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We study the mean traversal time � for a class of random walks on Newman-Watts small-world networks, in
which steps around the edge of the network occur with a transition rate F that is different from the rate f for
steps across small-world connections. When f �F, the mean time � to traverse the network exhibits a transition
associated with percolation of the random graph �i.e., small-world� part of the network, and a collapse of the
data onto a universal curve. This transition was not observed in earlier studies in which equal transition rates
were assumed for all allowed steps. We develop a simple self-consistent effective-medium theory and show
that it gives a quantitatively correct description of the traversal time in all parameter regimes except the
immediate neighborhood of the transition, as is characteristic of most effective-medium theories.
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I. INTRODUCTION

There has been intense recent interest in statistical and
dynamical properties associated with random networks pos-
sessing so-called “small-world” properties, i.e., networks
whose bonds possess a large degree of local clustering, but
with a relatively small minimal path length connecting nodes
of the system. At least some of this interest has arisen from
the realization that algorithmically constructed small-world
networks �SWNs� introduced by Watts and Strogatz �1�, and
by Newman and Watts �2�, appear to share many statistical
features with social networks, and thus form a useful topo-
logical substrate on which to model dynamical processes rel-
evant to the medical and social sciences �3�. Power grids and
information networks may also possess properties associated
with small-world or scale-free networks �4�, and even certain
aspects of polymers may be understood in terms of an un-
derlying small-world structure �5�.

Independent of their possible applications to a wide range
of problems in the social, physical, and information sciences,
small-world networks and their extensions are inherently in-
teresting because they provide a class of disordered struc-
tures similar to those that have been studied in the condensed
matter literature for many years �6–10�. There is an extensive
literature, for example, in which the dynamics of random
walkers diffusing through various kinds of disordered media
have been studied through a variety of methods, including
numerical simulations �6�, percolation ideas �7�, effective-
medium theories �EMTs� �7–10�, and others.

In the present paper we study traversal times associated
with random walks on the Newman-Watts small-world net-
works �NWSWN’s�. These structures are defined on a ring of
N sites, each of which has bonds that connect it to its 2K
nearest neighbors. On this translationally invariant lattice, a
�generally� disordered small-world structure is imposed by
associating with probability q a SW connection along each of
the remaining N�N−2K−1� /2 bonds in the system. For a
given value of q, there are on average nSW=q�N−2K−1� /2
�qN /2 small-world bonds per site in the system, a param-

eter that allows for a useful comparison between SWNs of
different size. Except for the end points at q=1 and q=0,
where the system is perfectly ordered, the network forms a
disordered system on which various forms of dynamics can
be studied.

The additional feature of our analysis, which is based
upon a master equation for the site occupation probabilities
Pn�t�, is that we take the jump rate f associated with SW
connections to be independent of the jump rate F associated
with steps around the edge of the network. Models of this
sort might arise, for example, in attempts to design, modify,
or optimize existing information networks in order to reduce
the mean access time, by incorporating a small number of
fast connections into an existing random network already
possessing a large number of other �perhaps slower� connec-
tions. By introducing this simple extension to the situation in
which all allowed steps occur with the same probability �and
hence same transition rate�, our theory is able to reveal in-
teresting universal behavior that occurs for f �F, including a
percolation transition that occurs at a critical fraction of SW
bonds. Such a transition, which is clearly a consequence of a
well-known result by Erdös and Rényi �11� for random
graphs, was not observed in earlier random walk studies of
the NWSWN �12,13�, in which only equal jump probabilities
�f =F� were considered. The transition that we observe nu-
merically and analyze using a simple self-consistent
effective-medium theory, is critically dependent on the fact
that the topological disorder associated with the small-world
connections is “quenched.” We show, for example, that an
exactly solvable model with “annealed disorder,” in which
the walker decides at each step whether to move along the
edge or to a randomly chosen site elsewhere in the network,
shows no such transition as a function of the branching ratio
between steps around the edge of the ring and steps associ-
ated with small-world type “shortcuts.”

The rest of the paper is laid out as follows. In the next
section we introduce a master equation description of con-
tinuous time random walks on Newman-Watts small-world
networks, and review the relation between the Green’s func-
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tions associated with those equations to the mean time � for
a random walker on such a network to traverse the system.
We then present numerical calculations of the mean traversal
time and show that for f �F, there is a transition in the
underlying transport mode between motion that is dominated
�and limited � by edge diffusion and motion that takes place
predominantly among small-world connections in the sys-
tem. In that section we also consider a model with annealed
disorder and show that it does not display the transition ex-
hibited by the model with quenched disorder. In Sec. III we
analytically consider the traversal time for NWSWN’s using
a simple self-consistent effective-medium theory similar to
that which has been used to understand other disordered sys-
tems. As in previous work, we find that EMT provides an
accurate and computationally efficient means for calculating
transport properties as a function of the underlying param-
eters of the system, except in the immediate vicinity of the
transition, where the underlying transport mechanism
changes abruptly. We are thus able to use it to reliably inves-
tigate, in regimes away from such points, the manner with
which various transport properties scale with system size and
connectivity.

II. MASTER EQUATIONS, TRAVERSAL TIMES, AND
PERCOLATION

We consider a continuous time random walk with sym-
metric, translationally invariant jump rates Fn,m=Fn−m gov-
erning transitions between sites n and m on a one-
dimensional ring of N sites. Although it is not crucial in
the analysis that follows, for specificity we assume that
Fn,m=F is constant and nonzero only between a given site
and its 2K closest neighbors on the ring, which we will refer
to collectively as “neighbor sites.” The small-world structure
of the system is imposed by associating with probability q a
nonzero SW hopping rate f along each of the N�N−2K
−1� /2 non-neighbor bonds in the system. For q=1 and
q=0, the system is perfectly ordered; in the former, all sites
are connected, whereas in the latter, connections occur only
between sites on the periphery of the ring. For intermediate
values of q, a particle moving along the ring encounters sites
from which it can move across the system without taking
steps to its 2K nearest neighbors. The small-world connec-
tions thus superimpose a “random graph” structure on the
otherwise translationally invariant lattice.

Random walks on any single NWSWN constructed in this
manner can be described by the master equation

dPm

dt
= �

n=−K

K

F�Pm+n − Pm� + �
n�−K

K

fmn�Pm+n − Pm� �1�

for the probability Pm�t� for the particle to be at site m at
time t, where we assume periodic boundary conditions so
that Pm+N= Pm. In �1�, the first sum on the right describes
steps around the edge of the ring, while the last term de-
scribes SW transitions. In this last term, the fmn are symmet-
ric random rates that in any given realization equal f with
probability q and equal zero with probability 1−q.

A full solution to the problem involves obtaining the
set of propagators, or Green’s functions gm,n�t�, the solutions

to Eq. �1� for each initial site n at which the particle
may start. These quantities, or their Laplace transforms
g̃m,n���=�0

�gm,n�t�e−�tdt, are readily computed for moderately
sized systems N�103 using standard numerical techniques.
For example, rewriting the equations of motion �1� in the
form

dPm

dt
+ �

n

AmnPn�t� = 0, �2�

which, along with Eq. �1�, implicitly defines a transition ma-
trix A with elements Amn, we can write the Green’s function
in the time domain as the m ,n element of an exponential

gm,n�t� = �e−At�m,n �3�

of the matrix A. Similarly, we can express its Laplace trans-
form as the corresponding element

g̃m,n��� = ��� + A�−1�m,n �4�

of the resolvent matrix ��+A�−1, which is easily computed
using matrix inversion routines.

Numerical solutions of this sort can be used to find infor-
mation about the evolution of the probabilities Pm�t�, their
moments, or other quantities that characterize transport in the
system. In the condensed matter literature, for example,
much attention has been placed on calculating the diffusion
constant D which in an infinite Euclidean network character-
izes the asymptotic linear growth of the mean-square dis-
placement �n2�t�	�Dt of an ensemble of random walkers.
Insofar as we are interested in the properties of finite net-
works, in which the mean-square displacement always satu-
rates at long times, we focus here on calculating properties
that may be more relevant to applications for which small-
world concepts are currently employed. Specifically, we fo-
cus here on calculating the mean traversal time �, which we
define to be the earliest time, on average, that a random
walker visits the point on the ring the farthest from where it
started. For a walker starting at site n at t=0, the mean time
�m,n to arrive at an arbitrary site m for the first time is the first
moment of the probability density Fm,n�t� for a walker to first
arrive at site m at time t for these initial conditions, i.e.,

�m,n = 

0

�

Fm,n�t�t dt = − lim
�→0

d

d�



0

�

e−�tFm,n�t�dt �5�

=− lim
�→0

dF̃m,n���
d�

, �6�

where in the second line we have expressed the result in

terms of the Laplace transform F̃m,n��� of Fm,n�t�. The first
passage probability density Fm,n�t� is related to elements of
the Green’s functions described above through the relation

gm,n�t� = 

0

t

gm,m�t − t��Fm,n�t��dt� �7�

which physically expresses the probability for the walker to
be found at m at the current time t, in terms of its probability
to have arrived at that site for the first time at some earlier

P. E. PARRIS AND V. M. KENKRE PHYSICAL REVIEW E 72, 056119 �2005�

056119-2



moment t�, and the probability that it is now at that site given
that it did so. From the convolution theorem for Laplace
transforms, it then follows that

F̃m,n��� =
g̃m,n���
g̃m,m���

, �8�

so that we can write Eq. �5� as

�m,n = − lim
�→0

d

d�
� g̃m,n���

g̃m,m���
� . �9�

The mean first passage time is thus readily computed from a
numerical solution to the Laplace transformed Green’s func-
tion of the system �4�, or equivalently, through the resolvent
of the matrix A.

In Fig. 1 we display the results of a numerical calculation
of the mean traversal time

� = N−1�
m

��m+N/2,m	 �10�

scaled by the average nearest-neighbor hopping time
F−1, averaged over an ensemble of 100 K=1 NWSWN’s
with N=103 as a function of the average number nSW of
small-world bonds per site, for different values of the ratio
f /F. As expected, the mean traversal time � decreases mono-
tonically as the number nSW of small-world connections in-
creases. In the limit in which nSW�N−1, i.e., in the absence
of any small-world shortcuts, the mean traversal time re-
duces to the mean time �0 that it takes for the walker to
diffuse around the ring, for which 2F�0��N /2�2. In addi-
tion, as we might expect, for very small values of f /F, only
modest decreases in the traversal time occur with the addi-
tion of small-world network connections.

For values of f 	F, however, the situation appears very
different, there generally being a very strong decrease in the
traversal time near nSW�1−5, and a strong collapse of the
numerical data onto a single curve for values of nSW�1. In
this region, SW connections are sparse, but fast. For
nSW�1 and f �F, the SW connections act as short-circuits,
but transport across the system is still limited by diffusion
within segments of the ring that are free of shortcuts, because
there is not in this regime a percolating path of small-world

connections spanning the system. However, as shown by Er-
dös and Rényi �11�, in a completely random graph a perco-
lating path develops �as N→�� as nSW approaches 1 from
below. Thus, as f /F→�, and N→�, percolation of the
random-graph part of the NWSWN network leads to a criti-
cal change in the traversal time near nSW�1.

It is interesting to note that other transport properties of
the NWSWN’s, including scaling properties of the diagonal
element g̃00��� of the average Green’s function �12�, and the
distinct number of sites visited S�t� by a walker on the net-
work �12� have been studied previously, but only for the case
in which f =F; i.e., in which hops associated with small-
world connections occur with the same transition rate as
steps along the periphery. As we see from the current study,
however, the case F= f lies at the edge of a parameter regime
in which the behavior of the system, as a function of the
number of small-world connections, changes drastically.

It is natural to ask whether the quenched disorder occur-
ring in the small-world networks is an essential element for
the observed transport threshold to occur, or whether a sim-
pler annealed disorder model with uniform transnetwork
connections could exhibit a similar transport transition as a
function of their strength. We show explicitly below that a
simple annealed disorder model does not exhibit such a tran-
sition. Specifically, we study an exactly soluble model in
which a walker at any site takes steps to its neighbors on the
edge of the ring with rate F, as before, and takes steps to one
of n randomly chosen non-neighbor sites on the ring with
rate f , but in such a way that the n randomly chosen sites to
which it may move are not fixed in time, but are selected
anew each time the particle visits the site. Thus, in this
model, if we take n=2nSW the branching ratio between steps
associated with short cuts across the system and those around
the edge is, on average, the same as in the NWSWN model
with quenched disorder already considered. Since the a pri-
ori probability of the particle moving to any other site on the
ring other than its neighbors is the same, the dynamics on
this annealed disorder model is equivalent to one in which
the shortcuts allow the walker to move to any one of its
non-neighbors with a uniform rate


 = 2nSWf/Nn, �11�

where Nn=N−2K−1 is the number of non-neighbor sites to
which it can move. Thus, in any given site, the walker moves
to one of its neighbors with probability 2KF / �2KF+2nSWf�
and to a non-neighbor with probability nSWf / �2KF+2nSWf�.
The resulting master equation for this model,

dPm

dt
= �

n=−K

K

F�Pm+n − Pm� + �
n�−K

K


�Pm+n − Pm� , �12�

is translationally invariant and is readily solved by introduc-
ing Fourier transformed probabilities Pk�t�=�nPn�t�e−ikn. We
find, for example, that for this annealed disorder model the
Laplace transformed Green’s functions, g̃m

A���= g̃m,0
A ���, are

given by the relation

FIG. 1. Mean traversal time � as a function of the mean number
nSW of small-world connections per site on a SWN of 103 sites,
with values of f /F as indicated.
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g̃m
A��� =

N


N��� + N
�
+ G̃m�� + N
� , �13�

in which

G̃m��� = N−1�
k

eikm

� + �F − 
�Ak
, �14�

Ak = �
n=1

K

2�1 − cos kn� , �15�

and the sum in �14� is over all wave vectors k=2�n /N in the
Brillouin zone.

In Fig. 2 we show how the mean traversal time � scales in
the annealed disorder model as function of n �now consid-
ered a continuous parameter�, for various values of f for a
system with N=104. Clearly, although the limiting diffusive
behavior seen in the quenched disorder model of Fig. 1 as
nSW→0 and f →0 is the same as that observed in Fig. 2, the
previously observed behavior for f �F, and in particular the
transition near nSW�1 is completely lacking in the model
with annealed disorder. Thus, as we might expect, the under-
lying percolative behavior is clearly a property associated
with a system with quenched disorder. We note in passing
that the annealed disorder model described above can be
viewed as an approximation to the quenched disorder model
in which the random matrix A is replaced by its ensemble
average �A	; i.e., in which

��� + A�−1	  �� + �A	�−1. �16�

For disordered systems, approximations of this type
are known to give results that are often qualitatively
very bad, particularly in percolative systems, where they
typically wash out any transition that occurs. It is not

surprising, therefore, that the two models have very different
behaviors.

It is clear that the annealed disorder model fails to capture
the essential features of the transport transition that occurs in
the NW small-world networks. However, the idea of replac-
ing a disordered system with a translationally invariant one
that captures, on large time and length scales, the macro-
scopic transport properties of the ensemble of systems that it
replaces is venerable and has a long history in the condensed
matter literature. Indeed, the goal behind a significant body
of theoretical work on various kinds of disordered systems
has been to construct an appropriate, self-consistently deter-
mined effective medium, whose properties capture qualita-
tive features of the actual system under consideration. In the
next section, we explore this idea, and introduce a simple
effective-medium theory that does, in fact, provide an excel-
lent quantitative prediction of the traversal time for the
NWSWN in all parameter regimes except the immediate
neighborhood of the critical point.

III. SELF-CONSISTENT EFFECTIVE-MEDIUM THEORY
OF THE TRAVERSAL TIME

Theoretical justification for the search for a translationally
invariant effective medium whose properties capture the
essential features of the ensemble of disordered systems
that they replace �and which capture the large time
and length scale properties, typically, for any member of
the ensemble� lies with the fact that average transport
properties of the ensemble are, in fact, translationally
invariant. For example, the ensemble-averaged probabilities
pm�t�= �Pm�t�	 associated with any fixed initial condition
evolve in a translationally invariant way, and therefore obey
translationally invariant equations of motion which, if
we knew what they were, would serve to define the effective
medium that we seek. Indeed, the goal of effective-medium
theory is to self-consistently determine properties associated
with this average evolution. To this end, we consider
the simplest set of linear, homogeneous, and translationally
invariant equations of motion that reflect the structure of
the original equations, and the symmetry properties of
the underlying ensemble. In particular, the Laplace trans-
forms p̃m��� of the average probabilities pm�t� we take to
obey the equations

�p̃m��� − pm�0� = �
n=−K

K

F�p̃m+n − p̃m� + �
n�−K

K

w̃����p̃m+n − p̃m� .

�17�

Here, w̃��� is a frequency-dependent rate—equivalently, a
memory function in the Laplace domain �14�—connecting
pairs of sites on the network capable of being connected, in
any realization, by a small-world rate f . In these effective-
medium equations of motion, transport around the ring edge
is characterized by the same rate F that obtains throughout
the ensemble, but w̃��� must be determined from self-
consistent considerations. Note that these EMT equations of
motion have exactly the same form as the Laplace transform
of those describing the annealed disorder model of the last

FIG. 2. Mean traversal time � as a function of the mean number
n of transnetwork connections per site for the annnealed disorder
model on a system with 104 sites, with values of f /F as indicated,
showing the failure of the annealed disorder to capture the transport
transition observed to occur on real small-world networks.
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section, except that in that model the rate w̃���=
 was sim-
ply set equal to its ensemble average, while in the current
treatment w̃��� is to be determined self-consistently through
other considerations.

Thus, the theoretical tasks are two: �i� the self-consistent
determination of w̃��� as a function of N and q �or nSW�, and
�ii� the determination of transport properties arising through
the solutions to �17�. Both tasks require calculation of the
effective-medium propagators g̃m

e ���, i.e., the solutions to
�17� for a walker initially at the origin,: pm�0�=�m,0. Since
the structure of the equations of motion �17� are the same as
those of the annealed disorder model, the form of the
effective-medium Green’s function associated with �17� is
the same as �13�, with 
 replaced by w̃���:

g̃m
e ��� =

Nw̃

N��� + Nw̃�
+ G̃m�� + Nw̃� , �18�

where

G̃m��� = N−1�
k

eikm

� + 2�F − w̃�Ak

. �19�

Using �18�, we now develop a self-consistent expression
for w̃���. We proceed as in other EMTs �7–10�, by embed-
ding in the effective medium a typical “fluctuation from the
average” associated with the disorder, and then requiring that
upon averaging over the distribution associated with this
fluctuation, we recover the effective medium in which it was
embedded. Thus, we consider the bond between the origin
and some other non-neighbor site n on the ring, and replace
the effective-medium bond w̃��� between those two sites
with an actual rate f0,n= fn �=0 or f�, drawn from the en-
semble. For a particle placed at the origin, the resulting
p̃m��� obey

�p̃m��� − �m,0 = �
n=−K

K

F�p̃n+m − p̃m� + �
n�−K

K

w̃����p̃m+n − p̃m�

− ̃m��� , �20�

where ̃m���= ��m,0−�m,n��fn− w̃��p̃0− p̃n�. The solution to
the set of Eqs. �20� can be written in terms of �18� as

p̃0 = g̃0
e −

�̃n�̃n
2

1 + 2�̃n�̃n

, �21�

where �̃n���= fn− w̃���, and �̃n���= g̃0
e���− g̃n

e���.
We now impose self-consistency, and require that, upon

averaging �21� over the dichotomous distribution

��fn� = �1 − q���fn� + q��fn − f� �22�

of the rates fn, on the one hand, and the location n of the
small-world connection, on the other, we recover the propa-
gator for the effective medium. For this to occur, the second
term on the right-hand side of �21� must average out to zero.
This leads to the self-consistent condition

�
n=K+1

N/2
q�f − w̃��̃n

2

1 + 2�f − w̃��̃n

= �
n=K+1

N/2
�1 − q�w̃�̃n

2

1 − 2w̃�̃n

, �23�

from which w̃��� can be determined. For q=1 and q=0,
respectively, the solutions reduce to the exact results. For
q�0 or 1, Eq. �23� can be solved numerically without hav-
ing to perform large matrix inverses.

Because we are interested primarily in properties of the
network associated with large length scales, and thus with
times much longer than that required for a single hop, we are
interested in the Laplace domain on the behavior of the sys-
tem for small values of the Laplace variable � as in Eq. �9�.
Accordingly, we present in Fig. 3 a plot of the zero-
frequency effective-medium parameter w0=lim�→0w̃��� as a
function of the number nSW=qN /2 of small-world connec-
tions per site, for different values of the SW hopping rate f ,
on a NWSWN with N=104 sites. On the right-hand side of
the figure, at sufficiently large values of nSW for any value of
f , the effective-medium parameter w0 appears well-described
by the formula w0�qf �2nSWf /N. As we move to values of
nSW�1 and less, there is a convergence of the curves with
f �F, similar to that which appeared in Fig. 1 for the tra-
versal time of the NWSWN, thus giving hope that the self-
consistent treatment introduced here provides a qualitatively
correct description of transport in this disordered system. Af-
ter some analysis of the results, we find that in the region
1�nSW, where the different curves with f �F converge, the
parameter w0 is independent of f and is well-characterized by
the relation w0�Nq2F�4nSW

2 F /N, depicted as a dashed line
in the figure. As N→�, the region of the main part of Fig. 3
associated with this universal behavior extends downward
and to the left, so that for any f there will be a value nSW�f�
below which w0 will scale as 4nSW

2 F /N. In the inset of Fig. 3
we show how this scaling relation is obeyed as a function of
system size for large N and small nSW, for the case in which
f =F. Dotted lines in the inset indicate the relation
w0�4nSW

2 F /N, which the curves with small nSW approach
for large N. At moderate values of nSW�1, scaling crosses
over to the form w0�2nSWf /N, represented by the dot-

FIG. 3. Effective-medium parameter w0 as a function of the
mean number nSW of small-world connections per site on a SWN of
104 sites, with values of f /F as indicated. Inset: Effective-medium
parameter w0 as a function of the number N of sites in the network,
for the case f =F.

TRAVERSAL TIMES FOR RANDOM WALKS ON SMALL- … PHYSICAL REVIEW E 72, 056119 �2005�

056119-5



dashed line, shown for nSW=2.5. For very small values of
nSW�N−1, uninteresting deviations from SW scaling occur
in the regime where most members of the ensemble have no
SW connections.

This interesting behavior of the effective medium
parameter w0 leads to two important questions. Does the
behavior seen in the parameter w0 lead to a corresponding
effect on actual transport observables? Do the predictions
of EMT for those observables describe the actual system of
interest? At least in terms of the mean traversal time,
the answer to both of these questions is affirmative. The
derivatives and small-� limit in �9� can be explicitly taken
for the effective-medium propagators �18�, leading to the
simplification

�m = N�G̃0�Nw0� − G̃m�Nw0�� . �24�

In Fig. 4, we plot the mean traversal time �=�N/2 as a
function of nSW for a system with N=103 sites. Solid lines in
this figure are predictions of EMT, while the data points are
the same as those appearing in Fig. 1. In Fig. 4 we see that
the effective-medium theory predicts a transition in the vi-
cinity of nSW=1, as well as a collapse of the numerical data
for large f /F onto a single curve for nSW�1. For all values
of f , traversal times saturate for very small nSW to a value
such that 2F���N /2�2, consistent with pure diffusion
around the edge of the ring. In the region 1�nSW�N−1

where the data collapse occurs for f �F, the traversal time of
the numerical data and the EFT are both described by the
functional relation ���2qF�−1=N /4nSWF, which is a reflec-
tion of the mean number of steps F���2q�−1 the particle
must take along the edge of the ring before it encounters a
SW shortcut across the system.

Comparison of the data and the solid curves in Fig. 4
shows that, as in other EMTs, the theory derived above
appears to be numerically accurate for all parameters
except those near the underlying percolation transition, the
effect of which only becomes apparent for large values of
f /F in the neighborhood of nSW�1. Provided that we
avoid this particular regime �i.e., the region bounded by the
dashed curves in Fig. 4�, we can reliably use our EMT to

calculate accurately other properties of the system. The two
dashed curves in that figure represent limiting cases for very
large f /F�108 for the EMT �on the left� and the numerical
results �on the right�. The discrepancy between EMT and the
exact numerical results does not decrease significantly with
increasing N. Thus, the EMT of the present paper is typical
of those for other disordered systems, which often capture
the essential behavior of the system, but fail to accurately
reproduce critical properties. Of course, the main advantage
of the EMT we have derived is that we can now extend its
calculations to larger networks �i.e., larger values of N� for
which numerical solutions to the individual equations of mo-
tion �1� become prohibitively difficult. As an example, we
present in Fig. 5 a plot of traversal time � as a function of
system size N. This plot has been computed using EMT for
fixed values of nSW, for the case f =F, which is accurately
described by EMT for all nSW, as is evident from Fig. 4.
Clearly, the predicted scaling ��N, shown as dotted lines in
Fig. 5, obtains for any value of nSW for sufficiently large
values of N. Indeed, for small nSW, the time to traverse the
system follows closely the diffusive result ��N2 until the
system size is sufficiently large that there is a significant
probability to encounter a shortcut before reaching the other
side of the ring via diffusion around the periphery.

IV. SUMMARY

In this paper we have considered the mean traversal time
� for a class of random walks on Newman-Watts small-world
networks, in which steps around the edge of the network
occur with a transition rate F that is different than the rate f
for steps across small-world connections. Using numerical
calculations of the Green’s function we obtained present nu-
merical data for the mean traversal time and showed that for
f �F, there is a transition in the underlying transport mode
between diffusion limited and connection limited motion. We
showed that a model with annealed disorder does not display
a transition reflective of the underlying percolation transition
occurring on the random-graph part of the network. We then

FIG. 4. Average time to first traverse the network as a function
of the mean number nSW of small-world connections per site, on a
SWN of 103 sites, with values of f /F as indicated. Solid lines are
from EMT; data points are the same as in Fig. 1.

FIG. 5. Mean traversal time as a function of the number N of
sites in the network, for f =F. Dashed line is the limiting case for
pure diffusion, solid lines are the results of EMT. Dotted lines in-
dicate scaling relationships discussed in the text.
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developed a self-consistent effective-medium theory �EMT�
for the traversal time that provides an accurate and compu-
tationally efficient means for calculating this quantity except
in the immediate vicinity of the transition. As a result, we
have been able to use EMT to determine how various trans-
port properties scale with system size and connectivity on the
Newman-Watts small-world networks.
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