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Abstract

The Fisher equation, which combines di/usive motion of individuals with nonlinearities aris-
ing from their growth and competition processes, is analyzed, generalized, and applied to the
dynamics of bacteria, pattern formation, and the spread of epidemics. Analytic solutions are also
presented for some exactly soluble and physically relevant variants of the equation.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

While mathematical ecology [1] is certainly not a subject so narrow that it could
have a single equation which could serve as its focus point, the Fisher equation [2,3]
has served as a unifying entity in various mathematical investigations in ecology and
biology. The equation describes the time and space evolution of the density of individ-
uals such as bacteria or rodents. The processes addressed are birth and death, nonlinear
competition controlled by the environment leading to saturation of the population, and
di/usion leading to spatial homogenization. These three respective processes are asso-
ciated with the growth rate a (sometimes written as the di/erence of a birth rate and a
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death rate), the environmental parameter b (sometimes written in terms of a carrying
capacity), and the di/usion constant D:

9u(x; t)
9t = au(x; t)− bu(x; t)2 + D

92u(x; t)
9x2 : (1)

This paper is a brief report on some investigations undertaken with the help of the
equation, in formalistic as well as application contexts. SpeciEcally, the issues addressed
are

• the replacement of the di/usive character of the motion component by a convective
counterpart, leading to analytic solutions,

• the understanding of pattern formation when the nonlinear competition interaction is
spatially nonlocal, and

• applications to bacterial dynamics and to the spread of epidemics.

2. Analytic solutions for convective motion

The Fisher equation consists of the conjunction of the di/usion equation and the
logistic equation. Except for a couple of practically uninteresting cases, no analytic
solutions of the equation are known [3]. A prescription is presented below to ob-
tain analytic solutions of a variant of the Fisher equation. The variant is obtained by
replacing the di/usive motion component by a convective counterpart. It is surprising
that, although quite straightforward, the recipe is useful in practical situations. The
prescription given here generalizes to arbitrary nonlinearities work published recently
by Giuggioli and the author [4] for the quadratic nonlinearity appearing in the Fisher
equation.
Situations in which one may replace the di/usive term in the Fisher equation by

a convective term arise in systems in which an externally imposed ‘wind’ drives the
population in one direction [5] and, additionally, the wind term overwhelms the e/ects
of di/usion. A well-known instance is in experiments on bacteria in Petri dishes [6].
The convective term is the result of a mask being moved across the Petri dish. The
velocity of convection is under external experimental control. The di/usion term, typical
of the ordinary Fisher equation, can be made to become small in agar through genetic
engineering of the bacteria so that the velocity term overwhelms the di/usion e/ects.
This is the physical reason for interest in a nonlinear convective equation [4]. We have
seen that the convective equation with quadratic nonlinearities already gives a host of
new results that do not follow from the Fisher equation [4], among them a phenomenon
of velocity inversion. These results are generalized for arbitrary nonlinearity in the
present paper.
Unlike in earlier analyses we are here interested in arbitrary nonlinearity. Therefore,

consider the logistic terms in the Fisher equation replaced by a general nonlinear-
ity represented by the term F(u), and the di/usive term replaced by a convective
counterpart:

9u
9t + v

9u
9x = F(u) : (2)
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Here v denotes the velocity with which the individuals move convectively instead of
di/usively which would be the case for the Fisher equation.
The prescription for obtaining exact solutions is rather simple. One substitutes

dg=du=−1=F(u), rewrites the nonlinear partial di/erential equation for u(x; t) in terms
of a linear counterpart for g(x; t), Ends the explicit solution of the latter for the initial
value problem as

g(x; t) = g0(x − vt)− t ; (3)

where g0(x) is the spatial distribution g(x; 0) at the initial time, and Enally converts
g(x; t) into a solution for u(x; t).
To illustrate the technique, let us consider three examples: the Fisher (quadratic) case,

the Nagumo nonlinearity, and a trigonometric nonlinearity. For the Erst, F(u)=au−bu2.
Integrating −1=F(u), one gets

g(u) = ln

[(
1− a=b

u

)1=a
]
; (4)

leading to the exact solution

u(x; t) =
1

e−at

u0(x−vt) +
b
a (1− e−at)

(5)

derived and studied extensively in Ref. [4].
The second example is F = −bu(u − h) (u − c). In the absence of the last term,

this corresponds to h= a=b for the Fisher equation but generally produces the Nagumo
nonlinearity [3,7]. For this case,

g(u) = (1=b) ln[u1=hc(u− c)−1=[c(h−c)](u− h)1=[h(h−c)]] : (6)

The solution for u(x; t) is obtained analytically, but implicitly, as

u1=hc(u− c)−1=[c(h−c)](u− h)1=[h(h−c)] = u1=hc0 (u0 − c)−1=[c(h−c)](u0 − h)1=[h(h−c)]e−bt ;
(7)

where the argument of u is (x; t) and the argument of u0 is x − vt. By boosting x
to x − vt in the known initial spatial dependence u0(x), each side of the equation is
obtained explicitly.
The third example is the sinusoidal nonlinearity: F(u)=p sinmu. Using the fact that

the integral of sin x is ln(tan(x=2)), one gets

g(u) =
1
mp

ln
(
cot

mu
2

)
: (8)

This means that the solution can be written explicitly as

u(x; t) =
2
m
tan−1

(
empt tan

mu0(x − vt)
2

)
: (9)

Generally, integrating −1=F(u) leads often to a g which is naturally in the form of a
logarithm: g(u) = ln �(u). Then, the Enal solution is

u(x; t) = �−1[e−t�(u0(x − vt))] : (10)
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The general prescription is thus to (i) End �(u) in the given problem, (ii) boost the
initial spatial dependence by vt, (iii) apply the � to the boosted initial dependence and
multiply the result by e−t , and, Enally, (iv) apply the inverse �−1 to obtain the solution
u(x; t).
This near-trivial method of obtaining exact solutions to nonlinear partial di/erential

equations of the convective type should not be underestimated regarding its practical
use. The reader is referred to the extensive discussion in Ref. [4] where a number of
useful results have been obtained in the analysis of the special quadratic case. They
include a rich diversity of evolutions for exponential and nonexponential tails in the
initial distribution, a curious phenomenon of velocity inversion, and the potential for
application to the dynamics of bacteria in a Petri dish.

3. Pattern formation with spatially nonlocal interactions

The competition interaction in the Fisher equation is local in space: individuals are
assumed to compete for resources in their immediate neighborhood. What happens if the
spatial locality is relaxed and the Fisher equation is generalized to include long-range
competition interactions? Fuentes et al. have shown that such a generalization leads
to interesting patterns in the steady state density [8,9]. The generalized equation in
arbitrary dimensions features competition interactions linking u(̃x; t) at point x̃ with
u(ỹ; t) at point ỹ through an inNuence function f� (̃x; ỹ) of range �,

9u(̃x; t)
9t = D∇2u(̃x; t) + a u(̃x; t)− b u(̃x; t)

∫
�
u(ỹ; t)f� (̃x; ỹ) dy ; (11)

� being the domain for the non-local interaction.
The patterns that emerge [8] in the steady state density u(̃x) from such Enite-range

competition interactions, have the following primary features: (1) No patterns ap-
pear in the two extremes of zero range (in which the generalization reverts to the
Fisher equation) and full range (in which the population density is linked equally to
all points in the domain). (2) The pattern amplitude can change abruptly from substan-
tial to negligible as the parameters of the system are varied, the critical quantity being
apparently the ratio of the cut-o/ length of the inNuence function to its width. (3) The
di/usion coeOcient has a strong inNuence on the patterns in that, if large enough, it
can destroy the patterns. (4) A Enite cut-o/ in the inNuence function appears crucial
to the existence of the patterns. The Erst feature can be proved [9] quite simply. The
second is diOcult to understand quantitatively although attempts have been made [10].
The third and the fourth are addressed below.
Linear stability analysis applied to the one-dimensional version of Eq. (11) shows

[10] that the dispersion relation between the wavenumber k of any mode of the pattern
and the rate ’ at which it tends to grow, is

’=−Dk2 − aF(k) ; (12)

where F(k) is deEned as
∫
cos(kz)f�(z) dz, the cosine (Fourier) transform of the

inNuence function (assumed even). It follows immediately that stable steady-state
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patterns require that

2�

√
D

−aF(�)
¡� ; (13)

where �=2�=k is the wavelength associated with the k-mode of the Fourier expansion
of the pattern.
Condition (13) speciEes clearly when patterns can arise in the steady state. The

Fourier transform of the inNuence function at the wavelength under consideration should
be negative and its magnitude should be large enough. For a Gaussian in an inEnite
domain (for instance), the Fourier transform is positive and no patterns appear.
A cut-o/ in the inNuence function produces oscillations in the Fourier transform which
can go negative for certain wavelengths. Negativity of the Fourier transform is essential
to the patterns but does not guarantee their appearance unless the di/usion constant is
small enough. Four lengths are important: �, the wavelength of the pattern,

√
D=a, the

di/usion length which is the distance traversed di/usively within the growth time 1=a,
the cut-o/ length w of the inNuence function beyond which there is no interaction, and
the range � which shows how the inNuence function behaves near its center. Needless
to say, a Efth length, the size of the domain L, is also important, partly in determining
allowed k values, and particularly because it e/ectively serves as the cut-o/ length if
it is smaller than the inNuence function cut-o/ length.
We refer the reader to Ref. [10] for details but point out here for illustrative purposes

the dispersion relation for the square inNuence function of width 2w:

’=−a sin(kw)
kw

− Dk2 : (14)

The range � of the square inNuence function is inEnite and therefore does not appear
in the dispersion relation. Positivity of ’, required for the stability of patterns is only
possible for some regions in k space where the sinc function attains negative values
and the di/usion constant is not strong enough to pull ’ into the negative region.

4. Applications to bacterial dynamics and to epidemics

Space restrictions make it impossible to address our application work in any manner
other than largely descriptive. Our applications of the Fisher equation and its modiEed
versions have been to bacterial dynamics in Petri dishes and to epidemics, particularly
the hantavirus and the West Nile virus.
Bacterial colonies form a subject of obvious medical importance and have been

studied recently [6,11,12] experimentally as well as theoretically [5,7]. In contempo-
rary experiments [6] a moving mask is used to protect the bacteria dynamically from
ultraviolet light which kills them in regions outside the mask, and the population dis-
tribution is observed. The static mask situation can be analyzed in terms of explicit
Jacobian elliptic function solutions of the time-independent Fisher equation. As a result
of the competition between di/usion into hostile regions outside the mask and growth
within the mask, a critical size of the mask exists below which the mask cannot support



V.M. Kenkre / Physica A 342 (2004) 242–248 247

bacteria. This size is �
√
D=a and, from estimated values of the di/usion constant D

and the growth rate a, it appears [7] to be of the order of half a cm, which is certainly
accessible to experiment.
We have also studied bacterial dynamics (theoretically) under situations in which

the mask oscillates either in size or in position. We call the former the case of the
breathing mask and the latter the case of the oscillating mask. Ballard et al. have
predicted [13] interesting e/ects which await experimental testing. When the speed with
which the breathing or oscillations occur is large enough, di/usion can be considered
a small perturbation and the dynamics understood from the analytic predictions of the
di/usionless Fisher equation. For illustrative purposes let us consider the oscillating
mask with a velocity v(t). It can be represented by b(x; t) = b(x− ∫ t

t′ dsv(s)), and the
spatio-temporal distribution of u(x; t) obtained explicitly:

u(x; t) =
u0

(
x − ∫ t

0 dsv(s)
)

e−at + u0
(
x − ∫ t

0 dsv(s)
) ∫ t

0 dt′e−a(t−t′)b
(
x − ∫ t

t′ dsv(s)
) : (15)

If the b parameter has value b inside the mask and B outside the mask, and the mask
has width 2w centered around the origin, the spatial dependence to be employed in the
above analysis is

b(x) = B− (B− b)[!(x + w)−!(x − w)] ; (16)

where ! is the Heaviside step function. A less abrupt transition expression may be
written with the help of a smooth function such as a Gaussian of width 2w.
At the macroscopic end of the application spectrum of the Fisher equation is the

spread of epidemics. We have studied the hantavirus extensively [14–17]. It is a ter-
rifying epidemic [18] discovered in the last decade, and transmitted from mouse to
mouse and then passed on to human beings from the mice. Appropriate description
[14] is in terms of two classes of mice, susceptible and infected, represented by MS

and MI , respectively (with M =MS +MI ):

9MS

9t = bM − cMS − MMS

K
− aMIMs + D

92MS

9x2 ; (17)

9MI

9t =−cMI − MMI

K
+ aMIMs + D

92MI

9x2 : (18)

Here c is the decay rate by natural death, a is the rate at which encounters of the two
types of mice convert susceptible to infected, and D is the di/usion constant of the
mice moving over the terrain, whether infected or susceptible. The resources (food,
water, vegetation) are described by K which is generally time and space dependent.
We have used the symbols a and b here di/erently from the Erst part of this paper to
maintain compatibility with the literature.
It is possible to explain a number of observed spatio-temporal patterns regarding

the hantavirus, such as refugia and the e/ect of seasonal variations, and to generalize
the analysis to other epidemics such as the West Nile virus [19] which are character-
ized by cross-infection and time scale disparity between the two taxa involved in the
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dynamics (mosquitoes and birds in the case of West Nile virus). The Fisher equation
and its variants thus continue to provide useful insights into the dynamics of diverse
ecological systems.
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