PHYSICAL REVIEW A 68, 023602 (2003
Small-tunneling-amplitude boson-Hubbard dimer. 1l. Dynamics
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We present analytical relations for the quantum evolution of the number difference of bosons between the
two sites of a double-well potential, by using perturbative results for small tunneling amplitudes in the two-
mode approximation. Results are obtained for two different initial conditions: completely localized states and
coherent spin states. In the former case both the short and the long time behavior is investigated and the
characteristic Bohr frequencies of the energy spectrum are determined. In the latter case we calculate the short
time-scale evolution of the number difference. The analytical expressions compare favorably with direct
numerical solutions of the quantum problem. Finally, we discuss the corresponding Gross-Pitagvskii
mean-field dynamics and we point out the differences between the full quantum evolution and the mean-field
evolution.
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I. INTRODUCTION through a weak driving fielfi16,17).
The many-body Hamiltonian describing a dilute gas\Nof
There are few examples in physics where analytical ininteracting bosons in an external double-well potentig) is
sight of the complex dynamics displayed by a many-body

quantum system can be gained. Even if such an analytical _ 3 let o h? ol s = N
description is limited to a region of the parameter space, it is H= | d*r| ¥ ()| = ﬁv W(r)+Vau ¥ (NW(r)
important for understating some aspects of quantum evolu- —

tion. For example, it allows us to observe what are the quan- TRA oy = af = oo s -

tum effects in the solutions determined by approximation * m PHOTHO)TO)W()), @

schemes, such as commonly used mean-field theories. This

issue is particularly timely as regards the dynamics of thereq,T(;) and\if(F) are bosonic field operators creating

Bose-Einstein condensatBEC). L . >
at ) and annihilating, respectively, atoms at the positiorand

The Gross-Pitaevskii equatidid,2] constitutes a mean- .
field approximation—derived through a generalization of theV® have used that, for a dilute and cold gas, the two-body

Bogoliubov perturbation theory developed for superfluidinteractionV(r—r’) can be substituted by (#h*alm) o(r
“He—for the time-dependent behavior of the macroscopic-r'), with a the swave scattering length and the atomic
wave function of a BEC. This equation has been able tanass.
efficiently describe the experimental observations followed In the following section we present the so-called two-
by the first realizations of Bose-Einstein condensation in di-node approximation, which drastically simplifies the Hamil-
lute alkali vapord3], as well as solitons created by employ- tonian(1). Then we briefly recall the structure of the energy
ing delicate phase engineering in such systpfisHowever, spectrum for small tunneling amplitudes, as has been ob-
recently, an increasing interest has been stimulated for exained in a previous papétl] by using perturbation theory.
ploring quantum effects beyond the mean-field approximain the following sections we apply the perturbative results
tion. This trend is reinforced by the appearance of experifor the stationary states presented in Réfl], in order to
ments that study phenomena that cannot be described by tlestimate the time evolution of the mean value of the popula-
Gross-Pitaevskii equatigrb,6]. tion difference in the two wells of the potential. We consider
In this study we derive analytical results for the quantumtwo different initial conditions, viz., completely localized
dynamics of a simple many-body systdsee Hamiltonian states(Sec. Ill) and coherent spin staté¢Sec. I\). The cor-
(2) below] consisting of two weakly coupled bosonic traps, responding numerical solutions of the time-dependent Schro
taking into account particle-particle interactions. This systendinger equation are also presented and the quantum results
can describe, in a perturbative limit, a BEC confined in aare compared with the predictions of the mean-figdoss-
double-well potential, where the atoms can tunnel betweeRitaevski) dynamics. In Sec. V we draw our conclusions.
the two minima of the trap. In addition to several theoretical
studieq 7—11], such a situation has also been experimentally
realized [12]. The same system can also describe two
coupled intramolecular stretching modd8-15. Finally, a When the separation of the two wells is sufficiently large
related problem is the case of two BECs in a different hy-that the overlap of the corresponding single-atom ground
perfine state, confined in the same magnetic trap and couplesfates at each well is very small, a first-order perturbative
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approximation can be applied, which leads to a significantivhereN; (N,) gives the number of bosons at the 1 (i

simplification of the problem; the infinite dimensional Hil- =2) well. The relative number difference is given by

bert space of Hamiltonian(l) is reduced to a finite-

dimensional system. No—N;  (J,) ®
N N2

A. Two-mode approximation
C. Structure of the energy spectrum for small

The two-mode approximation is described in detail in ) >
tunneling amplitude

Ref.[7] and is valid when the two lowest eigenenergies of a
single boson subjected to the double-well potential are close For k=0 the N+1 eigenvalues of the Hamiltoniaf3)
together and well separated from the other energy eigenvaferm degenerate pairs of levels with energies

ues. It consists of an expansion of the field operators of Eg.
(1) in terms of the weakly overlapped single-atom ground
states at each well of the potential. Then, retaining first-order
terms in the Hamiltonian with respect to the small overlap,

yields the “boson-Hubbard” dimer Hamiltonian, which in Wheremis a positive integer or half integer depending on
dimensionless form is whetherN is even or odd, respectively. The corresponding
eigenvectors are

N
-1,

1
(0) _ 92 _
Em1—2m, m== or 1,... o

5 ™

2

H=—k(blb,+blb;)+(blblb.b;+blblbob,). (2)
0 Lo 1

In this expression the dimensionless paramktir the tun- |hfni)=|m*>=ﬁ(|m)t|—m>), ®)
neling amplitude between the two wells in units of the atom-
atom interaction energy, which defines the unit of energy. where |+m) are the eigenvectors ofl,: J,|=m)
The operator:*.);r (bj), i=1,2, creatgannihilate¢ bosons at = +m|=m). For an even number of bosons the ground state
theith well. For the connection of the quantities appearing in|h{"))=|0) is nondegenerate with eigenvalt”) ,=0.
Eq. (2) with the microscopic parameters of E4), see Egs. As k increases from zero the degeneracy is gradually
(2) and(3) of Ref.[11], or Ref.[7]. We mention that param- |ifted, starting from the lower levels, i.e., the smalter This
eter k can be tuned over several orders of magnitude, byneans that for a fixed value df, the splitting AE =
varying either the height of the barrier between the minima:|Em+_ Emn-| decreases witm. Up to second order ik the

of the double well or the scattering length through a FeShperturbative energy eigenvalues are given hij
bach resonanckl8,19.

The two-mode approximation assumes that the atom-atom @ s J24+m? 1
interactions do not significantly affect the ground state prop- Epz=2m+k A1 for m#1z, 9
erties of the two individual wells. This means that the num- m
ber of bosons in the condensate should not be larger than a 1 1 K2 3
few thousand$see Eq.(13) of Ref.[7]]. E(52)¢= 3 — kA /Jz+ . Z(Jz_ Z) for odd N,

B.A i (10
. Angular momentum representation

A useful transformation can be performed from the operaand
torsb; and b;r to angular momentum operators, yielding an 2
equivalent representation of E@) [7,9,11: E(12t):2Jr €(2J2t3J2+2) foreven N, (1)

H=—2kJ,+2J2. €)
where J? is given by Eq.(4). From now on, for simplicity
The dimensionless total angular momentdifin units of#) and compact notation, we use expressions or summations

is conserved by this Hamiltonian and the correspondingith indexm= referring also to the leveh=0 (for evenN),
quantum number is as in Eq.(9). In these cases, instead of two levefs, Qve

mean the single level 0.
The splittingsAE,,,+ of the levelskE,,~ for m>1, which
. (4) are still degenerate up to second order, B, are of the
order k™ and have been analytically calculated elsewhere

[see Eq.(7) of Ref.[20]]. Consequently, the higher energy

The dimensionality of the relevant Hilbert space is equal 1gye|s form quasidegenerate pairs for relatively srkalfhe
2j+1=N+1 and depends on the fixed number of bosonsyticylar value ok up to which these levels could be still

The z component of angular momentum provides the atonygnsidered quasidegenerate dependsNoand the specific

_N_ N
=373

N+1
2

number difference between the two wells: level E,+ [11].
The corresponding perturbative corrections in the eigen-
] _No—N; (5 Vectors of Eq.(8) contain the|(m=1)*) at first order and
z 2 |(m=2)*) at second order, except for the cases whare
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+1 orm+2 is larger tharN/2 andm—1 or m—2 is nega- In order to compare the dynamics derived by the mean-
tive. For the exact expressions see Sec. |lIB of R&t].  field theory (14) with the full quantum problem(12), we
The corrections preserve the symmetry of the unperturbedalculate the probability differende,|?>—|c,|? between the
eigenvector, i.e., the corrections df,+) (Jh,-)) contain  two sites of the DNLS dimer that yields the relative number
[(m=x1)*), [(m=2)")(|(m=1)7), |[(m=2)7)), with |0) difference:

belonging to the even parity symmetry class/of ).

D. Time evolution of the relative number difference lcol?—1cq)2— <’\‘IJ/Z; (15)
In the following two sections we use the analytical results
of the energy eigenstat¢sl] in order to calculate the time
evolution of the mean value df,, i.e., the bosons number [see Eq(6)].
difference at the two sites of the dimer apart from a factor of
2. The mean value is given by the standard relafi
Ill. COMPLETELY LOCALIZED INITIAL STATES
(3(7)= > & (NI, h, )l En BT As a first example we consider the case where all the
n=m* n’=m* bosons initially occupy one of the two wells, i.eN,(0)
(12 =N andN,(0)=0. The corresponding wave function is

where the dimensionless times- (U/A)t. All the frequen-

ciesw hereafter represent dimensionless frequen@mesnits

of U/#). The sums of,n’ in the last expression are over all W (0))= ‘§> : (16)
the energy stationary statfs,-), form=0 or 1/2, ... N/2,

and ¢,, are the projections of the initial conditig®’ (0)) on
the basis ofh,+), i.e., The numerical solution of the quantum system for small val-

ues ofk, starting with the initial conditior{16), displays the
following characteristicésee Fig. 1 of Ref{20]): (i) at short
¥ (0))= _Ei Gl ). (13 time scales it exhibits small amplitude oscillations around
n=m the initial condition, (i) at longer times, while the bosons
The analytical perturbative results for the eigenfunctionsstill remain localized in the initially occupied trap, collapses
make possible the calculation of the corresponding weight@nd complete revivals appear, afiid) at even longer times
& dnr(hnld/hn) with which the Bohr frequencies of the all the atoms coherently tunnel back and forth betv_veen the
spectrumE,—E,,/, contribute to the quantum evolution of tWo traps. In Ref[20] we have presented an analytical ex-
Eq. (12). The matrix elementgh,|J,|h,/) for n’=n,n+1,  Pression describing this rich, multiple time-scale dynamics.
up to second order ik, are given in Appendix A. Below we give the details of this calculation.

E. Mean-field limit A. Short time-scale dynamics

The corresponding mean-field dynamics for the Hamil-  £or the moment we disregard the small splittingg,,-
tonian (2) is provided by the discrete nonlinear Satiger  of the higher quasidegenerate pairs of levels and we try to
(DNLS) dimer [22], which in our dimensionless units is fing the dominant terms determining the short time-scale

given by the system of equations evolution. The zeroth-order result of E.2) does not con-
de tain any dynamicg29], since only the cross terms n’
id_1= —kecy+2(N—1)|c, |2, =(N/2)*, (N/2)* survive, resulting in
-
N N
dc, , (I =2Re( By )+ Bizy-(Nniy 1 I hniy)) = 5
|F=—kcl+2(N—l)|c2| Cy. (14 (17

The complex amplitudes,, c, satisfy the normalization ) ) )
condition|c,|2+ |c,|2= 1. This system can be derived either To obtain the second equality we have. used that in zeroth
through the Hartree approximation in the time-dependenfrder ‘ls(NIZ)—:lll\/E and the corresponding matrix element
many-body problent2) [22], or, equivalently, by the appli- from Eq.(A2) isN/2. -
cation of the two-mode approximation in the Gross- For the first nonzero time-dependent correction, it is nec-
Pitaevskii equation with a double-well tra]. essary to keep terms up to second ordek in the weights.
The DNLS dimer is an integrable system and has attractedinen also the cross terms\f2)~, (N/2-1)" and (N/2
considerable attentiofi23—27. The transfer of many of —1)°, (N/2=1)" will contribute to(J,). The first terms
these results to the problem of a condensate that can tunnéfll be responsible for the time dependence, providing the

between the minima of a double well has been discussegharacteristic frequencéé#=Egﬁ),z)x—EE,%,),z,l)t- Using Eq.
already([28]. (9) we obtain thatw,, , up to second order iR, is given by
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N+ 1 Evp*t = @+
— 2 ——-q----- —> -
w,= 2(N—-1)—k m (18 Ele_ — — EN/2 1 O')O
mu
Taking into account that
EN/Z—I + — _v_ 2 +
DN~ = N k_2 N Eyy 1= — — Eve-r I @
(N/2)= \/5 8 (N—1)2
FIG. 1. Schematic of the two upper quasidegenerate pairs of
[from Egs.(31) and(32) of Ref.[11] for m=N/2] energy levels. Up to second orderkithey are still degenerate with
’ energiesEEﬁ),z)1 and Egﬁ,),z_l)t , respectively. This energy difference
K \/N provides the short time-scale oscillating frequengy. At higher
b = order ink these quasidegenerate pairs split, providing the frequen-
(N/2=1)= 2\/5 N—1 ciesw,; and w, that characterize the collapses/revivals and the co-

herent tunneling between the two sites, respectively. The sketch

[from Egs.(31) and (33) of Ref. [11] for m=N/2—1], and refers to the case of eveN. For oddN the levelsE - and

also the relationgA2) and(A4) from Appendix A, we derive ~ Evz-1)- Will be higher in energy thail ;) andEqz-1)+, re-
that spectively.

2

N N
@\ — _ we=AEnNp) =K' ———— (21
(3;7(7)) 5 +2(N—1)2[005{w“7) 1]. (19 0 (N/2) IN-2(N— 1)1
This equation describes accurately the numerical results &nd
short time scalefsee Fig. 1a) of Ref.[20]]. The calculation
of the next order correction in Eq419) is also possible. In _AE :kN—Z(N_l)(N_Z) 22
Appendix B we present this result. “1 (N2=1)= N-4(N=—3)1
In Fig. 1 we present the relevant part of the energy spec-
B. Long time-scale dynamics trum that is responsible for the dynamics exhibited by a com-

If we now take into account the splitingSE = and pl_etely localized initial state at small values of tunneling am-
AE(nj2-1) Of the two higher pairs of quasidegenerate en-Plitude.
ergy levels, they affect the evolution on longer time scales.
The former will appear already in the zeroth-order re&lin C. Comparison with the mean-field dynamics
and will describe complete transfer of all the bosons back
and forth between the two equivalent traps. The latter will
appear at second order, not only in the cross tertg (

—1)~,(N/2—1)", but also in the sum of the term&l2)™ ¢, ¢ discussion is the region whens ¢ 1)/2k>1. In that

and N/2—1)", providing_the beat that gives rise to the 0b- case we are in the self-trapped regime and the solution of Eq.
served collapses and revivals. In the latter case the dlﬁerenc(§4) is obtained througli2s]

of the energieEE(N,2)+— E(N/27l)’ and E(N/z)f_ E(N/Z*l)*
will be equal toAE ,,_ 1)+ at a lower order irk. Repeating -
. (N/2—1) . . ) 2 227 M1 .
the calculations as in the preceding section, we find the result |cal“—leql*= N =dn| (N-1)7; N—1
presented in Eq(3) of Ref.[20]:

For completely localized initial conditions the solutions of
the integrable DNLS dimer are given in terms of the Jaco-
bian elliptic functions[23,25,28. In particular, appropriate

(23

where X/(N—1) is the modulusc of the Jacobian elliptic

2
<J§2)(7-)>:E Cos{onHk—Nz E[Cos(wlr) function dn(u;«) [30]. For very smallk, the expansion
2 4(N—-1)2[2 dn(u; k) =1—(«%/2)sirf(u) in Eq. (23) yields that
w3

—co +2co cog —7|—co N,—N 2k?

Seon)|*2 coswun) S( 2 T) fon) SRR SP[(N-D)7]. (24

N (N—1)2

—co . 20

swo7) 20 [See also Eq(9) of Ref.[25], whereV and y of that refer-

ence correspond te-k and —2(N—1), respectively. Tak-

For wy=0 andw;,=0, Eq.(20) gives the resul{19 for  ing into account Eq(6) we see that the last expression is
short time scales. In the last expression the frequengjes identical with the perturbative resull9), using the zeroth-
andw, correspond to the splittingSE )+ andAE /- 1)+ order term for the frequency,,, Eq. (18). We find that in
of the two higher quasidegenerate energy pairs, respectivelthe limit of small tunneling amplitude the mean-field dynam-
which are given by20] ics accurately provides the short time-scale evolution. How-
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ever, it is unable to account for the richer behavior on longer ol @ o 0
time scales, namely, collapses and revivals, as well as coher- C=sim > cog >
ent tunneling 20].

e (29, (26)

For the initial state of Eq(25) we have that
IV. COHERENT SPIN INITIAL STATES:

SHORT TIME-SCALE DYNAMICS N
(¥(0)[3]%(0))=~ 5 cog0). 27)

The second initial condition that we consider consists of
the coherent spin statésr the angular momentum coherent \we will consider only the dynamics on short time scales and
states [31,32 that, in analogy with the usual harmonic 0s- then we ignore in the following part of the section the split-

cillator coherent states, provide an analogous quantum dfmgs of the quasidegenerate pairs that are obtained in higher
scription with the corresponding classical angular momentag der thank?.

Such initial conditions have also been used in Réf. A
coherent spin state is characterized by two anglesd ¢

L . . A. Dominant frequency
(similar to the case of a classical angular momentum with

fixed magnitudgand is obtained by If we keep zeroth-order terms in E@.2) and we take into
account the results of Appendix A, it is obvious that the time
N/2 NI dependence will be obtained through the splittinds; = and
|‘I’(0)>=Cm72_N/2 N N AE;,= of Egs.(11) and (10) for even and oddN, respec-
- (E + m) ! (— — m) ! tively. We present separately the results for these two cases.
0 _ 1. EvenN
X tarf" E) e ™’|m), (29 Calculating the corresponding,,- for the initial state
(25) in zeroth order and using EgR7) and(A2), we obtain
where the coefficienC is given by from Eq.(12) that
o N sin()\N N! 6 1 _ ,
(3O(7))=— = cog 6) + tarf| = | — ——— | [cog weT) — 1]+ 2 SiN(2¢)siN(weT) | |
2 2 N N 2 6
Stz -1 tar? >

(28)

where the frequencw, is given by N[N 1
We= El/zf—E1/2+=2k E §+1 +Z. (31)

N(N
we= E1+—El-=k2§(—+1). (29

2 In Figs. 2 and 3 we show with red lines the harmonic expres-

sions(28) and (30) for two coherent states and for different
2.0dd N numberN of bosons. By comparing with the corresponding
numerical resultgblack lineg we see that the zeroth-order
perturbative results provide the dominant frequency of the
short time-scale evolution. We note in Figs. 2 and 3 the sig-

In this case Eq(12) similarly yields in zeroth order

<J(O)(T)>: - E cog 0)+E sin( '9)) N N! nificant differences in the periods of the corresponding domi-
z 2 2\ 2 N 1 | N 1 | nant oscillations between oddFigs. 4a,c,e and 3a,c,8]
S5t5N 55 and evenN [Figs. 2b,d,f and 3b,d,f]. This is due to the

fact that the frequencw, is of first, Eq.(31), and second
order, EQ.(29), in k, respectively.

[cog wer) 1]

B. Manifestation of the whole energy spectrum

e 0 1
anz ‘T
ta >
Although the analytical result$28) and (30) give the
—2sin¢)sin(we7) | , (300 dominant frequency, they are not able to describe the fluc-
tuations exhibited by the numerical results. These fluctua-
tions become stronger &sincreases. In order to account for
them, it is necessary to keep up to first-order terms in Eq.
where noww, is obtained by (12). Using the result$A2)—(A5) from Appendix A and the
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|
-0.708 : : : : ‘ : : -0.708 : ' : ' :
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Time (dimensionless)

FIG. 2. (Color) Time evolution of the relative atom number differencé) /N, between the two sites of the double well for a coherent
initial state with #= /4 and ¢= /2, in a system consisting & N=9, (b) N=10, (c) N=15, (d) N=16, (e) N=19, and(f) N=20
bosons. The dimensionless tunneling amplitudie=i€).01. The black lines represent numerical results, the red lines represent zeroth-order
analytical results given by Eq28) [Eg. (30)], and the green lines represent first-order analytical results provided by3ys(33), and
(35—(37) [Egs.(38)—(40)] for even(odd) N.

and (33) of Ref. [11]], after some straightforward calcula- Ap=tarf"*?

¢+ for the initial state(25) up to first ordeffrom Eqgs.(31) (
tions Eq.(12) yields

0
5)[cos<Fnr+ $)—cos ¢)]

1
sin(6)\N ————rlcogFyr—¢)—cog)]. (33
<J§”(r>>=<J§°><r>>+k(T) tar?“”(z)
x| Cy[cog wer)— 1]+ C, Sin(we ) In Eqg. (32) apart from the dominant frequenay,, time
dependence results also through the quantiiesippearing
in the sum of the last term. The corresponding frequencies of
Eq. (33, F,, are given through the differences of the adja-
N%_l N! N—2n A cent quasidegenerate pairs of levels, as
+ 1
n=oor12 [N N 2(2n+1) n
§+n ! §—n ! Fn=E(n+1)¢—E(n):=4n+2, (34)
(32 where in obtaining the last equality we have used the lower-
order result ink, Eq. (7). The fine structure of these levels,
i.e., the difference between the terrgg, ;) —E,- and
where E(n+1)- —E(n)+ Will be manifested at later times and do not
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FIG. 3. (Color) Time evolution of the relative atom number differencé) /N, between the two sites of the double well for a coherent
initial state with #= /4 and ¢= /4, in a system consisting ¢& N=9, (b) N=10, (c) N=15, (d) N=16, (e) N=19, and(f) N=20
bosons. The dimensionless tunneling amplitudie=i€).01. The black lines represent numerical results, the red lines represent zeroth-order
analytical results given by Eq28) [Eq. (30)], and the green lines represent first-order analytical results provided by3ys(33), and

(35—(37) [Egs.(38)—(40)] for even(odd) N.

affect the short time-scale dynamics. This effect appears ear-

lier in the cases of od#ll through

the term$ 5.

1. Even N

For an even number of bosons, the coeffici€ltsandC,

that appear in Eq32) are

N! 6 1

C2=7R tar(z T

§+1 ! E—l ! taf(z
)S|n(3¢) —+1 sm(¢)} (36)

and the frequencieB, appearing in the sum of E¢32) are

. NI o 0 given by
177N N ) cosd)l |5 3)| BT 2
=+1/=—-1]!
2 2 Fr=4n+2, n=0,1,...,§—1=>Fn=2,6,10...,2|\l—2.
1 N 1l r(a 1 (37)
— J— a — — s
tar? g) 2 2 tar(g 2.0dd N
In the case of an odd number of bosons, the correspond-

(35
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c N! N—1 ' ' ;
N cos¢) S
2 2/\2 2
% 1
0 1
x| tarf| 5| — , (39
2 2 0 l
ta E 0 n J { 1 l\»——J <L
0 4 8 12 16 20 24 28 32 36 40 44
c N! -1 in(24) ' ' '
2= Sl
E.}.E | E_l | 8 é b) N=20
2 2/\2 2 g
&
0 1 .§ O0 0.1
X =+ — 5
ta 2 Nk (39 L§
tan = | l
2 0 | L 1 1 | L L 1 L L L L
0 4 8 12 16 20 24 28 32 36 40 44
and the frequencieB,, of Eq. (33) are Frequency (dimensionless)
F =4n+2 FIG. 4. (Color onling Fourier transform of the numerical evo-
n ' lution of the relative atom number differenc€,J2)/N, between the
13 N two sites of the double well for a coherent initial state with
n==,-,...,=—1=F,=4,8,12... , N-2. (40 =m/4 and ¢= /2, in a system consisting d) N=19 and(b)
2°2 2 N=20 bosong cases demonstrated in FiggeRand 2f), respec-

. - . tively]. The dimensionless tunneling amplitudekis 0.01. We ob-

T.he green lines in Figs. 2. and 3 show the analytical EXPreSserve the appearance of the characteristic frequefgieprovided
sions(32)—(34) together with Eqs(35) and(36) for evenN, by Eqg. (37) for evenN and Eq.(40) for odd N, respectively. The
and Eqs(38) and(39) for odd N We see that the}’ accurat_ew insets show a magnification of the spectra close to zero, where the
provide the quantum fluctuations of the numerical solutionsyqy frequenciesw,, Egs.(29) and(31), respectively, appear.
since the two evolutions cannot be distinguished on the pre-
sented time scales. the results. The mean-field frequency does not coincide with

In Fig. 4 we demonstrate the Fourier transform of thethe dominant frequency of the quantum evolution. It is rather
numerical solutions of Figs.(8) and 2f) for the case of an  in the region of the higher frequencies appearing in the first-
odd and an even number of bosons, respectively. The resulgyder corrections. We note that the amplitude of the mean-
ing frequencies are in agreement with the calculated valuege|d oscillations vary in a similar way to the amplitude of the
in Egs.(40) and(37), respectively. Also in Fig. @) the split-  quantum fluctuations. As a result, for larghr where the
ting of the frequency,,=4 appears weakly, in accordance gquantum fluctuations gradually suppress the dominant fre-
with the discussion following E¢(34). In the insets we show quency(see Figs. 2 and)3the DNLS solution improves its
the regime close to zero, where the low frequeneigsap-  agreement with the quantum solution.

pear. The corresponding result for the case of Fig) Fig. We can obtain some analytical results for the mean-field
4(b)], as obtained through Eq31) [Eq. (29)], is we=0.2  evolution of the relative number difference in the smiall
(we=0.011). regime. The relevant initial conditions for the DNLS dimer
that correspond to a coherent spin state are
C. Comparison with the mean-field dynamics
The evolution of the quantityc,|“—|c,|* obeying Eq. ci(7=0)= — co(7=0)= Tel¢’ (42)

(14) for an arbitrary initial condition is equivalent to the
i i ; i i 4
ey of  parice moing i e PO wnere = —cos (5"~ L) (=0). I he el
initial condition [25.26], D, is always 2sitive, whildD,  Picture of a particle moving in the potential(x) = D"
may be positive or ’ne .ati\}e The insi/tialp ositio;w and thfe ve—+D2Xz’ its mass is unity and the position of the particle
y bep 9 ' b gives the relative number differenfe,|2—|c,|?. The poten-

|OCIty20f thg par*tlcle arei given by. the quantitids,| tial in our notation is given by25,26]
—|cq|? and i2k(cic,—cyc3), respectively, evaluated at

=0 [26]. In any case the solution is periodic containing a N—1)2

single frequency and its harmonics. Such a solution cannot V(x)= Tx4+[—(N—1)2co§( 0) +4Kk?
describe the irregular quantum dynamics exhibited in Figs. 2

and 3. +4k(N—1)sin(6)cog ¢)]x% (42

In Fig. 5 we show the mean-field solutions for some cases
presented in Fig. 2. We have used the same scale indkes ~ Sincek/(N—1)<<1 in our case, it suffices to retain the first
with the corresponding plots of Fig. 2 in order to compareterm in the coefficient ok? for most of the following calcu-
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The relationg44) and(45) are in a very good agreement
with the numerical solutions presented in Fig. 5. We see that
the mean-field single frequency, Ed4), lies in between the
zeroth-order frequencieB, of Egs. (37) and (40) and its
actual position is determined by the anglef the coherent
initial state. For example, in the case displayed in Fig),5

mi~26.9, while for the same initial condition aridl= 19,
omi~25.5. One can compare these frequencies with the cor-
responding quantum spectra of Figgbyand 4a), respec-
tively.

a) N=9

A

-0.71
0

MNM ARl

50 100

b) N=16
~0.706 | 1

-0.708

V. CONCLUSIONS

0 500 1500

10‘00
| By applying results obtained from perturbation theory for

the stationary states of the boson-Hubbard dimer in the small
tunneling amplitude regime, we have derived analytical ex-

-0.706 ) N=20

(NN, N

AR

0 500 1000
Time (dimensionless)

—0.708

1500

pressions for the time evolution of the number difference of
bosons between the two equivalent sites. The obtained for-
mulas account well for the complex quantum evolution of

the system.

FIG. 5. Time evolution of the relative atom number difference,  In the case that all the bosons initially occupy one trap of
|(;2|2—|c1|2, in the mean-field approximation for a coherent initial the potential, the numerical solution exhibits a rich behavior
state with = 7/4 and ¢= /2, in a system consisting d& N on different time scales. This multiple time-scale dynamics is
=9, (b) N=16, and(c) N=20 bosongcases demonstrated in Figs. determined by the structure of the upper part of the energy
2(a), 2(d), and Zf), respectively. The dimensionless tunneling am- spectrum; the two higher quasidegenerate pairs of levels. The
plitude isk=0.01. In all the cases the dynamics is nearly harmonic.difference between these two quasidegenerate pairs, which is

zeroth order irk, is responsible for the small amplitude os-
lations. The corresponding initial conditions for the particlecillations on short time scales. The small splitting of the
are given by[26] x(7=0)=—cos@) and dx/dt(r=0)  second higher pair, of the ord&M 2, determines at longer
=2ksin(f)sin(¢). The double-well potentialV(x) (that times the collapses and revivals that correspond to the van-
should not be confused with the trap of the bogdmss a  ishing and the subsequent complete restoration of the oscil-
local maximum atx=0 and two symmetric minima at lation amplitude. Up to this point the bosons remain local-
=% cos(@)+o[k/(N—1)]. Initially the particle is very close to ized in the initially occupied site. Then, at even longer time
the minimumx, around—cos(), at a distance of the order scales, the very small splitting of the higher pair of levels, of
k/(N—1), and has a nonzero velocity of orderAs a result  the orderk", gives rise to coherent tunneling at the initially
its time evolution is a small amplitude oscillation that can beunoccupied trap of the potential. The corresponding mean-
obtained by linearizing the potential around its minimum atfield dynamics is identical with the short time-scale evolu-
Xg, 1.€., tion but fails to reproduce different behavior observed at
larger time scales. Collapses and revivals that contrast the
mean-field results have been observed in this context in Ref.
[7]. These characteristic signatures of quantum evolution
have also been studied in quantum opfid3—35. Further-
where ¢ is an initial phase. The single frequency of the more, the complete transfer of all the bosons between the
mean-field dynamics is obtained by two traps of the boson-Hubbard dimer, as a pure quantum
effect for small tunneling amplitudes, has been nicely dis-
cussed in Refd.14,15. With increasingN the periods of the
quantum features are strongly increased, resulting in the va-
lidity of the mean-field description at much longer times

No— Ny
g =11 cod ot o),

(43

wmi=2(N—1)cog 0), (44

where the next correction is of ordef(N—1). The maxi-
mum amplitudell of the oscillation is obtained through the

relation [9,14. . " .
The initial condition of a coherent spin state reveals more
1/dx 2 1 ) , 1, irregular dynamics, with quantum fluctuations that increase
31 g (7m0 FZondX(1=0)=X]" =5 wnyA1% with the number of bosons. The dominant frequency in this

evolution is obtained by the larger splitting occurring at the
unperturbed degenerate pairs. This is determined by the
lower part of the spectrum; for an odd number of bosons it is
the difference between the ground and the first excited states,
while for evenN it is the splitting between the first and the
second excited states. Apart from this low frequency, of or-
In deriving the last equation we have used the first correctiomlerk, or k?, depending on whethé\ is odd or even, respec-

in Xg, which is[2k/(N—1)]tan(6)cos(p). tively, the whole spectrum is manifested on short time scales

which yields in lowest order

= &tar{ 0)\3 cos(p)+1.

(49)
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through the exhibited fluctuations. The latter are provided by 1 k2 )
the differences of adjacent quasidegenerate levels, which are (1= I hype) =5 + (37— 1), (A3)
X ! o . 2 16

of zeroth order ink. The mean-field dynamics is obviously

una_ble.to describg the quantum fluctuations, yielding a singlgvh”e forn’=n+1

oscillation. Its period is much smaller than that of the domi-

nant frequency appearing in the quantum dynamics. Never-

theless, as the number of bosons is increased, it more closely _ k VJ°—n(n+1)

mimics the quantum evolution. <hﬂi|‘32|h(n+l):>_§ on+1
The demonstration of a BEC trapped in a double-well

potential has been experimentally achieved in RE2]. By  and

focusing a far off-resonant laser beam at the center of a mag-

netic trap in this experiment, a repulsive optical force is pro-
(holJ hy-)=k \/;

for n>0 (A4)

duced, which separates the sodium atom condensate into two
symmetric wells. Furthermore, these authors were able to
create a situation in which all the atoms of the BEC were
localized at one minimum of the double well, by The matrix element(shnr|\]z|h(n_1):) for n>1 are obtained
illuminating—using weak resonant light—the other trap andby substitutingn=n—1 in the expressiolA4).

pumping its atoms to untrapped statese Fig. 1b) of Ref. The general matrix elementgh,:|J,|hn.2)=) and
[12]). We note that the presented results for the boson(hnlezlh(n,Z):> are of orderk?, but we do not use them in
Hubbard dimer are not applicable in the situation of thisthe text. All other matrix elements are zero up to second
experiment due to the large number of the trapped bogafns order ink.

the order of million$. However, condensates with a few

(A5)

thousands of atoms have been realiZ8l] and the creation APPENDIX B
of barriers in these cases would provide a realistic situation o )
for the application of the two-mode approximation. The next order correction in the result of Ef9) contains
the term
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where the frequencw, is given by Eq.(18), and Wy and
APPENDIX A o, are given by Egﬁ),z)i—Egﬁ),zfz): and EEN)/271)J—'
_e@) ; ;
In general, for each pair af, n'=0 or 1/2,...N/2 is E(n2-2)= re_:specuvely. The corresponding results, up to
second order irk, are
<hn+|‘]z|hn’+>:0:<hn‘|‘]z|hn">- (A1)
, N?-N-2
As a result only cross terms of different symmetry survive in w, =4(N-2)—2k N3— 9ON2+ 23N— 15 (B2)
the double sum of Eq12).
Using the relationg27)—(34) of Ref.[11] we obtain the and
following results up to second order ka Forn’=n,
K? 43%n%+ 32— 4n’+3n? N®—N°-5N-3
<hni|~]z|hn:>:n 1-= wﬂ//IZ(N—3)—k2 4 3 2 ’
2 (4n2—1)2 N“*—12N°+50N“— 84N+ 45
(B3)
k?[J2—n(n+1)
T —2(n+1) In order to calculate the terrfB1), we have used the rela-
(2n+1) tions (31)—(34) of Ref. [11] for m=N/2, N/2—1, andN/2
2-n(n-1) —2. Moreover, it is necessary to calculate for the eigenvec-
+ —(n—l)) for n=1 tor |[h(nyz)=) the third order correction in the coefficient of
(2n—1)? |(N/2—1)7), equal to
A2
(A2) k3 VN(N2—2N-2)
and 16 (N—-1)3(N-2) '
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and the fourth-order correction in the coefficient of correction in the coefficient gfN/2)*), equal to
N/2)*), which is
I(N2)5) k3 JN(N3—4N2+5N+ 10)

K* N(N®—6N2—2N—18) 162 (N-1)*(N-3)

128 (N—1)4N-2)2 The correction(B1) is appropriate for small time scales,
since we have not taken into account the small splittings
) ) AE(N/Z)t, AE(N/2—1)¢! andAE(N/z_z)t, of OrderkN, kN_z,
as well as for the eigenvectdh(y;,—1)=) the third-order andk™ “, respectively.
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