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Abstract

Simple random walk considerations are used to interpret rodent population data collected in
Hantavirus-related investigations in Panama regarding the short-tailed cane mouse,Zygodontomys
brevicauda. Thediffusion constant of mice is evaluated to be of the order of (and larger than) 200
meters squared per day. The investigation also shows that the rodent mean square displacement
saturates in time, indicating the existence of a spatial scale which could, in principle, be the home
range of the rodents. This home range is concluded to be of the order of 70 meters. Theoretical
analysis is provided for interpreting animal movement data in terms of an interplay of the home
ranges, the diffusion constant, and the size of the grid used to monitor the movement. The study gives
impetus to a substantial modification of existing theory of the spread of the Hantavirus epidemic
which has been based on simple diffusive motion of the rodents, and additionally emphasizes the
importance for developing more accurate techniques for the measurement of rodent movement.
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1. Introduction

The Hantavirus epidemic is of great concern to human health in many regions of
the world (Yates et al., 2002; Mills et al., 1999; Parmenter et al., 1999). The discovery of
Hantavirus in the New World took place after an outbreak of a severe disease in the
region of the Four Corners in the North American Southwest, in 1993. The agent,
Hantavirus Sin Nombre, is carried mainly by the extremely common deer mouse,
Peromyscus maniculatus(Nichol et al., 1993; Childs et al., 1994). Since the discovery,
an enormous effort has been devoted to understanding the ecology and epidemiology
of the virus–mouse association, with the ultimate goal being prediction of human
risk (Mills et al., 1999; Parmenter et al., 1998). Numerous species of the virus are known
in the Americas, each one of them almost exclusively associated with a single rodent
reservoir (Schmaljohn and Hjelle, 1997). Human disease caused by these pathogens can
rangefrom mild to very severe, with a mortality rate in some cases approaching 50%.

A theory for the spread of the Hantavirus was constructed a few years ago by two of
the presentauthors (Abramson and Kenkre, 2002) and shown to lead naturally to spatio-
temporal patterns such as the observed refugia (Yates et al., 2002) and the sporadic dis-
appearance and appearance of the epidemic (Mills et al., 1999; Parmenter et al., 1999).
That theory will be referred to in the rest of the paper as AK. Seasonal, as
well as extraordinary variations in demographic and environmental conditions are
included in the AK model through spatio-temporal dependence of several param-
eters, such as the carrying capacity. Theemergence of traveling waves of infec-
tion (Abramson et al., 2003), the investigation of fluctuations (Aguirre et al., 2002),
external changes in environmental effects (Ballard et al., 2004), and other fea-
tures (Kenkre, 2003; Abramson, 2003; Kenkre, 2004; Buceta et al., 2004) have also been
studied. There are additional factors, not yet analyzed theoretically, which may be of im-
portance in the dynamics of the virus. For example, human activity such as changes in
agricultural practice may alter habitats and drive the rodent population into new habitats
not previously occupied by them. While many theoretical issues regarding the AK devel-
opment have been, and are being, explored quite intensely, the major problem of obtaining
the values of the parameters inherent in the theory has remained neglected as a result of
paucity of available data. Needless to say, the solution of this problem is crucial to the
quantitative description of the spread of the epidemic. The purpose of the present paper is
such extraction of the essential parameters necessary in the description of the spread of the
Hantavirus.

The AK model (Abramson and Kenkre, 2002; Abramson et al., 2003) is based on a
fundamental set of biological features that characterize the transmission of Hantavirus
among rodent populations, and involves five parameters: the birth rateb of the rodents
(mice), their death ratec, the environmental parameterK , the contagion ratea, and the
diffusion coefficientD. In terms of these, the mice populationsMs (susceptible) andMi

(infected) obey

∂Ms

∂ t
= b(Ms + Mi ) − cMs − Ms(Ms + Mi )

K (x, t)
− aMsMi + D∇2Ms, (1)
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∂Mi

∂ t
= −cMi − Mi (Ms + Mi )

K (x, t)
+ aMsMi + D∇2Mi . (2)

All the parameters exceptK are considered to be independent of timet and spacex.
The measurement of the birth and death ratesb, c presents no special challenge.

The environmental parameterK is sometimes measured from food and vegetation
measurements, and also often obtained from aerial photographs of the landscape. Its
variation in time and space can be well characterized although its absolute values are
difficult to obtain. The encounter infection ratea is notoriously hard to measure from
observations of individual mouse–mouse interactions (Botten et al., 2002). At this stage of
observational technique, we must assume that it is a floating parameter.

The last of the five parameters, the diffusion constantD, is crucial to the AK description
since the assumed mechanism for the spread of the epidemic is the diffusion (movement)
of infected mice over the terrain followed by the transmission of infection to susceptible
mice. In principle, it appears straightforward to measureD from records of mice movement
in a mark-recapture experiment, as was done byOvaskainen (2004)in a recent study on
the dispersal of butterflies in a heterogeneous habitat. The investigation reported in the
present paper began as an attempt to extractD directly in that manner. We will see that
examination of the data has indeed allowed us to obtain values ofD but also led us to
a number of important conclusions about the transmission of Hantavirus among rodent
populations, and has suggested substantial changes to be introduced into the theory of the
spread of Hantavirus.

2. The data set: Zygodontomys brevicauda in Panama

At the beginning of 2000, human cases (more than 20 in the first cluster) of
Hantavirus Pulmonary Syndrome (HPS) were recognized from the Azuero Peninsula,
Panama. Following the outbreak, it was discovered that the pigmy rice ratOligoryzomys
fulvescensand the short-tailed cane mouseZygodontomys brevicaudaharbored two novel
hantaviruses, Choclo virus (responsible for the HPS cases), and Calabazo virus (not known
to cause human disease) respectively (Vincent et al., 2000). The data set we have selected
in this study was obtained as the result of a mark-recapture observation performed in the
Azuero Peninsula, in Tonosí (Los Santos), Panama, from June 27 to November 20, 2003.
The observation corresponds to the rainy season in the region, and following several years
of relative draught. During these years, clinical cases of HPS were rare (after being more
frequent in 1999–2001) and rodent densities were probably relatively low.

Measurements were made on several species of rodents, of which we choose for the
purposes of the present paperZ. brevicauda, host of Hantavirus Calabazo. This choice
was made becauseZ. brevicaudawas the most abundant species in the field study. A
summary of the characteristics of the populations is presented inTable 1. Thedata relevant
to the analysis of the movement consist of the position and time of capture of those mice
that are captured at least twice, thus allowing for the calculation of their displacements
from one location to another. The measurements were made with a square array of 7× 7
Sherman traps, separated 10 m each. Each measuring session lasted 3 days, with a time of
recurrence to the same site of about one month. The number of trapping grids used in the
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Table 1
Summary of the mark-recapture data ofZ. brevicauda

J SA A Total

Captured only once:
F 7 13 98 118
M 8 18 79 105
Total 15 31 177 223

Recaptured at least once:
F 2 2 71 75
M 0 16 97 113
Total 2 18 168 188

Probability of recapture:
F 0.22 0.13 0.42
M 0.00 0.47 0.55
Total 0.13 0.37 0.49

A total of 846 captures, corresponding to 411 different animals, were obtained. Of them, 188 were captured at
least twice, and at most 10 times. The probability of recapture depends on sex and age group, as shown. It suggests
an increase of the probability of recapture with age, independently supported by the probability of recapture as a
function of weight (not shown). J: juveniles, SA: sub-adults, A: adults, F: females, M: males.

study was 24, in 4 different sites. Each grid was set up across the edge between forest and
pastures (Suzán et al., 2004). For our analysis given below, all grids have been rotated such
that the edge runs along they direction.

3. The movement of Z. brevicauda

A fewanimals were captured a sufficient number of times (about 10), during a period of
months, as to allow us to form a useful picture of the mouse walks. Unfortunately, there are
only five of these mice. The limited number makes it impossible to carry out any statistical
analysis of the properties of the walks.

Despite this drawback, we were able to proceed with the analysis because the data set
contains hundreds of recapture events, corresponding todifferentmice, each one providing
us with a displacement at a certain time scale.These time scales are 1 and 2 days (if the
recapture occurs during the same session, that lasts three days); about 1 month (if the
recapture occurs at the next session); and about 2 months (at the second next session),
3 months, and 4 months, respectively. At progressively longer time scales there are,
certainly, less recapture events; but there are a sufficient number of them for sensible results
to beobtained up to the 3-month scale. The data are shown inFig. 1, for thex-component
of the 2-dimensional displacements of the mice. Each point in the graph represents a
displacement�x taking place during an interval�t . Each displacement corresponds to the
movement of a single mouse, but differentdisplacements may or may not correspond to
the same animal. We consider these displacements as our elementary events. Furthermore,
we specifically assume them to be statistically independent. There are repeated events in
the set, namely displacements with the same�x and�t , a fact not represented inFig. 1.
In the plot, it can be observed that, besides the 1-and 2-day intervals, the data are scattered
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Fig. 1. Displacements of the recaptured mice, projected along thex direction which is the direction into and out
of the forest relative to the pastures in the landscape. Each point corresponds to a displacement of one of the 411
mice that were captured more than once. Some mice were captured more than twice, thus contributing with more
than one point to this set.

in “clouds” around 1, 2, 3 and 4 months. The reason for this is twofold. First, each session
consists of 3 consecutive days of capture; therefore, the interval between two recaptures in
different sessions is not a constant number of days. Second, variations due to the logistics
of field work result in the time between sessions not being precisely 30 days.

On each time scale, the set of available displacements is taken to represent a statistical
ensemble, i.e., a population of ideal mice with certain statistical properties. Also, the
displacements measured on each time scale correspond to a progressively coarser graining
of the actual mice walks, containing an indeterminate (but presumably large) number of
steps already on the 1-day scale.

Using available data on each time scale, we construct mouse walks by randomly
shuffling the displacements. These walks represent instances of possible walks, on that
time scale, with exactly the same statistical properties as a hypothetical “representative
mouse”. We construct various such walks and perform ensemble averages to obtain the
mean square displacement as a function of time. For example, on the time scale of 1 day,
20 instances of the walk produce the result shown inFig. 2. Diffusive behavior is inferred
from the clearly linear rise of the mean squaredisplacement. On longer time scales the
same analysis produces smaller diffusion coefficients. However, application of the method
is not reliable on these longer scales becauseit does not permit a correct evaluation of
errors.

The above considerations clarify the underlying diffusive nature of mice motion. A
direct analysis of the probability distribution functionP(�x) is possible, also on each
time scale.P(�x) is a bell-shaped distribution, witha well-defined variance that can be
used to characterize the evolution of the meansquare displacement of the representative
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Fig. 2. Square of the displacement as a function of time, on the time scale of 1 day, for 20 artificial “mouse walks”
based on the recorded displacements. The heavy line is an ensemble average.

Fig. 3. Mean square displacement as a function of time, using the different time scales available from the data of
Fig. 1. The two curves correspond to the two directions in space.

mouse as a function of time. The result of this analysis is inFig. 3, where we show the
mean square displacements in both thex and they directions. Unlike in a simple diffusive
process, the observed mean square displacement is observed to saturate to a value near
400 m2. The saturation value is different for〈�x2〉 and for〈�y2〉, indicating an anisotropy
in the system. We have already mentioned abovethat each trapping grid contains an edge
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between forest and pastures, mainly along they direction. This is surely responsible for
the anisotropy.

4. Movement in confined spaces: Rodent home ranges and grid sizes

The saturation of the mean square displacement, clear from the observations discussed
above, implies the existence of a spatial scale in the rodent system. One obvious possibility
is that the saturation is a manifestation of the confined motion of the rodents, i.e., the
existence of home ranges (Burt, 1943). In order to treat the problem quantitatively, we first
present a simple calculation of the effect ofconfinement on the meansquare displacement
of a random walker.

4.1. Effect of confinement on〈x2〉
There are several ways one might model the effect of confinement on the motion

of rodents. One is to treat the motion as obeying, not a diffusion equation, but
a Fokker–Planck equation in an attractive potential (Kuperman and Kenkre, 2004). A
simpler way, which we adopt here, is to consider the motion as occurring via simple
diffusion but confined to a box whose size represents the home range. Restricting the
analysis to 1-dimension for simplicity, we solve the diffusion equation for the probability
per unit lengthP(x, t) of finding the mouse at positionx and timet inside a bounded
domain of lengthL. Taking into account the symmetry of the problem, the general solution
can be written asP(x, t) = A0 + ∑

Aλ cos[λx]e−λ2Dt . By imposing the condition that a
mouse cannot escape from the home range (zero flux boundary condition), the allowedλ

coefficients can be calculated and the solution written as

P(x, t) = 1

L
+ 2

L

+∞∑
n=1

An cos

[
2nπx

L

]
e
− (2n)2π2Dt

L2 , (3)

wherein

An = 2

L

∫ L/2

−L/2
dx cos

[
2nπx

L

]
P(x, 0). (4)

With the initial condition that the mouse is within a lengthα centered around the origin of
thebox, specifically

P(x, 0) =
{

1/α |x| ≤ α/2
0 |x| > α/2,

(5)

the evolution at all times can be written as

P(x, t) = 1

L
+ 2

απ

+∞∑
n=1

sin
(nπα

L

)
cos

(
2nπx

L

)
n

e
− (2n)2π2Dt

L2 . (6)
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The initial condition (5) reduces to aP(x, 0) = δ(x) in the limit α → 0. The calculation
of the mean square displacement〈x2〉 = ∫ L/2

−L/2 dxx2P(x, t) gives

〈x2〉 = L2

12

{
1 − L

απ3

+∞∑
n=1

(−1)n+1 sin
(nπα

L

)
n3

e− (2n)2π2Dt
L2

}
. (7)

We see that〈x2〉 � α2/12+ 2Dt for t → 0. We alsosee that〈x2〉 saturates toL2/12 for
t → +∞. If P(x, 0) = δ(x), themouse will move initially as if no home range existed.
However, its diffusive motion will be limited in extent by the presence of the home range
and 〈x2〉 will eventually saturate. The 1-dimensional calculation captures the essential
features. The 2-dimensional extension, appropriate to mouse movement on the terrain, is
straightforward to obtain becauseP(x, y, t) is given by the product of two functions of the
form (6), one for thex-planewith Dx andLx and the other for they-planewith Dy and
Ly. Allowing for the fact that differences in terrain could be reflected in the differences
in Dx and Dy (given that the traps are laid out systematically relative to ‘edges’ in the
landscape between forests and pastures), wegive a usable expression for the average mean
square displacement in 2-dimensions which canbe used directly for the interpretation of
theobservations.

〈x2〉 + 〈y2〉 = L2
x + L2

y

12


1 − 1

απ3

+∞∑
n=1

(−1)n+1

n3

×

Lx sin

(
nπα

Lx

)
e
− (2n)2π2Dxt

L2
x + Ly sin

(
nπα

Ly

)
e
− (2n)2π2Dyt

L2
y




 .

(8)

Application of this analysis to the mouse data is straightforward. The short-time part
of the mean square displacement gives the diffusion constant, averaged over the two
directions, to be 200± 50 m2/d. The saturation value appears to imply that the home
rangeL equals about 70 m. While these initial considerations suggest that the Panama data
allow us to confirm the existence of rodent home ranges, as well as to measure their extent,
careful observation introduces a note of caution: we notice that the derived value of the
home range is of the order of the size of the measurement gridG = 60 m. Could sampling
from a limited domain in space lead to saturation and mislead one into drawing incorrect
conclusions about the home range? To answer this question we carry out the following
analysis.

4.2. Effect of limited spatial observations on〈x2〉
Consider the motion of a random walker in unbounded space (no home ranges) but let

the mean square displacement be calculated from observations in alimited part of space of
sizeG placed symmetrically around the origin for simplicity. We obviously have

〈x2〉 =
∫ G/2
−G/2 dx x2P(x, t)∫ G/2
−G/2 dx P(x, t)

(9)
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where the probabilityP(x, t) is given by the propagator of the diffusion equation in
unboundedspace:

P(x, t) = e− x2
4Dt√

4π Dt
. (10)

Substitution gives

〈x2〉 = 2Dt


1 − Ge− G2

16Dt

√
4π Dt erf

(
G

4
√

Dt

)

 . (11)

At short times
〈
x2
〉 � 2Dt while at long times it saturates to the valueG2/12. The

2-dimensional result is trivially obtained as a generalization of (11).
Note that the behavior of a system without home ranges but with a finite window

of observation is qualitatively different from that of a system with home ranges and an
infinitely large window. The mean square displacement in the former (Eq. (11)) has quite
a different time dependence from the latter (Eq. (7)), since the error function expressions
differ considerably from exponentials. It is easy to see that in both cases the mean square
displacement starts out at short times as 2Dt and saturates to a constant at long times. The
saturation is toG2/12 in the first case and toL2/12 in the second. There is thus potential
for confusion. One could mistakenly interpret what is actually the measurement grid size
G to be the rodent home rangeL.

Combination of the two elements discussed above, the home range effect and the grid
sizeeffect, is straightforward to analyze. Consider the situation in which a mouse is moving
randomly inside a home range of widthL but isobserved only inside a region of widthG,
both concentric for simplicity. If the grid is larger than the home range(G > L), the
evolution of the mean square displacement is exactly given by the previous result (7). In
the other case,(G < L), the evolution is

〈x2〉 = G2

12

×




ζ + 6L
αζ2π4

+∞∑
n=1

sin
(nπα

L

) {
2πζ

cos(nπζ)

n3 + sin(nπζ )
[

π2

n2 ζ 2 − 2
n4

]}
e
− (2n)2π2Dt

L2

ζ + 2L
απ2

+∞∑
n=1

sin
( nπα

L
)

sin(nπζ)

n2 e
− (2n)2π2Dt

L2




, (12)

whereinζ = G/L. Eq. (12) reduces to Eq. (7) whenζ = 1. It can be shown that〈x2〉 goes
asα2/12+ 2Dt for t → 0 and saturates toL2/12 for t → +∞. In Fig. 4 we compare
Eqs. (7), (11) and (12) for an initially localized conditionP(x, 0) = δ(x). Despite the fact
that all of the three curves (withG < L) show the same linear behavior at short times and
reach the same saturation value, they differ considerably at intermediate times. A fourth
curve (dashed, lowermost in the group) for whichG > L is also shown in the same graph.

An important step in the interpretation of saturation data is the verification of the
sensitivity of the theoretical prediction to the initial position of the mice, as well as to
the position of the home ranges with respect to the grid. InAppendix Awe provide further
details on the calculation of the mean square displacement, relevant to the dependence on



1144 L. Giuggioli et al. / Bulletin of Mathematical Biology 67 (2005) 1135–1149

Fig. 4. Mean square displacement in units ofG2/12 as a function of time in units ofG2/D for different values
of the ratioG/L, i.e., the ratio of the measuring grid divided by the width of the home range. The dashed, solid,
dash–dotted and dotted lines correspond, respectively, toG/L = 1.43, 1, 0.7, 0. WhenG > L, 〈x2〉 is seen
to saturate to the lower valueL2/12, whereas for all other(G ≤ L) cases, it saturates toG2/12. The time
dependence differs qualitatively for the various cases. The difference might be discernible—in principle—with
morerefined measurements.

the distribution of initial locations of the mice. To assess the combined effect, we have
done a numerical experiment in which we measure simulated mice displacements. Each
mouse is supposed to occupy uniformly its own home range, and all the home ranges are
uniformly distributed in space. We limit thecalculation of the mean square displacement
to a window of sizeG, thus simulating the conditions of the measurement in the field. The
resultis shown inFig. 5, where the normalized mean square displacement is plotted as a
function of the normalized home range sizeL/G. The available data allow us to conclude
that the home range ofZ. brevicaudain Panama (averaged in the two directions) is 70 m,
with asymmetric error bounds from 50 to 120 m.

5. Discussion

Extraction of quantitative information concerning the parameters in the Abramson–
Kenkre theory (Abramson and Kenkre, 2002) of Hantavirus spread was the initial task
undertaken in the present investigation. This was prompted by the success of that theory in
reproducing qualitatively observed features suchas the sporadic disappearance of infection
during time periods of low carrying capacity, and the existence of refugia where infection
persists and from where it propagates in the form of waves when conditions become
favorable for such propagation. The key to the AK description of these processes was a
transcritical bifurcation predicted by the theory and controlled by the carrying capacity.
Crucial to quantitative application of the theory is the diffusion constant of the rodents,
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Fig. 5. Mean square displacement in units ofG2/6 as a function of the ratio of the home range size to the
grid size,L/G. The curve is the result of a simulation of 105 steps for each value ofL/G. The arrow shows
the average (in both directionsx andy) mean square displacement observed in the measurement, from the data
shown inFig. 3, and the inferred value of the home range(L/G = 1.16). The grey lines show the error bounds.
The dotted lines show the analytic result derived inAppendix A, valid for home ranges concentric with the
grid.

and the first aim of the present investigation was to extract this diffusion constant from
movement observations collected forZ. brevicaudain the peninsula de Azuero in Panama
in a 5-month period in 2003. While logistic growth which is also part of the theory of
Ref.Abramson and Kenkre (2002)is generally considered wellestablished, both from field
and laboratory studies (Murray, 1993), equally strong justification for assuming diffusive
transport for rodent movement is not available. The goal of extracting the diffusion
constant has been met. The result particularto the species and location considered is
D = 200± 50 m2 per day.

During the process of this extraction, we encountered a spatial scale in the rodent system
which could be representative of the home range of the mice. Preliminary investigations
showed that the observed spatial scale could be reflecting the size of the measuring grid
instead of a characteristic of the rodent system. Since accuracy of interpretation will be
considerably increased by having multiple values of the grid size, our analysis underscores
the importance for additional observations to be undertaken with grids of varying size.
Motivated by this idea, we carried out further developments of the theory which resulted
in the simulation curve shown inFig. 5. The mean value of the home range for the two
directions can be read off from the plot to beLx = 60 m andLy = 90 m.

Because our prescription for extracting the diffusion constant relies on the initial time
evolution of the mean square displacement rather than its saturation value, we have been
successful in obtaining a usable estimate of the diffusion constant. However, even that
evaluation suffers from the fact that reconstruction of mouse walks from observations is
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difficult because multiple measurements for individual mice are extremely rare. Therefore,
we suggest strongly that systematic measurements of rodent movement be undertaken in
other ways such as radio telemetry to confirmand sharpen the estimates of the diffusion
constant we have obtained in the present analysis. Elsewhere we will present our separate
analysis (Abramson et al., submitted for publication) of mice movementdatatakenfrom
web measurements (Parmenter et al., 2003).

The present analysis has pointed to the importance of the concept of home
ranges, which have been known and discussed in many places in the literature earlier
(Burt, 1943; Anderson, 1982; Ford, 1979). They would generally be reflected in animal
movement measurements in the way we havedetailed in our calculations in the present
paper and could additionally be of crucial importance in the theory of the spread of
epidemics. While they do not appear in the AK description (the tacit assumption in
that formalism being that they are larger than other lengths of interest), we have now
developed (Kenkre et al., 2004) a series of models to treat them explicitly. The basic
idea in our new theory is to consider the dynamics of two types of mice, stationary and
itinerant (and susceptible and infected in each category). The stationary mice are the
adults that move within their home ranges and do not stray far from the burrow. The
itinerant mice are the sub-adults that must leave to find their own home ranges. Our studies
employ a combination of nonlinear analysis and simulations. The results will be presented
elsewhere.
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Appendix A. Dependence of 〈x2〉 on distribution of initial location of rodents within
the grid

The mean square displacement obviously depends on the initial location of the mice,x0.
Let us consider the case of infinite home range, but finiteG, anddetermine the effect on
(11) of thedistributionP(x0) of initial locations of the mice. We thus evaluate〈(x − x0)

2〉
and calculate its average, denoted by an additional〈· · ·〉, with respect to the distribution
P(x0) of the initial positions through〈〈(x − x0)

2〉〉 = ∫ G/2
−G/2 dx0P(x0)〈(x − x0)

2〉.
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Proceeding as in Eq. (11), we have

〈〈(x − x0)
2〉〉 = 2Dt − 2Dt

∫ G/2

−G/2
dx0P(x0)

×



(G

2 + x0
)

e−
(

G
2 +x0

)2

4Dt + (G
2 − x0

)
e−

(
G
2 −x0

)2

4Dt

√
π Dt

[
erf

(
G
2 +x0√

4Dt

)
+ erf

(
G
2 −x0√

4Dt

)]



+ 4

√
Dt

π

∫ G/2

−G/2
dx0P(x0)x0




e−
(

G
2 +x0

)2

4Dt − e−
(

G
2 −x0

)2

4Dt

erf

(
G
2 +x0√

4Dt

)
+ erf

(
G
2 −x0√

4Dt

)

 .

(A.1)

This reduces to Eq. (11) whenP(x0) = δ(x0). The evolution at short times is found to be
independent ofP(x0):

lim
t→0

〈〈(x − x0)
2〉〉 � 2Dt, (A.2)

while the saturation turns out to depend onP(x0) and is given by

lim
t→+∞〈〈(x − x0)

2〉〉 = G2/12+
∫ G/2

−G/2
dx0P(x0)x

2
0. (A.3)

Notice that for a uniform initial distributionP(x0) = 1/G, the integralequalsG2/12,
and the saturation value isG2/6. This value is twice that obtained for the case of initial
placement of the mice at the center of the grid. We see from (A.3) that its right hand side
lies always betweenG2/12 andG2/3 depending on the initial distribution.

The time-dependent evolution of〈〈(x − x0)
2〉〉 can also be determined when the home

range is not infinite. If x0 is not the center of the home range,P(x, t) is no longer
symmetric with respect to the origin, and the series solution forP(x, t) now contains sine
(in addition to cosine) functions:

Px0(x, t) = 1

L
+ 2

απ

+∞∑
n=1

cos
(

nπ2x0
L

)
sin

(nπα
L

)
cos

(
2nπx

L

)
n

e
− (2n)2π2Dt

L2

+ 4

απ

+∞∑
n=1

sin
(

(2n−1)πx0
L

)
sin

(
(2n−1)πα

2L

)
sin

(
(2n−1)πx

L

)
2n − 1

e− (2n−1)2π2Dt
L2 . (A.4)

Here the initial probability is

Px0(x, 0) =
{

1/α |x − x0| ≤ α/2
0 |x − x0| > α/2.

(A.5)

We continue to consider the home range and grid window to be concentric for simplicity.
The calculation follows the steps shown in earlier cases and yields, for〈〈(x − x0)

2〉〉, the
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expression:∫ G/2

−G/2
dx0P(x0)x

2
0 + G2

12

∫ G/2

−G/2
dx0P(x0)

×

ζ + 6L

ζ 2απ4

+∞∑
n=1

cos

(
nπ2x0

L

)
sin

(nπα

L

)

×
[

2πζ
cos(nπζ )

n3
+ sin(nπζ )

(
π2

n2
ζ 2 − 2

n4

)]
e− (2n)2π2Dt

L2

+ 96

ζ 2π2

x0

α

+∞∑
n=1

sin
(

(2n−1)πx0
L

)
sin

(
(2n−1)πα

2L

)
(2n − 1)2

×

ζ cos

(
(2n − 1)πζ

2

)
− 2

π

sin
(

(2n−1)πζ
2

)
(2n − 1)


 e

− (2n−1)2π2Dt
L2




×

ζ + 2L

απ2

+∞∑
n=1

cos
(

nπ2x0
L

)
sin

( nπα
L

)
sin(nπζ )

n2
e
− (2n)2π2Dt

L2




−1

. (A.6)

The time dependence of Eq. (A.6) at short and long times can be shown to tend to
that given by Eqs. (A.2) and (A.3), respectively, for the case of free diffusion. In the case
L < G, the result is simply Eq. (A.6) with the parameterζ set equal to 1 andG set equal
to L. In such acase the saturation value is given by an expression similar to Eq. (A.3) but
with L replacingG everywhere.
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