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Abstract

Some approximation schemes used in the description of the evolution of the spin-boson system aze studied through numerical -
and analyti¢c methods. Among the procedures investigated are serniclassical approximations and the memory function approach An

. infinitely large number of semiclassi¢al approximations are discussed. Their two extreme limits are shown to be characterized,

respectively, by effective energy mismatch and effective intersite transfer. The validity of the two limits is éxplored by explicit
numerical calculations for important regions in parameter space, and it is shown that they can provide good descriptions in the so-
called adiabatic and anti-adiabatic regimes, respectively. The memory function approach, which provides an excellent approxi-
mation scheme for a certain range of parameters, is shown to be connected to other approaches such as the non-interacting blip
approxunatlon New results are derived from the memory approach in semiclassical contexts. Comments are made on thermal effects
in the spin-boson problem, thc discrete non-linear Schroedinger equation, and conncctlons to the aroas of dynamlc locahzatmn, and

quantum control.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

A pursuit of central importance in theoretical physics
is the study of models constructed to incorporate, at the
same time, enough physical content to represent essen--
tial features of observed phenomena, and ¢nough sim-
plification to make meaningful quantitative analysis
possible. The harmonic oscillator model, the Ismg
model, and linear chain models are examples. The spin-
boson model, which the present collection of articles
addresses, belongs to this family, has enormous scope
and application, and continues to be at the forefront of
theoretical research because it is rich in content (see
Fig. 1), and because it possesses features in its dynamlcs
which aré pot fully understood. Our own purpose in the
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_present article is to focus on a small and specific aspect

of the area: the validity of certain approximation pro-.

cedures that have been used to study the model. Because

the subject is so vast, it is mev1tab1e that our blbhog- '
raphy will be found to be narrow in scope and to fall to
refer to important 1nvest1gat10ns reported in areas of
research less familiar to us.

Our paper is structured as follows. In the rest of this
Section we mention oné of the physical contexts in which
the spm—boson system arises naturally, and set out the
Hamiltonian and the notation. In Sectmn 2, we address
the validity of a set of approximation procedures (the
Semiclassical Approxunatlon) widely used in the litera-
ture. Their importance stem’s from the complexity of the
full quantum mechanical problem, and consequently
from the hoped-for simplification provided by treating
one part classically. Countless papers have been written
on the basis of the approximation [1]. Nevertheless, is-
sues about its validity, and the validity of related entities
such as the discrete non-finear Schroediriger equation
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Fig. 1. Richness of phenomena arising in the simple spin-boson system
illustrated by the time evolution of the probability difference p(z) of the
spin system. Mere variation of the coupling constant and oscillator
frequency produces, respectively, the so-called ‘silent runs’ during
which there is no transfer, self-trapping, simple ringing, and locking of
the spin followed by transfer spurts. The first three follow from the
basic guantum Hamiltonian, the last from a semiclassical approxi-
mat:on

[1.2], havé_beer; raised continually [3—'7]. In our analysis

of this issue, we emphasize the obviously correct, but
often forgotten, fact that there is no single semiclassical
approximation whose validity one may question, estab-
lish, or explore. There are several, indeed an arbitrary
number of, such approximations, flanked by at léast two
natural limiting cases. The rest of Section 2 focuses on
the two limiting cases of the Semiclassical Approxima-
tion, and on the extent of their agreement with the exact
solutions of the full guantum mechanical problem.

In Section 3, we discuss an approximation procedure
which arises in the fully quantum treatment of the spin-
boson model, and has nothing to do with semiclassical
assumptions. It is known as the Memory Function ap-
proach [6]. Memory function formalisms appear in

many places in physics [8-10]. In the context of the spin-

boson problem, the memory function approach was set
out a number of years ago [11,12] and used successfully
for practical calculations of excitation transfer [13] and
the mobility of photoinjected electrons in aromatic hy-
drocarbon crystals [14] (see [15] for a review with em-
phasis on experimental aspects of the application). The
approach was reintroduced a few years ago for the
analysis of Tormal issues [6] when it was realized that it
could yield much greater accuracy than semiclassical
approximations in useful parameter regimes. We present
here - calcniations of the memory function obtained
approximately for the full quantum version of the spin-
boson model and exactly for some semiclassical ver-
sions.

In Section 4, we present a summary and mention
several mlscellaneous IOPICS They include the descrip-
tion- of thermal eﬁ'ects in: the semiclassical spm—boson

CH=VF+goph+(0/2)(+72).

system via the Gibbs procedure as well as via Brownian
motion approaches, relation to dynamic localization
and quantum control areas of research, and validity of
the discrete non-linear Schroedinger equation with re-
lation to the Bose—Einstein condensation field.

In one condensed-matter context, the spm-boson
problem arises from the field of electron transport in
organic or molecular crystals in which the Hamiltonian
may be written as

H=Y Enata,+ E Vantiia,+ oy (8, +1/2)
. m q
+ N2 Ekemaw,,, [wata (B + 1)) (1)

Eq. (1) describes charge carriers (electrons or holes) of
site energy E,, created by operators o at sites m of a
crystal, moving via intersite transfer matrix elements ¥,
among the N sites of the crystal, and interacting via
coupling constants g, with a band of phonons charac-
terized by wavevectors g, frequencies w,, and creation

operators by. Consider the ‘crystal’ to be tiny, indeed -
composed of only two sites (N = 2), and the electron to .

be shuttling back and forth between the two sites via ¥
and interacting via g with a single oscillator mode of
frequency . The resultant dimer Hamiltonian (with
7 = 1) then takes the form

.. o

We have here the spin-boson Hamiltonian. The bosons
are the excitations of the osciliator mode. The electron
represents the ‘spin’ system. The dimensionless dis-
placement and momentum of the harmonic oscillator
whose excitations form the boson field are, respectively,

F=(b+5)/V2, % =it -b)/V2, (3)
and satisfy the commutation relation [¥,7,] =i. The
electron (or ‘spin’) operators

G =i(afar — a7 ay),

-~

P=aja; — a;’az;
@
are trivially related to the Pauli spin matrices, and sat-
isfy [p,ql=2ir, [F,p]=2ig, and [§,7]=2ip. The
physical meaning of p is obvious: its expectation value is
the probability difference of the occupation of the two

sites by the electron. Iis time evolution is the focus of
our investigations.

F=dfm+aia,

2. The semiclassical approximation is obviously not
unique

Exact analytical solutions of (1), (2) are not known.

Consequently, the Semiclassical Approximation (SCA)

is routinely employed to analyze the evolution described
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by these equations. By the SCA in this context is meant
a procedure wherein the moving electron (spin) is con-
sidered quantum mechanical but the boson field (oscil-
lator mode) is treated classically. It has been often

_thought, expressed, or implied in the literature that this

statement defines the SCA uniquely. Specifically, it has
been assumed that, given parameter regimes and/or
initial conditions, one may state the validity, or the lack
of validity, of replacing the oscillator part of the system
by its classical counterpart. This is certainly incorrect,
and it is simple to understand why. Transformations of
variables are ubiquitous in physics: they are invoked
whenever one wishes to reduce the strength of imterac-
tion terms in a new (transformed) space. Normal mode
transformations in classical small-oscillation theory
provides an elementary example. Discrete Fourier
transforms in periodic lattices provides another. In the
spin-boson or polaronic context, a frequently used
transformation [16] replaces the bare spin and the bare
boson field by dressed counterparts made up of super-
positions of bare operators. The dressed system corre-
sponds, simultaneously, to a displaced oscillator and a
rotated spin vector. The reasoming behind makmg a
semiclassical approximation is to reduce the complexity
of tlie problem by treating one part (oscﬂlator) via
c-numbers. But should we impose the c-number re-
placement on the original (bare) oscillator or on the
displaced (dressed) oscillator? Surely, both ate v1ab1e
candidates. Because the dressed oscﬂlator contams
within itsélf a part of the bare spin (as well as a part of
the bare oscillator), considering it classical. is by no
means equivalent to considering the bare oscﬂlator
classical.
There are, thus, at least two exireme selmclassma.l
approximations. Traditionally, what has been called
the SCA is the approximation in which the bare boson

field is replaced by a field of c-numbers. In this paper,

we will call it the bare semiclassical approximation:
BSCA. The SCA, in which the fully dressed boson

field is instead replaced by a field of ¢-numbers, will

be called here the dressed semiclassical approximation:

'DSCA. We will learn below that the BSCA and
the DSCA have opposite domains of validity: the

latter (former) improves in applicability as the oscil-
lator frequency increases (decreases). We will. also
see that there are, additionaily, an infinite number
of physically relevant intermediate semiclassical
approximations. '

2.1. The bare semiclassical approximation: traditional
SC4

The full quantum mechanical evolution of the sys-
tem (2) may be written in terms of the Heisenberg
equations of motion for thB electron and the oscﬂlator
operators: :

dp/dt = =273,

dg/dt = 2Vp — 2gwyF, .
d7/dt = 2gwy7, (5) -
dy/dt = w7,

dz,/dt = —wy — gap.

The BSCA, which has been called the semiclassical ap-
proximation in the literature, consists of replacmg the
oscillator operators wherever they appear in the spin
operator evolution equations by their (c-number) ex-~
pectation values, The replacement of ¥ and %, with c-

numbers y and =,, respectively, followed by taking the
expectation values of the resulting equations, ymlds

dp/dt = —27g, |
dg/dr = 27p — 2gayr, ' (6)
dr/dr = 2gany, ‘ -

for the expectation values p,q,r of the electron opera-
tors, and

dy/dt = o, dn,/dt = —wy — goop, N

for the oscillator displacement and momentum expec-
tation values.

2.2. The polaron transformation and the dressed SCA

Let us now return to the fully quantum mechanical
description provided by the Hamiltonian (2) and intro-
duce the polaron transformation. For any bare operator
7, the dressed operator F is defined through the unitary
transformation

F = P Feisnp, | @)
This results in 7.
P=p, |
0 =7cos (2g?iy) —Fsin (2g7,),

R =7cos (Zgny) + gsin (Zgaty) ‘ 9
Y=9+gp, o
oy =7,

The dressed operators all maintain the commutation
relations that the bare counterparts possess. The Ham-
iltonian (2) may be rewritten in terms of the dressed
operators as

H= V[ﬁ cos (2gﬁ' y) - Osin (Zgﬁ y)]
+(@/2)(7 + 1) - @of2T, (10)

where 7 is the identity operator. :

The cosine and sine operators in the second and third
equations of each set are the so-called phonon cloud
operators. This terminology corresponds to the fact that
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they contain (via series expansions) products of all
possible numbers of phonons. Typically, they are ex-
pressed in terms of exponential quantities. Our usage [6]
of trigonometric forms was introduced to emphasize the
rotational character of the transformation [17}. It is
clear from the first three of Eq. (9) that the polaron
transformation brings about a rotation of the spin vec-
tor around the p p axis through an ‘angle’ 2gH y. The last
two equations in (9) show that the transformation si-
multaneously produces a translation of the oscillator
through a ‘displacement’ gp. The quotes that we have
put around the words ‘angle’ and ‘displacement’, because
those quantities in (9) are operators, might be removed

" if we make the semiclassical approximation and replace

the opetators by ¢-numbers.
The quantum mechanical Heisenberg equations of
motion for the dressed operators that result from (10) are

‘:1}: = —2V[Qcos (Zgﬂy) + Rsin (2gﬂy):|
(L—? =2V P cos (ng!'y) s
| ‘:1—]:=2Vﬁsin (2g1’iry), | an
‘3;; = —2gV [Q cos (ZgH y) + Rsin (2gﬂ y)]
+ ol ¥
Wy o7

If we make the semiclassical approximation on these
dressed operators in the same way described above for
the bare operators, we obtain, for the (dressed) oscilla-
tor displacement and momentum expectation values,
dY/dt = —2gV[Qcos (2glIy) -+ Rsin (2gly)]

+ olly, ‘ (12)
dir y/ dt = —oY
The dressed semiclassical approximation could thus

consist of the coupled Eq. (12) for the displaced oscil-
lator, and

dP/dt = —2V[Qcos (2gIIy) + Rsin (2gIly)),

dQ/dt = 2VP cos (2gHTy), (13)
dR/dt = 2FPsin (2g1ly),

for the spin vector. In exploring the validity of this
(dressed) SCA in various parameter regimes, we dis-

cover something peculiar. While it has a tendency to get
better in the high frequency limit (large w/¥), the ap-

_ proximation consistently predicts a shift in the evolution

of the probability difference. We exhibit one of these
comparisons in Fig. 2. Unlike the BSCA (Egs. (6) and
(7)), which seif-traps the spin in this parameter regime
used ini Fig. 2 and is thus hopelessly different from the
exact solution, we see jthat this dressed SCA. (Eqgs. (12)

1

Pl

E

Fig. 2. Qualitative agreement accompanied by the presence of a shift
between the exact probability difference p(f) (shown by curve E) and
the dressed semiclassical approximation (curve D). The bare counter-
part (BSCA) is represented by curve B and is way off. Parameters are
g=05and w/V = )

and (13)) matches gualitatively the exact evolution.
However, there is a clear shift in the curves. Through an
exhaustive study, we have found that the amount of shift
depends exponentially on the square of the coupling
constant g. What could be the reason for this systematic
discrepancy? Our study of the literature uncovered a

! lucid -argument [18] of the -dangers of conducting a

dressed SCA in the perhaps natural, but incorrect,

- manner described above, and, simultaneously provided

an excellent explanation of the shift in the evolution.

In contrast to the BSCA case, the semiclassical pro-
cedure of replacing the boson operators by c-numbers
has a double approximation effect. Approximating

cos (2gﬁy) ~ cos (Zg(ﬁ y)) .

not only involves the replacement of the operator Iy by
its expectation value, but the replacement of all powers
of IT v, resident in the cosine, by their expectation values

- as well. On the basis of the time-dependent variational

principle [19], the authors of [18] have suggested a cor-
rection. The time-dependent variational principle is an
approximation procedure involving the variation of an.
action functional and the requirement that the func-
tional be stationary under free variation of the time-
dependent state. Following the prescription of [18], one -
is led to replacing ¥ in the semiclassical approxamatxon
Egs. (13) and (12) by the reduced quantity Ve <. The
(Huang-Rhys) reduction factor arises from the overlap
of displaced oscillator states and is related to the well-
known identity (for thermal averages)

{exp(0b + ¢b*)) = exp[0¢((675) + 1/2)],

where § and ¢ are c-numbers [20]. We find that the re-
placement produces excellent quantitative matching

" with the exact evolution for the parameters of Fig. 2 for

the parameter ranges we checked. We will therefore use,




for our investigation of validity of SCA’s, the alternative

suggested in [18].
- "We will reserve the term ‘Dressed Semiclassical Ap-

proximation’ (DSCA ) to mean

dp/dt = —2Ve™f [Qcos (2¢lTy) + Rsin (2gy)],

_. “'dQ/.dt = 2Ve ¥ Pcos {2gI1y), (14)
dR/dt = 2Ve¥ Psin (21Ty),

. for the spin, along with

Ay /di = —2gVe ™ [Qcos (2g1Ty) + Rsin (2gHly)] + wlly,
Iy /dt = —a¥

(15)

for -_the dressed oscillator.

2.3, Effective energy mismatch and effective intersite
" transfer: respective characteristics of the two SCA’s

"- The spin-boson system exhibits remarkable features
" in_its time evolution. They include a self-trapping ten-
. dency whereby the probability difference p(z) can oscil-
cclaté mot symmetrically between the two sites, thus
signifying localization, and ‘silent runs’ during which the
--probability hardly changes, followed by transfer in
‘spurts, or even in some cases collapses of transfer [4—
76,21,22]. Fig. 1 illustrates these obséervations. It has been
-"argued i6] that these phenomena arise from an effective
time-dependent energy mismatch and an effective time-
dependent intersite transfer matrix element. Although
the dimer sites are degenerate in energy, the interaction
with the oscillator produces an effective energy mis-
match in the electron site states. Similarly, although the
interaction transfer ¥ is actually constant, the interac-
tion with the oscillator produces an effectively time-de-
‘pendent V. We now show that these conjectured
“explanations can be made quantitatively transparent.
- For this purpose we ask what the two sets of equations
: Tepresenting the two SCA’s mean from the viewpoint of
* electron transfer between the two dimer sites. To answer
the question, we recast (14) as the torque equation for
_the precession of a rigid rotator. Focusing on the evo-
lution of the spin alone, we see that the dimer is sub-
" jected to an effective time-dependent ¥(¢). Following a
e calculation given earlier [21] (see Eq. (5) of that refer-
ence), we can rewrite the evolution (14) in the form

We 8¢e at once that in the DSCA the (dressed) electron
huttles between two degenerate states with an effective

alf 0 Re[F(£)] 2Am[¥(2)]
Gl Q|+ | 2ReF(2)] 0 0
AR —2Am[¥ (1)] 0 0
P .
x{1g|=0. (16) .
R
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complex and time-dependent intersite transfer which de-
pends on the momentum of the (dressed) oscillator:

V(f) = Ve # e, 17)

The intersite transfer is reduced by the factor e, and
is, additionally, not only time-dependent but complex as
well. Furthermore, it is possible for the ¥(¢) to period-
ically collapse, and thereby produce the ‘silent runs’. If
the momentum IIy(r) of the dressed oscillator varies
sinusoidally in time [22], the effective intersite transfer
V() will be given by an exponential of i times a trigo-
nometric function. The intersite transfer can thus vary in
time, drop effectively to zero for extended intervals,
leading to little or no transfer for those intervals. This
can be followed by spurts of transfer. The connection
between the qualitative discussion of such behavior gi- -
ven in [6] and the quantitative derivation based on exact
memory functions for fields externally applied to a spin
[21], thus clearly emerges from the dressed picture for
the full (semiclassical) spin-boson system:..Indeed, the
effective transfer can exhibit collapses under certain
Bessel root conditions [23]. Dynamic localization “at
Bessel root conditions has appeared in solid stite
problems [23,24] theoretically as well as expernnenta]ly
[25] in problems as varied as electron transport, ‘mag-
netic systems, and quantum optics [26,27]. Collapses'in
transfer, well-known in quantum optics systems [27,28]
can arise in semiclassical driven problems [21]. How it
might arise in the fully quantum mechanical spin-boson
problem has been commented on via numerical solu-
tions [29]. A derivation of its onset has been recently
provided [22] on the basxs of a clear actlon angle van-
ables analysis. -

What about the BSCA? Eq. (6), cast in the form of
(16), give

r o 27 0 P :
A =2V 0 2E(r) g |=0,"(18)
"\r/ \ o -2 o r SR

and show that, in the BSCA, the (bare) ¢lectron shuttles

- with constant intersite transfer ¥ between two energet-

ically mismatched states. The effective mismatch 2E(z) is
time-dependent and proportional to the displacement of
the bare oscillator: '

E(t) = gooy(d). | - (19)

It is well-known [2,30] that an energy mismatch in the
dimer leads to probability oscillations which are not
complete, thus signifying self-trapping. ,

The disruption of transfer (localization) can thus
ocecur in two ways. The explanation [6] of the occurrence
of these two factors (the effective energy mismatch and
the effectively reduced intersite transfer) in the spm-
boson problem is now complemented by our present
demonstration that the bare picture is representative of
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energy mismatch while the dressed picture is representa-
tive of reduced intersite transfer. By ‘reduced’ in the latter
expression we mean, not only the Huang—Rhys factor
e, but also, and particularly, the time variation which
can periodically collapse the effective transfer. Other
than making the respective semiclassical ansatz in each
of the two cases, no approximation has been necessary
to arrive at this conclusion.

It is important to realize that, even beyond the fact
that the Huang-Rhys factor appears in the DSCA but
not in the BSCA, the two semiclassical approximations
are not.identical to each other. The probability differ-
ences P and p are equal to each other. So are the mo-
menta Iy and =,. But O, R, ¥ are different from their
bare counterparts. More to the point, the equations of
motion are not all identical. Thus, the predictions (for
instance for p(f) = P(#)) can be profoundly different. To
appreciate this explicitly, note that a search for thé
stationary states by putting all time derivatives equal to
zero produces the possibility of self-trapping, ie., non-
zero p’s in the bare case provided g?w > 2V. On the
other hand, in the dressed case, the averages of P thus
obtained always vanish.

2.4. Infinite number of additional semiclassical approxi-
mations: the ISCA

It is clear that the two SCA’s we have mentioned are
only extremes and that an infinite number of semicias-
sical approximations, each with some energy mismatch
and some time-dependent transfer, are. possible. To
make this clear, we use a transformation which displaces
the oscillator only partially, ie., with a displacement
proportional not to the coupling constant g which ap-
pears in the Hamiltonian (2) but to G where 0< G<g.
Such partial dressing has appeared earlier in variational
treatments of the polaron problem [31]. With the

-transformation
Fe eic?y;‘?e_is’,_?,;? _ (20)

for any bare operator '}"\, the Hamiltonian is rewritten as

H= V[ﬁ cos (ZGﬁT y) - @sin (2Gﬁ' y)]

1)

Here the partially dressed operators P, 0, R, ¥ and 1T,
are defined as in (9) but with G in place of g. Eq. 21)
becomes Eq. (2) or (10) in the limit when G — 0 or
G -+ g, respectively. It is straightforward to write the
Heisenberg equations’ of motion. We call the corre-
sponding semiclassical approximation the intermediate
semiclassical approximation: ISCA. Under this ISCA,
the partially dressed semiclassical equations of motion

QTP L2 (3272 _ _G\s
+(g G)coYP+2(Y +11,) Gm(g 2)1.

are

w

 tailed discussion of the initial states, see [5D.

dP/dt = —2Vu [0 cos (2GITy) + Rsin (2GIIy)],
dQ/dt = 2¥,.Pcos (2GIIy) ~ 2(g — G)wIR, {22)
dR/dt = 2V Psin (2G1Ty) + 2(g — G)w¥O,

for the electron sj}stem, and
dY/dt = -2GV¥Vu[Qcos (2GIIy) + Rsin (2GIT v)] + iy,
dlly/dt = —wY - (g — G)wP, ‘

(23)
for the oscillator system. By ¥ is meant a quantity
intermediate between the BSCA limit ¥ and the BSCA
limit ¥e~8*, whose magnitude, which can be obtained
through the time-dependent variational principle, ap-
pears to be simply Ve ¢*. The electron equations are
easily cast in the form

P 0 WRe[V(5)] 2m[V()
% |+ -2relr] o 2E()
R =2Im[F(5)]  —2E(f) 0
P
x| @g1=0, (24)
R

showing that, under the ISCA, the electron system de-
velops both an energy mismatch and a time-dependent
complex intersite transfer (see (17) and (19)):

E(f) = (g - G)o¥(2),

V(t) = Vaexp(i2GIy). - (25)

2.5. Numerical exploration of the extreme SCA’s and
graphical representation of their validity

The subject of the validity of approximation tech-
niques employed in the spin-boson system is rather
large. We have chosen to touch upon only a small aspect
of it in the present paper. Rather than engage in purely
analytic considerations such as those employed by the
authors of [4], we restrict ourselves to direct numerical
investigation of the extreme SCA’s. We consider only
low energy initial excitation of the oscillator. We cal-
culate the exact quantum evolution by explicit numerical
diagonalization of matrices of finite size as in [5,6]. The
size, which represents the semi-infinite energy manifold
of the harmonic oscillator, is increased until conver-
gence is obtained. We calculate the semiclassical evolu-
tion by several different numerical procedures to solve
the coupled set of differential equations representing the
BSCA. The electron is initially localized on one of the
two sites. The oscillator initial state for the quantum
evolution is precisely that in the ground state of the full
Hamiltonian. In the semiclassical calculation it is the
equilibrium state of the displaced oscillator. (For a de-




We carry out our validity studies in two parts, In the
first, we calculate an objectively obtained least-squares
error between the exact evolution and the approxima-
tions, focusing on time scales that are not too long

g — w space. In the first, the oscillator frequency o is
varied relative to the intersite transfer from w/¥V =101
to w/¥ = 10? and the coupling constant g from 0 to 14.
In the second, g is varied between 0.1 and 3 and /¥
from 102 to 10°. The second part of our validity studies
is based on an inspection of the explicit time dependence
" (exact and approximate) for different parameter sets and
_ time scales.
~ "The results of the first studies are displayed in Fig. 3.
‘We have plotted the ‘discrepancy factor’ 3, which is the
least-squares error corresponding to the departure of the
" BSCA/DSCA prediction from the quantum evolution, Tt
“is calculated by averaging the square of the difference of
. p(f) from the respective approximation for a large
number of ¢ values and normalizing it appropriately via
he constant C:

_.] Pesaar{ti) — psca(t) |?
C \/Z [lpexact(tf)i ¥ IPSCA(Z,')iJ :

t

the BSCA, the error is plotted versus g for different
es of w/V. For the DSCA, it is plotted versus w/¥
ifferent values of g. At g =0, the BSCA prediction
he exact evolution coincide since the coupling

. On increasing the coupling constant, # in-
redses, Whatever the value of o, until it reaches a pla-
With a further increase in g, beyond a value gg

o
o

y Factor 1
o
o

-

Discrepanc:
(=]
A

o
[¥]

on of the validity of the (a) BSCA and (b) the DSCA.
the discrepancy factor n calculated (see text) by
t-squares erfor computed for short times (7 < 100)

ling constants g and of w/¥. For the BSCA we
endence of the error on g for w/¥ = 0.1 (dashed
ted line), and- 100 (solid Kne). For the DSCA we
ependence of the error on e/¥ for g = 0.1 {dotted
(dash-dotted line). The constant " is chosen
f 77 is normalized to 1 in each case.
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(¥t < 100). We report particularly on two regions in-

h depends on the frequency o (the higher the w the .

exact evolution for /¥ = 5.
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smaller the gy}, # decreases and tends to zero. The BSCA
and the exact evolution tend towards each other. This
latter situation corresponds to the electron being self-
trapped. Moreover, the span of the plateau region,
where a change in the coupling does not appreciably
change the validity of the approximation scheme,
shrinks and shifts to smaller values of g, as o is in-
creased. The dip in the discrepancy factor around g =1 -
and the oscillations in the plateau are interesting fea-
tures that merit further study. In checking the validity of
the DSCA in (b) we restrict ourselves to coupling con-
stants that are not too large (g < 3). We notice that the
discrepancy factor 4 starts from & non-zero value {except
at g = 0), first remains flat, and then decreases as the
value of w is increased. As the ratio w/V incréases, the

'DSCA gets better, eventually becoming indistinguish-

able from the exact solution.

An examination of the explicit time dependence of the
probability variation forms the basis of the second part
of our validity investigations. See Fig. 4 in which we plot

- p(t) for g =1.7 and four values of w/¥. The low fre-

quency case (w/V = 0.01) shows that the exact evolu-
tion and the BSCA coincide for the cntire time range
shown while the DSCA is way off. The exact evolution
can be checked to ‘be; for all practical purposes,
p() = cos(2F%), which can also be obtained as the small-
 limit of Eqs. (6) and (7): that limit uncouples the spin
from the bosons. Thus, the BSCA is exccllent and the
DSCA is inapplicable if the oscillator frequency is small.
The high frequency case (w/¥ = 5) shows practical co-
incidence of the DSCA with the exact evolution while
the BSCA is way off: it shows self-trapping and thus
hardly changes from the initial value. One can easily

g=1.7 w/N=0.01 g=1.7 wV=05
d - - : :

g=1.7 V=1 g=17 a/=5
AT fRR e ———
w®o &0
- -1 . :
0 10 20 30 +] 10 20 30
Vit vt -

Fig. 4. Time evolution of the probability difference in the interval
0 < Pt < 30 showing that the BSCA (DSCA) provides a good ap-
proximation for small (large) oscillator frequencies. The coupling

-constant g = 1.7 and w/¥ varies as shown. The BSCA. is identical to -

the exact evelution for w/¥ == 0.01 while the DSCA coincides with the -
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check in this case that the exact evolution is given. by
p(8) = cos(2Ve~¢'t). Therefore, the DSCA is-excellent
and the BSCA is bad if the oscillator frequency is large.
Fig. 4 also shows clearly that, for intermediate values of
w/V, the reliability of the approximation procedure
passes from the BSCA to the DSCA as the frequency
~ grows. In all cases, the exact evolution is denoted by a
solid line, the DSCA by a dotted line and the BSCA bya
dashed line. The same conclusions can be drawn on
inspection of the evolution for other values of g which
we have not shown bere. The simple result that emerges
is that the dressed semiclassical approximation improves
in validity as the oscillator frequency becomes large
whereas the reverse is true for the bare semiclassical
approximation. The time span;used in Fig. 4 is relatively
small: 0 < ¥#< 30. To ensure that the conclusions
drawn do not depend on the time span, we examined the
evolution for spans larger by several orders of magni-
tude. Precisely the same behavior as discussed above
occurs, it being only necessary to decrease(increase) o/ V
by an appropriate factor to ensure the practical coinci-
dence of the BSCA (DSCA) for 2ll times in the corre-
sponding figures. o

The general improvement in validity of the BSCA as
/V decreases is compatible with the ‘massive oscillator
limit’ discusséd in [5]. On the other hand, the improve-
ment in the DSCA as w/¥ increases appears to agree
well with a recently published analysis [22]. It is shown
in [22] that a separation of the boson and the spin
subsystems occurs better for this case, a noteworthy
feature of that work being that it provides an explicit
series expansion in inverse powers of w/¥. We hope that
future work will clarify whether the ISCA’s we have
discussed above will provide better description for in-
termediate w/¥.

In order to examine the applicability of the two
SCA’s in extreme time scale limits, we provide Fig. 5.
The probability difference p() is plotted for the two
extremes. (short and long times) for g=3 and
w/V = 10. The short-time evolution is shown in the inset
while the overall picture, which makes clear the long-
time evolution, is the main plot. Although the BSCA is
not able to reproduce the ‘silent runs’ of the exact evo-
lution during which the probability changes very fittle, it
predicts sclf-trapping oscillations within the precise
limits shown by the exact curve. Thus, for the parameter
values specified, the BSCA does a fine job at short times.
However, it fails utterly at long times. The reverse ap-
pears true for DSCA. It fails to reproduce the apparent

self-trapping on the short-time scale exhibited by the

exact evolution (and by the BSCA) but does an excellent
job of describing the overall tunneling from one site to
the other via.the Teduced matrix element Ve~¢’. The
simple conclusion to. be drawn is that, whenever the
exact evolution -shows ‘apparent self-trapping -at-short

times (this corresponds to values of g and w/V that are

v

. V.M. Kenkre, L. Giuggioli { Chemical Physics 296 (2004) 135-1 48

pit)

el iy
TN

0.9398
Ivbbey

vt

p(t}

A

15000

0 7500

Vi
Fig. 5. Comparison of the exact evolution (solid line) and the SCA’s
showing that the BSCA (dashed line} provides a reasonable description
(see inset) of the apparent self-trapping behavior of the exact evolution
for short times while the DSCA (dotted ling) describes excellently the
tunneling (sce main figure) at long times. In each time limit, the other
approximation fares poorly, At short times the DSCA (dotted line)
remains essentially unchanged at the top of the inset, while at long
times the BSCA appears essentially unchanged at the top of the main
plot. Note that the short time scale (0 < Pt < 0.7) and the long time
scale (0 < ¥ < 15000) are considerably apart. :

not too small), the BSCA tends to describe the spi.n-f

boson system well at short times and the DSCA at long:
times. . T b
~“We would also like to point out that the BSCA result!
shown in the inset of Fig. 5, which approximates rather,
well the exact evolution on the short time scale, s
practically indistinguishable from the prediction o 1
non-linear dimer [2]. That prediction for the case of
Fig. 5is p(t) = dn(yz/2,4V /x) where dn is the Jacobi
elliptic function with argument yt/2 = g?et and ellip
parameter (whose square is the elliptic .modr
4¥ [y = 2V /g*e [2]. This means that the discrete .
linear Schroedinger equation [1,2] depicts the shor
evolution very well so long as demand is not made o1
to describe tunneling — a long time phenomeno
its reach. This fact, that the DNLSE provide
cellent fit to the exact quantum evolution at short
may come as a surprise to some.

3. Memory function approach and its validity

Memory formalisms constitute a powerful me
description of time evolution problems in sta
mechanics [8-13]. They employ a projectior
which, through its action on whichever
coarsegrains that operator and extracts its
in a given representation, This results in
tions which, easily and conveniently,:
characteristics of the evolution of th
probabilities. Starting from the von N

for the density matrix, one obtains 8 10
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dp (I) —iPr ’(t) g;Lf —i(t—s)(l-—-?)l,'(l _g)

dr
X Lo/ (s)ds — i#Le =P [p(0) — o/ (0)},
(26)

where p’ is the projected part of the density matrix (i.e.,
coarsegrained with off-diagonal elements removed), and

L is the Liouville-von Neumann operator which evalu-'

ates the commutator of the Hamiltonian with the oper-

ator on which it acts. The first term on the right hand side

of (26) is identically zero because of the snccessive action
init of L and 2 on a diagonal operator, while the last term
vanishes identically if the unprojected part of g is zero at
the initial instant of time. The surviving term is integro-
differential in nature and contains the memory function.

The application of this memory formalism to the
spin-boson problem was carried out long ago [11,12] for
practical computational reasons, and has long served as
a tool for describing observationally important systems
such as photoinjected charge carriers and electronic
excitation in organic crystals {14,15]. That work appears
to have been missed, and independently rederived, in the
more formalistic literature. Eq. (26) yields [9], for the
spin-boson system, an integrodifferential equation for
‘the probability difference p(z) in the spin-boson system;

d ’)+2 f Wt — 5)p(s)ds ‘ @7)

The only assumption made is that the initial density
matrix of the spin-boson system is a product state in
spin and boson spaces, respectively, and that the spin
state is initially diagonal in the representation in which
the difference in the diagonal elements of the density
matrix is p(f).

.Eq. (26) shows that knowledge of the spin-boson
Hamiltonian, and therefore of Z; allows the computa-
tion of the memory #7(¢), at least in principle. Practical
computation requires that one disentangle the action of
the numerous projection operators in the integrand.
Knowing #7(z}, the probability evolution p(t) is known
in principle via Laplace transforms. There are two ex-
plicit advantages of the memory approach. First, general
conclusions about the p evolution can be drawn directly
from knowledge of the memory [9]. Second, perturbative

- calculation of the memory followed by use in (27) has

shown [6] remarkably close agreement with numerically

~ exact solutions in the spin-boson system for physically

relevant parameter regimes. We comment on both
points below.

3.1. Perturbatively calculated memory and agreement
with exact results

Explicit calculation of the ‘memory function #7(z)
requires further assumptions. Let us consider that the

initial density matrix is of product type in the spin and
boson spaces affer the polaron (dressing) transforma-
tion (8) is carried out, that the electron is fully on one of
the two sites, meaning that p(0) = +1, and that the
(displaced) oscillator is initially in the thermal equilib-
rium state. A perturbative calculation in orders of the
transfer term of the Hamiltonian (first term in (10)),
whose validity assumes the smallness of 2V/g2a) pro-
duces the memory function #(¢):

W(E) = 272040 4 e, (28)

h(t) =2 " g[n,e + (n, + 1)e~). (29)

Here n, is the Bose factor (e%/ — 1)~', We have shown
here the result valid for a spin interacting with a large
number of boson modes as in (1). For the case of zero
temperature and a single mode of vibration, the memory
reduces to : -

W(t) = 2922 (100800 oo (22 sin aor). (30)

Although simple in form, this memory function is rich in
content. Much can be learnt about the spin dynamics

from a mere inspection of the memory {6] and the in-

terplay of its several characteristic time constants. The
memory function is not based on any semiclassical as-
sumptions and. therefore bypasses all questions about
SCA validity. The agreement of the memory formalism
results with exact evolution is quite impressive, which -
makes it often preferable to SCA approaches. Becausc
these matters are already clear in the literature [6, 10] we
do not display examples in this paper.

The generalized form this memory function takes for
finite temperatures and multiple vibrational modes does
not seem to be widely known, In the case approprlate to
optical phonons centered around. frequency o with a
narrow width ¢, the memory can be written down as

W (1) = 228 oo BTI00500) o (262((7) sin wf), -
] BN

where {(t) is the Fourier transform of the phonon den-
sity of states, typified by a Gaussian exp(—d?#). The
general memory reduces to the single-mode zero-

- temperature expression (29) in the appropriate limits.

Plots of (29) in the zero-temperature single-mode case
may be found in [6] and those of the generalization (31)
to many modes and finite temperature may be found in
{10]. Eq. (31) shows that the memory has several char-
acteristic times which are directly reflected in the evo-
lution of the probability difference. The characteristic
times become, in simple limits, reciprocals of g2w, go, o,
and Ve #'..General conclusions about amount of inter-
site transfer can also be easily drawn from the integral
f # () of the memory function. A detailed dJSCIlSSlOIl is

available elsewhere [21].
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3.2. Relation of z‘he memory formahsm to other ap-

proaches

We mention briefly several relations of the memory
formalism to other approaches and phenomena: to the
BSCA, the ‘Bessel root collapse, the discrete non-linear
Schroedinger equation (DNLSE), and the non-interacting
blip approximation. First, consider that the frequency
(more appropriately w?) is small enough to allow the
approximation 1 — cosw? = w?#?/2, and sinwt ~ ot in
‘the memory (30). The memory becomes a product of a

Gaussian of time constant 1/gw and a cosine of fre-
quency g’m. The further limit @ — 0, g oo, o=
const. connects the memory formalism to the BSCA
which exhibits self-trapping.

Next, rewrite the exponential and cosine factors in
(30) via Bessel function expansions to get -

W(f) = 277%™ [Io(Zgz) + 221 (2% cos(mwt)}

m=1

x [Jp(Zgz) +2 iJz.,,(Zgz) cos(met)]_, (32}

and note that neglect of oscillating factors in the lnmt of
large ot yields the proportlonahty of the mem', '
Jo(2¢?). This means the possibility of temporary collapse
of transfer at values of 2g2 which are roots of J(22°). A
more careful analys1s asin [22] shows, in the case of hlgh
initial excitation of the oscillator; the need to replace
2g% by the product of g ‘and the m1t1al v1brat10nal
amphtude

The relation of miemory functions to the discrete non-

linear Schroedmger equatmn has been explamed in [21] ‘

and mentloned passmgly in the next section Where it is

shown that the pendulum equation for the time mtegral :

of the probabﬂ1ty d1ﬂ'erence emerges naturally from the
memory formalism.

'The most interesting relation is to the so-called ‘non-
interacting blip appromma.tlon [32], and a non—lmear
memory function result derived mote recently [4] Eq

(2.17) of the ﬁrst of [4], recast in our preseut uotatlon :

has the form
L0 12 [ H o6 p(5)s (33)

which is similar to (27) but differs in two regards: the
meimory contains p within itself and is thus non-linear,
and it is not of the convolution type. Under the ‘ap-
proximation of strong coupling, a replacement is made
in [4] of p(s) by 1 in the memory. As a consequence,
the non-interacting blip approxmlanon equatlon which
is equation (4.33) of [32], is obtained. This is precisely
our memoty result of (28) derived for practical com-
putations of excitation transfer in molecular crystals
[11,12], and- apphed for charge transport in orgames
[14 15]. ‘

3.3. Exact evaluation of the memory for the semiclassical
dimer under driving fields

We have seen that the evolution of the spin-boson
system may be viewed ‘from the spin side’ as the evo-
lution of the spin with time-varying fields imposed.
These imposed fields have a quantum (operator) nature
and are non-linear in the sense that they depend on the
spin operators also. The semiclassical approximations
take the imposed fields to be classical. The idea of the
effective energy mismatch and effective intersite transfer
explained in earlier sections suggests that it is important
to calculate the evolution of the spin in such classical
(generally non-linear) imposed fields. Let us first take
them to be independent of the spin variables. For the
case of a time-dependent energy difference 2E(1), and a
generally complex ¥ (z), the von Neumann equation for
the dimer leads to the ‘torque equation’ (24). We now
make explicit use of the projection operator techmque
18], follow the method of [21], and arrive, without ap-
proximation at a néw and useful result. Eq. (26) reduces
exactly to

dp(“‘)+2 f W (t,)p(s)ds =0, (34)

wh1ch isa generahzatton of (27) in that the memory is
not of the convolution type. The memory is given by

W (t,5) = V()P (s)e L h O | oo (35)

It is important to note that this involves an exact deri-
vation. No weak coupling approximation is made. Eg.

.(35) is a diréct consequence of (24) if initially

p=P =1, It is straightforward to write explicit ex-
pressions for the driving terms in (27) if the initial
condition is more general. '
Consider two extreme limits of (35). In one case, let
V() be a constant V. In the other, let E(t) = 0 and 7(?)
be complex and time- dependent ' :

V() = VeV, ' : (36)

We see that the forms the memory takes in the two re-
spectwe cases,

W (t,5) = 27 cos [2 / tE(t’)dt_’], e

W (t,) = 202 oy () — ¥(s)], _ (38)

are 1dentlca1 to each other if 2E(z) = dyf/d¢. This means .
that precisely the same spin evolution results from a
time-dependent intersite transfer (36) with no energy
mismatch as from a constant transfer (i = 0 in (36)) and
a time-dependent energy mismatch 2E(f) = dif/dt. Eg.
(37) has been derived earlier [21] while (38) is.a new
result, Notice the relation to the BSCA and the DSCA.
Consider, thus, the DSCA. in which, as the result of the
arguments presented in [22], we may assume the time’
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dependence of II,(¢) to be Jsinwt. Our Egs. (17) and
(38) show that the memory is #°(¢,s)=2V?cosJ
[sin wt — sin ws]. The variety of phenomena such as the
so-calied AH structures [27] and collapse [23] can be
understood immediately from this result. Consider,
next, the BSCA in which the oscillator amplitude varies

as J cos ot. From (19) and (37), we get exactly the same

memory #°(t,s) = 2V?cosJ[sin w¢ — sin ws]. For small
frequencies, the memory becomes of the convolution
form, while for large frequencies it shows the possibility
of coﬂapse at Bessel roots.

What happens if we make the imposed fields depend
on spin variables? Let us, for instance, take E(#) as
proportional to the probability difference p(¢). Such an
assumption is typical of slaving arguments wherein time
scale disparity might lead us to write y(¢f) = —gp(¢). If

E(f) = —g’wp(t) is substituted in (37) one obtains a
non-linear memory function

W(t,5)=2V*cos [Zgzcuf p(t’)dt’}
=2cos o@D - Q)] (39)

where ((¢) is defined as the integml of p(t). Differenti-
ation of (34) with the memory given by (39) gives the
pendulum equation for Q(2)

2 2
700, @V ) sin2gwQ()] = (40)

It is straightforward to show that the sinusoidal non-
linearity in the integral of p(¥) leads, exactly, to the cubic
non-linearity in p(¢) itself. The discrete non-linear Sch-
roedinger equation [2] and consequent self-trapping re-
lated to its cn—dn transition [2] follow in this fashion
from the memory formalism, provided slaving argu-
ments can be used. : :

4. Conclusions

The question of the validity of approximation pro-
cedures in the spin-boson system is much more complex
than might be thought at first glance. We might ask if

the procedure under investigation is valid for particular

initial states, andfor for particular combinations of
system parameters. In the first category, necessary con-
ditions for validity might be simply high initial (boson)
excitations, or they might have to do with the detailed

nature of the boson excitation, such as whether the os- -

cillator is in a coherent state, a Fock state, a thermal
state (of either the bare or the displaced oscillator state,
and, if the latter, fully or partially displaced), or some
other state altogether. There is a tendency in some cir-
cles to dismiss the problem of the validity of the semi-
classical approxnnatlon with the comment that Bohr’s

complementary principle ensures that the higher the
initial boson excitation, the more valid the semiclassical
approximation. After all, quantum systems are said to
look classical as the quantum number increases. The
actual situation may, however, be more complicated.
We have also seen (see, e.g., Fig. 7b of [6]) that even at
low excitations, the nature of the boson excitation has
intriguing consequences on the spin evolution. It is also
possible that the initial phase of the spin system [30,36]
affects the validity.

The second category of validity conditions has to do
with system parameter combinations. Qur studies re-
ported in the present paper, as well as the investigations
of many others in the condensed matter field, have fo-
cused on this second category. The question here is
whether the approximation under investigation is good -
for small or large values of the spin-boson coupling
constant g, and/or for small or large values of the ratio
@/ ¥ of spin versus boson time scales. Sharp changes are -
expected to occur in validity regimes as.g crosses the
value 1. Also, there is an additional time-scale ratio;
g*w/2V which measures the polaronic binding energy
relative to the electron bandwidth. It appears that the
perturbative memory approximation (29) is good for
large values of g2 /2 often irrespective of the value of
@/ V. This condition that g?w/2¥ is much larger than 1
seems well satisfied for charge or excitation transport in
many molecular or organic crystals. In those systems,
the coupling constant is believed to lie between 1 and 2,
the ¥ is often of the order of a few wavenumbers, while
@ can range from a hundred to thousands of wave-
numbers depending on whether one is dealing with
acoustic, optical, or intramolecular vibrations. The sit-
uation is quite different in inorganic metals or semi-
conductors in which ¥ is huge, i.e., of the order of an
electron volt, while there are often no intramolecular
vibrations of higher frequency to couple to them. On the
other hand, in these inorganic systems, the standard
text-book Born-Oppenheimer separation scheme ap-
plies. It is based on w/¥ being small, not large as in
organic systems. The large mass of the nucleii makes
them sluggish and the nimbler electrons adapt to their
motion. In organic materials, the small intersite transfer
interactions for the electrons means that the qiick

-adapters are the osci]lators: the situation is thus

reversed.

It is an interesting paradox that the indisputably best
methodology to adopt in studying the validity of ap-
proximation procedures involves finding the exact solu-
tion and therefore presupposes. no need to have the
approximation procedures in the first place. One alter-
native is the theoretical querying on the basis of clear
computation of neglected terms as exemplified for the

- spin-boson system by the Wigner-function procedures

developed in [4]. Another, more modest, alternative is to

carry out a blend of theoretical enquiry and numerical
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procedures. We have adopted here the latter and reported
on some parameter ranges. We have arrived at two clear
conclusions. The first is that the BSCA improves as the
oscillator frequency decreases while the DSCA gets worse

© in this limit, as well as that the exactly opposite behavior

occurs as the osciliator frequency increases (Fig. 4). The

second is that the BSCA (DSCA) tends to be a good

short-time (long-time) approximation to the exact evo-
lution (Fig. 5), whenever the exact evolution shows ap-
parent self-trapping at short times. We ‘have also
extracted some additional information from the error
plots (Fig. 3), which is, to some extent, preliminary. In
future publications we hope to give complete pictures of

the validity over the entire g—w terrain, and to relate the

findings to the results of mveshgahons such’as those of
[4-6,22,29].

In studying the validity of the semiclassical approxi-
mation, one must not confuse making the classical ; ap-
proximation with invoking a time scale separation. The
latter is valid whenever there is disparity between time
scales as in systems with sluggish or nimble nucleu or
electrons. The validity of the former is much more

- complicated as it refers to the approximation o of an ex-

pectation value of a product of operators (f1 _ﬁg by the

product of expectation values, ( fl)(fz)

We touch upon, very briefly, three miscellaneous
topics in this Section. The first is the descrlptlon of
thermal effects in the spin-boson system. It derives its
importance from intense debates that have occurred [33}
about stability of the Davydov soliton (and related non-
linear structures) against thermal fluctuations. Sorne
have expressed the opinion that the ongmal soliton
proposal does not work at biological temperatures and
others have stated that ‘thermal vibrations not only do
not prevent the soliton tramsport of energy but... become
its necessary condition.” Amid the mynads of papers

that have been published on this topic, we would like to
~ draw the attention of the reader to some attempts based

on a non—equlhbnum approach [34], and somé on an

~ equilibrium procedure [35]. The former mtroduces ef-

fects of finite temperature into the spm-boson system by
augmenting an appropriate sef of semiclassmal equa-
tions through the addition of noise térms and arrives at
a powerful (so-calied ‘ccumenical’) equation of evolutlon
for the density matrix. Within its domain of vahdlty, it
predicts fascinating phenomena such as Hopf bifurca-
tions and thermally induced limit cycles for the spin-
boson system. The Gibbs procedure [35] proceeds quite
differently. An analogy with a ferromagnet suggests the
study of a spin-boson observable which exhibits an in-
crease as the temperature is increased, followed by a
decrease, thus exhibiting both a thermal enhancing of
the non-linear structure and, at higher temperatures still,
its thermal destruction. We refer the reader to the lit-
erature [35] for details. In'light of the improved under-
standing of the validity of semiclassical approximations

attempted in the present paper and planned for the near
future, it might be worthwhile to return to the problem

‘of the construction of thermal extensions of the SCA’s

initiated in [34] and [35].

Dynamic localization which occurs at Bessel function
roots [23-25] and the possibility of quantum control [37]
in low-temperature coherent systems such as optical
lattices and Bose—Einstein condensates, have received
considerable experimental attention in recent tirnes.
Studies of the spin-boson system resulting in dramatic
effects such as the ones in Fig. 1 aré relevant to these
phenomena [21,26]. Driven systems may be controlled
by fields with time dependence which is not only sinu-
soidal but of much more general character. Character-
istic observables can be the extent of ‘transfer during

_ spurts, the length of the quiescent plateau, and the ex-

tent of oscillations. In addition to optical trap systems,
magnetic macromolecules in giant-spin materials {38}
provide further interesting examples of phenomena of
this kind.

Finally, we mention in passing the dISCI‘EtC non-lin-
ear Schroedinger equation (DNLSE) [1,2,33,34]. Much
has been written about this equation. Applications have
been made from it, objections have béen raised agamst
it, and validity issues have been dlscussed ooncernmg it.
Some authors appear to have given up on it being ever -
possible to justify the DNLSE for the spin-boson case
and have expressed the opinion that the DNLSE may
be useful only in ‘intrinsically non-linear’ systems such
as Bose-FEinstein condensates. In the latter [39], the
cubic non-linearity arises from the mherent interactions
among the material particles, whe_reas in the spm—boson
case, it wasfis supposed to arise in the spin evolution
from the elimination of the boson field. Desplte old [3]
and new [4,5,7] criticisms of the equation, we have be-
gun to wonder recently whether the DNLSE. might not

“be much more useful than recently thought. We have

seen in the present paper (Fig. 5) that the original €l-
I1ptle function description [2] agrees remarkably well ont

‘the short-time scale with the exact quantum evolifion.

Also, the issue of the validity of the DNLSE might be
more closely related to iitial conditions of the boson
system which have not been systematically explored

- We hope that such work" will be carned out .in the

future.

We feel that much stilt remamsfco be done in the spin-
boson systeni in spite of the activity that the system has
seen over the years. Among the large number-of excel-
lent methods developed by, various authors for the

purpose, we would like to- draw the attention” of the
- reader especially to four: the explicit calculation of

correction terms carried out by Grigolini and collabo-
rators [4], the use of the time-dependent variational
principle for developing the correct dressed semiclassical
approximation by Reineker and collaborators [18], the
action-angle variable analysis showing a clean separa-
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* tion of the spin dnd boson time scales given recently by
Dunlap and coliaborators [22], and ‘our own memory
function approach [6,10,21,26] which bypasses concerns
with the semiclassical approximations and is identical to
the non-interacting blip approximation. The confirma-
tion of the validity conclusions drawn in the present
paper, the extension of the investigation to arbitrary
initial boson and spin states and to all regions of the
parameter space, and a fundamental understanding of
all these issues from the Hamiltonian are among the
issues that need to be addressed.
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