10� by adding the linear term in �, coincide. This is related,
in the van der Waals analogy, to the region of coexisting
phases. The interplay between linear and nonlinear friction
due to resonance gives rise to the bistability, as does the
interplay between attractive and repulsive terms in the van
der Waals gas. In this sense, Eq. �10� might be regarded as an
equation of state of the system. Both equations are however
only approximate descriptions of the real system and cannot
predict what happens in the transition region, where a coex-
istence of two different states is found.

Since the hysteresis is intimately linked to the bistability,
it appears only for large u �and/or small ��, as discussed
above.

B. Effects of nonzero temperature

It is natural to inquire into the effects of finite temperature
in our system. We solve Eqs. �1� by adding random forces
representing the thermal interaction with the substrate, in the
Langevin approach

mẍ1 + m�ẋ1 + k�x2 − x1 − a� =
2�u

b
sin�2�x1

b
� + R1 + F ,

mẍ2 + m�ẋ2 − k�x2 − x1 − a� =
2�u

b
sin�2�x2

b
� + R2 + F ,

�18�

in which the stochastic forces R1,2 satisfy the conditions

�R�t�� = 0

�R�t�R�t��� = 2�mkBT	�t − t�� , �19�

where kB is Boltzmann’s constant and T is temperature. Fig-
ure 8 illustrates the velocity-force characteristics at finite
temperature, for different values of T. By increasing T, the
effects we have shown at T=0 are increasingly smeared out.
In particular, the static threshold disappears, as can be seen
in the inset of Fig. 8�a�. The bistability regions and hysteresis
still survive up to small values of T, and the characteristic
curve is smoothened in the region of dynamical bistability.
Interestingly, the area of the hysteresis loop, shown in Fig.
8�b�, decreases with T and eventually disappears for suffi-
ciently high temperatures. A hysteretic behavior in the inter-
mediate friction region, at T�0, has been reported for long
periodic chains.8 Here we see that we recover essentially the
same behavior in the case of the dimer.

V. CONCLUDING REMARKS

Our general aim in the present paper has been to extend
previous investigations13 of friction in the simplest nontrivial
system, a dimer moving over a periodic substrate, to include
a driving force and arbitrary temperatures. At the same time
it has highlighted some interesting features, like bistability
and hysteresis, shared by more complex systems like linear
infinite chains under similar conditions. We found this re-
markable because results from an extended or infinite system

like the Frenkel-Kontorova model cannot be trivially applied
to a system with few degrees of freedom. Precisely, the kinks
which have been pointed as responsible for hysteresis in the
sliding friction of the Frenkel-Kontorova model are not
present in molecules or small chains. On the other hand, the
hysteresis of a monomer sliding in a periodic substrate van-
ishes for arbitrary temperature, while for a dimer it is ob-
served at finite temperature, as it has been clearly shown in
the present contribution. Therefore the number of degrees of
freedom that the system has, is an important issue that de-
serves a bit more attention. The model we have presented is
indeed simple: A linear damped oscillator sliding in a sinu-
soidal periodic potential. Yet, except for the limitation that it
is restricted to a single spatial dimension, it has the necessary
ingredients to represent a real dimer or molecule set in a
controlled microscopic sliding experiment. For example, a
molecule sliding along channels of a crystalline well-
oriented substrate16 should exhibit some of the features we
have described. Our results, both analytical and numerical,
confirm the existence of nonlinear friction, resonance effects,
bistability, and hysteresis, which can be well understood in
terms of the resonance of a driven, damped oscillator. Far
from resonance the sliding friction goes asymptotically to the
linear regime with a �−3 term, which represents the tail of the

FIG. 8. �Color online� Temperature effects on the force-velocity
relation. Plotted is the f /� versus � relation as temperature T �kBT
expressed in units of u� is varied. Parameters are u=0.011kb2,
�= �1/6��0, and a /b=1/2. �a� Curves for increasing force, the inset
shows the details in the static threshold region. The bistability is
seen to disappear as T increases smoothening the character-
istic f −� curve. �b� Forward and backward curves to emphasize the
hysteresis dependence on temperature: The area of the hysteresis
loop decreases with T and disappears for temperatures close to
kBT=0.005u.
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resonance response. For intermediate forces, bistability and
hysteresis emerge as a consequence of the interplay between
linear friction and resonance. That our results provide a
simple representation of phenomena reported for large sys-
tems should be clear from Fig. 9, which shows a comparison
between our results on the dimer and results from Braun et
al.8 for the Frenkel-Kontorova model, which can be regarded
as the infinite-size generalization of the dimer. Those results
are presented to facilitate direct comparison with Fig. 1�a� of
Ref. 8 in terms of the mobility B=� /F, normalized by its
asymptotic value Bf =1/m�. We notice that the intermediate
behavior before the asymptotic linear regime is observed in
the same fashion as for the dimer. In the latter case the
mechanism is completely understood as being due to reso-
nance of the dimer; the same mechanism could also underlie
the nonlinear friction in the Frenkel-Kontorova case �see
Ref. 6�. Braun et al.8 attributed such features to the presence
of kinks that can be observed during the sliding regime of the
Frenkel-Kontorova chain.

In light of the present study, we want to make some com-
ments that might have some relevance to the ongoing debate
in the literature17–20 about whether sliding friction is mainly
electronic or phononic in origin. Let us first recall that in
addressing experiments made with a quartz microbalance in-
strument on a system like a layer of Xe or Kr �Ref. 21�
sliding over perfect metallic substrates, theoreticians have
made the following assumptions: The adlayer is modeled as
a one- or a two-dimensional �2D� array of interacting par-
ticles, the substrate is represented by a periodic external po-
tential, temperature enters as a Langevin thermostat, and
electronic friction is represented by a linear damping �m���
experienced by all particles. The last assumption is based on
theoretical calculation of the effective dissipation that one
atom feels when sliding over a metallic substrate �at low

velocities in comparison with sound or Fermi velocity of the
substrate�: Due to polarization and drag of the electronic
density of the substrate, the dissipation is proportional to the
atom velocity.22 As the substrate is frozen, vibrations are thus
only possible on the adlayer of interacting particles, which
can be responsible for additional dissipation. If there is any,
it is usually called phononic friction. Mutatis mutandis, let us
identify the background �linear� friction in our model with
electronic and the resonance friction with phononic sources.
We have seen from our analysis that the resonance friction is
modulated by sin2��a /b�. The commensuration ratio a /b ap-
pearing in this modulation factor would depend in a realistic
2D or 3D environment additionally on the relative orienta-
tion of the dimer �adlayer� and the substrate. Therefore,
while resonance friction might dominate the background
friction in principle �for sufficiently large corrugation ampli-
tude values u�, the smallness of the modulation ratio could
make it have disparately small values relative to background
friction. That might be a plausible explanation for the dispar-
ate results obtained in otherwise similar simulation
models.17–20 However, rather high velocities seem to be nec-
essary for resonance friction to be appreciable. Rough esti-
mates we have made suggest that in a number of materials,
b	2 Å, �0	10–100 cm−1, adlayer velocities relative to the
substrate necessary for resonance friction to be observable
would be as high as 30–300 m/s. The velocity region of the
quartz microbalance experiments corresponds to the low ve-
locity limit discussed at the end of Sec. III A 
see Eq. �12��
where the resonance friction becomes linear and the ratio
between phononic and electronic friction results proportional
to 2�4�u /kb2�2. Let us extend this estimation to the case of a
Lennard-Jones model for the dimer �adsorbate� interaction,
where that ratio becomes proportional to �u /��2 ,� being the
well depth of the Lennard-Jones potential. In the Xe over Ag
case for example �	20 meV and u can lie in the 1–2 meV
range, therefore the prefactor �u /��2	0.01. With the above
suggested identification of the friction mechanisms and
within the validity of analytical assumption used in the low
velocity limit—which may not be completely valid at low
velocities—one might thus expect phononic friction to be
rarely observable for most materials under typical experi-
mental conditions.
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FIG. 9. �Color online� Mobility B= ��� /F, normalized by the
asymptotic mobility at large forces Bf = �m��−1, as a function of the
driving force F. This plot should be compared to that given for the
Frenkel-Kontorova model by Braun et al. �Ref. 8� 
see their Fig.
1�a��. The force is normalized by the maximum applied value
Fmax=0.71kb. The parameters in this case are u=0.056kb2,
�= �2/3��0, and a /b=1/2.
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