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Small-tunneling-amplitude boson-Hubbard dimer. II. Dynamics
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We present analytical relations for the quantum evolution of the number difference of bosons between the
two sites of a double-well potential, by using perturbative results for small tunneling amplitudes in the two-
mode approximation. Results are obtained for two different initial conditions: completely localized states and
coherent spin states. In the former case both the short and the long time behavior is investigated and the
characteristic Bohr frequencies of the energy spectrum are determined. In the latter case we calculate the short
time-scale evolution of the number difference. The analytical expressions compare favorably with direct
numerical solutions of the quantum problem. Finally, we discuss the corresponding Gross-Pitaevskii~i.e.,
mean-field! dynamics and we point out the differences between the full quantum evolution and the mean-field
evolution.

DOI: 10.1103/PhysRevA.68.023602 PACS number~s!: 03.75.Kk, 05.30.Jp
in
d

tic
it
ol
a
io
T
f

-
th
id
p
t

e
d
y-

e
a

er
y

m

s
em

a
ee
ca
ll

w

y
p

g

ody

o-
il-
gy
ob-
.
lts

la-
er
d

hro
sults

ge
nd
ive
I. INTRODUCTION

There are few examples in physics where analytical
sight of the complex dynamics displayed by a many-bo
quantum system can be gained. Even if such an analy
description is limited to a region of the parameter space,
important for understating some aspects of quantum ev
tion. For example, it allows us to observe what are the qu
tum effects in the solutions determined by approximat
schemes, such as commonly used mean-field theories.
issue is particularly timely as regards the dynamics o
Bose-Einstein condensate~BEC!.

The Gross-Pitaevskii equation@1,2# constitutes a mean
field approximation—derived through a generalization of
Bogoliubov perturbation theory developed for superflu
4He—for the time-dependent behavior of the macrosco
wave function of a BEC. This equation has been able
efficiently describe the experimental observations follow
by the first realizations of Bose-Einstein condensation in
lute alkali vapors@3#, as well as solitons created by emplo
ing delicate phase engineering in such systems@4#. However,
recently, an increasing interest has been stimulated for
ploring quantum effects beyond the mean-field approxim
tion. This trend is reinforced by the appearance of exp
ments that study phenomena that cannot be described b
Gross-Pitaevskii equation@5,6#.

In this study we derive analytical results for the quantu
dynamics of a simple many-body system@see Hamiltonian
~2! below# consisting of two weakly coupled bosonic trap
taking into account particle-particle interactions. This syst
can describe, in a perturbative limit, a BEC confined in
double-well potential, where the atoms can tunnel betw
the two minima of the trap. In addition to several theoreti
studies@7–11#, such a situation has also been experimenta
realized @12#. The same system can also describe t
coupled intramolecular stretching modes@13–15#. Finally, a
related problem is the case of two BECs in a different h
perfine state, confined in the same magnetic trap and cou
1050-2947/2003/68~2!/023602~11!/$20.00 68 0236
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through a weak driving field@16,17#.
The many-body Hamiltonian describing a dilute gas ofN

interacting bosons in an external double-well potentialVdw is

H5E d3r F Ĉ†~rW !S 2
\2

2m
¹2D Ĉ~rW !1VdwĈ†~rW !Ĉ~rW !

1
2p\2a

m
Ĉ†~rW !Ĉ†~rW !Ĉ~rW !Ĉ~rW !G , ~1!

whereĈ†(rW) and Ĉ(rW) are bosonic field operators creatin
and annihilating, respectively, atoms at the positionrW, and
we have used that, for a dilute and cold gas, the two-b
interactionV(rW2rW8) can be substituted by (4p\2a/m)d(rW

2rW8), with a the s-wave scattering length andm the atomic
mass.

In the following section we present the so-called tw
mode approximation, which drastically simplifies the Ham
tonian~1!. Then we briefly recall the structure of the ener
spectrum for small tunneling amplitudes, as has been
tained in a previous paper@11# by using perturbation theory
In the following sections we apply the perturbative resu
for the stationary states presented in Ref.@11#, in order to
estimate the time evolution of the mean value of the popu
tion difference in the two wells of the potential. We consid
two different initial conditions, viz., completely localize
states~Sec. III! and coherent spin states~Sec. IV!. The cor-
responding numerical solutions of the time-dependent Sc¨-
dinger equation are also presented and the quantum re
are compared with the predictions of the mean-field~Gross-
Pitaevskii! dynamics. In Sec. V we draw our conclusions.

II. THE BOSON-HUBBARD DIMER

When the separation of the two wells is sufficiently lar
that the overlap of the corresponding single-atom grou
states at each well is very small, a first-order perturbat
©2003 The American Physical Society02-1
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approximation can be applied, which leads to a signific
simplification of the problem; the infinite dimensional Hi
bert space of Hamiltonian~1! is reduced to a finite-
dimensional system.

A. Two-mode approximation

The two-mode approximation is described in detail
Ref. @7# and is valid when the two lowest eigenenergies o
single boson subjected to the double-well potential are c
together and well separated from the other energy eigen
ues. It consists of an expansion of the field operators of
~1! in terms of the weakly overlapped single-atom grou
states at each well of the potential. Then, retaining first-or
terms in the Hamiltonian with respect to the small overla
yields the ‘‘boson-Hubbard’’ dimer Hamiltonian, which i
dimensionless form is

H52k~b1
†b21b2

†b1!1~b1
†b1

†b1b11b2
†b2

†b2b2!. ~2!

In this expression the dimensionless parameterk is the tun-
neling amplitude between the two wells in units of the ato
atom interaction energyU, which defines the unit of energy
The operatorsbi

† (bi), i 51,2, create~annihilate! bosons at
the i th well. For the connection of the quantities appearing
Eq. ~2! with the microscopic parameters of Eq.~1!, see Eqs.
~2! and~3! of Ref. @11#, or Ref.@7#. We mention that param
eter k can be tuned over several orders of magnitude,
varying either the height of the barrier between the mini
of the double well or the scattering length through a Fe
bach resonance@18,19#.

The two-mode approximation assumes that the atom-a
interactions do not significantly affect the ground state pr
erties of the two individual wells. This means that the nu
ber of bosons in the condensate should not be larger th
few thousands@see Eq.~13! of Ref. @7##.

B. Angular momentum representation

A useful transformation can be performed from the ope
tors bi and bi

† to angular momentum operators, yielding
equivalent representation of Eq.~2! @7,9,11#:

H522kJx12Jz
2 . ~3!

The dimensionless total angular momentumJ ~in units of\)
is conserved by this Hamiltonian and the correspond
quantum number is

j 5
N

2
⇒J25

N

2 S N

2
11D . ~4!

The dimensionality of the relevant Hilbert space is equa
2 j 115N11 and depends on the fixed number of boso
The z component of angular momentum provides the at
number difference between the two wells:

Jz5
N22N1

2
, ~5!
02360
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whereN1 (N2) gives the number of bosons at thei 51 (i
52) well. The relative number difference is given by

N22N1

N
5

^Jz&
N/2

. ~6!

C. Structure of the energy spectrum for small
tunneling amplitude

For k50 the N11 eigenvalues of the Hamiltonian~3!
form degenerate pairs of levels with energies

Em6
(0)

52m2, m5
1

2
or 1, . . . ,

N

2
21,

N

2
, ~7!

wherem is a positive integer or half integer depending
whetherN is even or odd, respectively. The correspondi
eigenvectors are

uhm6
(0) &5um6&5

1

A2
~ um&6u2m&), ~8!

where u6m& are the eigenvectors ofJz : Jzu6m&
56mu6m&. For an even number of bosons the ground st
uh0

(0)&5u0& is nondegenerate with eigenvalueEm50
(0) 50.

As k increases from zero the degeneracy is gradu
lifted, starting from the lower levels, i.e., the smallerm. This
means that for a fixed value ofk, the splitting DEm6

5uEm12Em2u decreases withm. Up to second order ink the
perturbative energy eigenvalues are given by@11#

Em6
(2)

52m21k2
J21m2

4m221
for mÞ1,

1

2
, ~9!

E1/26
(2)

5
1

2
7kAJ21

1

4
2

k2

4 S J22
3

4D for odd N,

~10!

and

E16
(2)

521
k2

6
~2J263J212! for even N, ~11!

whereJ2 is given by Eq.~4!. From now on, for simplicity
and compact notation, we use expressions or summat
with indexm6 referring also to the levelm50 ~for evenN),
as in Eq.~9!. In these cases, instead of two levels 06, we
mean the single level 0.

The splittingsDEm6 of the levelsEm6 for m.1, which
are still degenerate up to second order, Eq.~9!, are of the
order k2m and have been analytically calculated elsewh
@see Eq.~7! of Ref. @20##. Consequently, the higher energ
levels form quasidegenerate pairs for relatively smallk. The
particular value ofk up to which these levels could be sti
considered quasidegenerate depends onN and the specific
level Em6 @11#.

The corresponding perturbative corrections in the eig
vectors of Eq.~8! contain theu(m61)6& at first order and
u(m62)6& at second order, except for the cases wherem
2-2
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11 or m12 is larger thanN/2 andm21 or m22 is nega-
tive. For the exact expressions see Sec. III B of Ref.@11#.
The corrections preserve the symmetry of the unpertur
eigenvector, i.e., the corrections ofuhm1& (uhm2&) contain
u(m61)1&, u(m62)1&(u(m61)2&, u(m62)2&), with u0&
belonging to the even parity symmetry class ofum1&.

D. Time evolution of the relative number difference

In the following two sections we use the analytical resu
of the energy eigenstates@11# in order to calculate the time
evolution of the mean value ofJz , i.e., the bosons numbe
difference at the two sites of the dimer apart from a factor
2. The mean value is given by the standard relation@21#

^Jz~t!&5 (
n5m6

(
n85m6

fn
!fn8^hnuJzuhn8&e

i (En2En8)t,

~12!

where the dimensionless time ist5(U/\)t. All the frequen-
ciesv hereafter represent dimensionless frequencies~in units
of U/\). The sums ofn,n8 in the last expression are over a
the energy stationary statesuhm6&, for m50 or 1/2, . . . ,N/2,
andfn are the projections of the initial conditionuC(0)& on
the basis ofuhm6&, i.e.,

uC~0!&5 (
n5m6

fnuhn&. ~13!

The analytical perturbative results for the eigenfunctio
make possible the calculation of the corresponding weig
fn

!fn8^hnuJzuhn8& with which the Bohr frequencies of th
spectrum,En2En8 , contribute to the quantum evolution o
Eq. ~12!. The matrix elementŝhnuJzuhn8& for n85n,n61,
up to second order ink, are given in Appendix A.

E. Mean-field limit

The corresponding mean-field dynamics for the Ham
tonian ~2! is provided by the discrete nonlinear Schro¨dinger
~DNLS! dimer @22#, which in our dimensionless units i
given by the system of equations

i
dc1

dt
52kc212~N21!uc1u2c1 ,

i
dc2

dt
52kc112~N21!uc2u2c2 . ~14!

The complex amplitudesc1 , c2 satisfy the normalization
conditionuc1u21uc2u251. This system can be derived eith
through the Hartree approximation in the time-depend
many-body problem~2! @22#, or, equivalently, by the appli-
cation of the two-mode approximation in the Gros
Pitaevskii equation with a double-well trap@7#.

The DNLS dimer is an integrable system and has attrac
considerable attention@23–27#. The transfer of many of
these results to the problem of a condensate that can tu
between the minima of a double well has been discus
already@28#.
02360
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In order to compare the dynamics derived by the me
field theory ~14! with the full quantum problem~12!, we
calculate the probability differenceuc2u22uc1u2 between the
two sites of the DNLS dimer that yields the relative numb
difference:

uc2u22uc1u2→ ^Jz&
N/2

~15!

@see Eq.~6!#.

III. COMPLETELY LOCALIZED INITIAL STATES

As a first example we consider the case where all
bosons initially occupy one of the two wells, i.e.,N2(0)
5N andN1(0)50. The corresponding wave function is

uC~0!&5UN2 L . ~16!

The numerical solution of the quantum system for small v
ues ofk, starting with the initial condition~16!, displays the
following characteristics~see Fig. 1 of Ref.@20#!: ~i! at short
time scales it exhibits small amplitude oscillations arou
the initial condition,~ii ! at longer times, while the boson
still remain localized in the initially occupied trap, collaps
and complete revivals appear, and~iii ! at even longer times
all the atoms coherently tunnel back and forth between
two traps. In Ref.@20# we have presented an analytical e
pression describing this rich, multiple time-scale dynami
Below we give the details of this calculation.

A. Short time-scale dynamics

For the moment we disregard the small splittingsDEm6

of the higher quasidegenerate pairs of levels and we try
find the dominant terms determining the short time-sc
evolution. The zeroth-order result of Eq.~12! does not con-
tain any dynamics@29#, since only the cross termsn, n8
5(N/2)6, (N/2)7 survive, resulting in

^Jz
(0)~t!&52Re~f (N/2)1

! f (N/2)2^h(N/2)1uJzuh(N/2)2&!5
N

2
.

~17!

To obtain the second equality we have used that in ze
order f (N/2)651/A2 and the corresponding matrix eleme
from Eq. ~A2! is N/2.

For the first nonzero time-dependent correction, it is n
essary to keep terms up to second order ink in the weights.
Then also the cross terms (N/2)6, (N/221)7 and (N/2
21)6, (N/221)7 will contribute to ^Jz&. The first terms
will be responsible for the time dependence, providing
characteristic frequencyvm5E(N/2)6

(2)
2E(N/221)6

(2) . Using Eq.
~9! we obtain thatvm , up to second order ink, is given by
2-3
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vm52~N21!2k2
N11

N224N13
. ~18!

Taking into account that

f (N/2)65
1

A2
S 12

k2

8

N

~N21!2D
@from Eqs.~31! and ~32! of Ref. @11# for m5N/2],

f (N/221)65
k

2A2

AN

N21

@from Eqs.~31! and ~33! of Ref. @11# for m5N/221], and
also the relations~A2! and~A4! from Appendix A, we derive
that

^Jz
(2)~t!&5

N

2
1

k2N

2~N21!2
@cos~vmt!21#. ~19!

This equation describes accurately the numerical result
short time scales@see Fig. 1~a! of Ref. @20##. The calculation
of the next order correction in Eq.~19! is also possible. In
Appendix B we present this result.

B. Long time-scale dynamics

If we now take into account the splittingsDE(N/2)6 and
DE(N/221)6 of the two higher pairs of quasidegenerate e
ergy levels, they affect the evolution on longer time sca
The former will appear already in the zeroth-order result~17!
and will describe complete transfer of all the bosons b
and forth between the two equivalent traps. The latter w
appear at second order, not only in the cross terms (N/2
21)6,(N/221)7, but also in the sum of the terms (N/2)6

and (N/221)7, providing the beat that gives rise to the o
served collapses and revivals. In the latter case the differe
of the energiesE(N/2)12E(N/221)2 and E(N/2)22E(N/221)1

will be equal toDE(N/221)6 at a lower order ink. Repeating
the calculations as in the preceding section, we find the re
presented in Eq.~3! of Ref. @20#:

^Jz
(2)~t!&5

N

2
cos~v0t!1

k2N

4~N21!2 FN

2
@cos~v1t!

2cos~v0t!#12 cos~vmt!cosS v1

2
t D2cos~v1t!

2cos~v0t!G . ~20!

For v050 andv150, Eq. ~20! gives the result~19! for
short time scales. In the last expression the frequenciesv0
andv1 correspond to the splittingsDE(N/2)6 andDE(N/221)6

of the two higher quasidegenerate energy pairs, respecti
which are given by@20#
02360
at

-
.

k
ll

ce

ult

ly,

v05DE(N/2)65kN
N

2N22~N21!!
~21!

and

v15DE(N/221)65kN22
~N21!~N22!

2N24~N23!!
. ~22!

In Fig. 1 we present the relevant part of the energy sp
trum that is responsible for the dynamics exhibited by a co
pletely localized initial state at small values of tunneling a
plitude.

C. Comparison with the mean-field dynamics

For completely localized initial conditions the solutions
the integrable DNLS dimer are given in terms of the Ja
bian elliptic functions@23,25,26#. In particular, appropriate
for our discussion is the region where (N21)/2k.1. In that
case we are in the self-trapped regime and the solution of
~14! is obtained through@25#

uc2u22uc1u25
N22N1

N
5dnS ~N21!t;

2k

N21D , ~23!

where 2k/(N21) is the modulusk of the Jacobian elliptic
function dn(u;k) @30#. For very smallk, the expansion
dn(u;k)512(k2/2)sin2(u) in Eq. ~23! yields that

N22N1

N
512

2k2

~N21!2
sin2@~N21!t#. ~24!

@See also Eq.~9! of Ref. @25#, whereV andx of that refer-
ence correspond to2k and 22(N21), respectively.# Tak-
ing into account Eq.~6! we see that the last expression
identical with the perturbative result~19!, using the zeroth-
order term for the frequencyvm , Eq. ~18!. We find that in
the limit of small tunneling amplitude the mean-field dynam
ics accurately provides the short time-scale evolution. Ho

FIG. 1. Schematic of the two upper quasidegenerate pair
energy levels. Up to second order ink they are still degenerate with
energiesE(N/2)6

(2) andE(N/221)6
(2) , respectively. This energy differenc

provides the short time-scale oscillating frequencyvm . At higher
order ink these quasidegenerate pairs split, providing the frequ
ciesv1 andv0 that characterize the collapses/revivals and the
herent tunneling between the two sites, respectively. The sk
refers to the case of evenN. For odd N the levelsE(N/2)2 and
E(N/221)2 will be higher in energy thanE(N/2)1 andE(N/221)1, re-
spectively.
2-4
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ever, it is unable to account for the richer behavior on lon
time scales, namely, collapses and revivals, as well as co
ent tunneling@20#.

IV. COHERENT SPIN INITIAL STATES:
SHORT TIME-SCALE DYNAMICS

The second initial condition that we consider consists
the coherent spin states~or the angular momentum cohere
states! @31,32# that, in analogy with the usual harmonic o
cillator coherent states, provide an analogous quantum
scription with the corresponding classical angular mome
Such initial conditions have also been used in Ref.@9#. A
coherent spin state is characterized by two anglesu and f
~similar to the case of a classical angular momentum w
fixed magnitude! and is obtained by

uC~0!&5C (
m52N/2

N/2

A N!

S N

2
1mD ! S N

2
2mD !

3tanmS u

2De2 imfum&, ~25!

where the coefficientC is given by
02360
r
er-

f

e-
a.

h

C5sinN/2S u

2D cosN/2S u

2De2 i (N/2)f. ~26!

For the initial state of Eq.~25! we have that

^C~0!uJzuC~0!&52
N

2
cos~u!. ~27!

We will consider only the dynamics on short time scales a
then we ignore in the following part of the section the sp
tings of the quasidegenerate pairs that are obtained in hi
order thank2.

A. Dominant frequency

If we keep zeroth-order terms in Eq.~12! and we take into
account the results of Appendix A, it is obvious that the tim
dependence will be obtained through the splittingsDE16 and
DE1/26 of Eqs. ~11! and ~10! for even and oddN, respec-
tively. We present separately the results for these two ca

1. EvenN

Calculating the correspondingfn6 for the initial state
~25! in zeroth order and using Eqs.~27! and~A2!, we obtain
from Eq. ~12! that
^Jz
(0)~t!&52

N

2
cos~u!1S sin~u!

2 D N N!

S N

2
11D ! S N

2
21D ! H F tan2S u

2D2
1

tan2S u

2D G @cos~vet!21#12 sin~2f!sin~vet!J ,

~28!
es-
t
g
r
the
ig-

mi-

uc-
ua-
r

Eq.
where the frequencyve is given by

ve5E112E125k2
N

2 S N

2
11D . ~29!

2. Odd N

In this case Eq.~12! similarly yields in zeroth order

^Jz
(0)~t!&52

N

2
cos~u!1

1

2 S sin~u!

2 D N N!

S N

2
1

1

2D ! S N

2
2

1

2D !

3H F tanS u

2D2
1

tanS u

2D G @cos~vet!21#

22 sin~f!sin~vet!J , ~30!

where nowve is obtained by
ve5E1/222E1/2152 kAN

2 S N

2
11D1

1

4
. ~31!

In Figs. 2 and 3 we show with red lines the harmonic expr
sions~28! and ~30! for two coherent states and for differen
numberN of bosons. By comparing with the correspondin
numerical results~black lines! we see that the zeroth-orde
perturbative results provide the dominant frequency of
short time-scale evolution. We note in Figs. 2 and 3 the s
nificant differences in the periods of the corresponding do
nant oscillations between odd@Figs. 2~a,c,e! and 3~a,c,e!#
and evenN @Figs. 2~b,d,f! and 3~b,d,f!#. This is due to the
fact that the frequencyve is of first, Eq. ~31!, and second
order, Eq.~29!, in k, respectively.

B. Manifestation of the whole energy spectrum

Although the analytical results~28! and ~30! give the
dominant frequency, they are not able to describe the fl
tuations exhibited by the numerical results. These fluct
tions become stronger asN increases. In order to account fo
them, it is necessary to keep up to first-order terms in
~12!. Using the results~A2!–~A5! from Appendix A and the
2-5
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FIG. 2. ~Color! Time evolution of the relative atom number difference, 2^Jz&/N, between the two sites of the double well for a cohere
initial state withu5p/4 andf5p/2, in a system consisting of~a! N59, ~b! N510, ~c! N515, ~d! N516, ~e! N519, and~f! N520
bosons. The dimensionless tunneling amplitude isk50.01. The black lines represent numerical results, the red lines represent zeroth
analytical results given by Eq.~28! @Eq. ~30!#, and the green lines represent first-order analytical results provided by Eqs.~32!, ~33!, and
~35!–~37! @Eqs.~38!–~40!# for even~odd! N.
-

s of
ja-

er-
s,

ot
fn6 for the initial state~25! up to first order@from Eqs.~31!
and ~33! of Ref. @11##, after some straightforward calcula
tions Eq.~12! yields

^Jz
(1)~t!&5^Jz

(0)~t!&1kS sin~u!

2 D N

3FC1@cos~vet!21#1C2 sin~vet!

1 (
n50or1/2

N/221
N!

S N

2
1nD ! S N

2
2nD !

N22n

2~2n11!
AnG ,

~32!

where
02360
An5tan2n11S u

2D @cos~Fnt1f!2cos~f!#

2
1

tan2n11S u

2D @cos~Fnt2f!2cos~f!#. ~33!

In Eq. ~32! apart from the dominant frequencyve , time
dependence results also through the quantitiesAn appearing
in the sum of the last term. The corresponding frequencie
Eq. ~33!, Fn , are given through the differences of the ad
cent quasidegenerate pairs of levels, as

Fn5E(n11)62E(n)754n12, ~34!

where in obtaining the last equality we have used the low
order result ink, Eq. ~7!. The fine structure of these level
i.e., the difference between the termsE(n11)12E(n)2 and
E(n11)22E(n)1 will be manifested at later times and do n
2-6
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FIG. 3. ~Color! Time evolution of the relative atom number difference, 2^Jz&/N, between the two sites of the double well for a cohere
initial state withu5p/4 andf5p/4, in a system consisting of~a! N59, ~b! N510, ~c! N515, ~d! N516, ~e! N519, and~f! N520
bosons. The dimensionless tunneling amplitude isk50.01. The black lines represent numerical results, the red lines represent zeroth
analytical results given by Eq.~28! @Eq. ~30!#, and the green lines represent first-order analytical results provided by Eqs.~32!, ~33!, and
~35!–~37! @Eqs.~38!–~40!# for even~odd! N.
ea

nd-
affect the short time-scale dynamics. This effect appears
lier in the cases of oddN through the termsF1/2.

1. Even N

For an even number of bosons, the coefficientsC1 andC2

that appear in Eq.~32! are

C15
N!

S N

2
11D ! S N

2
21D !

cos~f!H S N

6
2

1

3D F tan3S u

2D

2
1

tan3S u

2D G2S N

2
11D F tanS u

2D2
1

tanS u

2D G J ,

~35!
02360
r-
C25

N!

S N

2
11D ! S N

2
21D ! F tanS u

2D1
1

tanS u

2D G
3F S N

6
2

1

3D sin~3f!2S N

2
11D sin~f!G , ~36!

and the frequenciesFn appearing in the sum of Eq.~32! are
given by

Fn54n12, n50,1, . . . ,
N

2
21⇒Fn52,6,10, . . . ,2N22.

~37!

2. Odd N

In the case of an odd number of bosons, the correspo
ing coefficients are given by
2-7



re

ly
ns
pr

he

su
lu

e

e

e

a
n

s.

se

re

ith
er

rst-
an-
e

fre-

eld

er

le

st

-

the

KALOSAKAS, BISHOP, AND KENKRE PHYSICAL REVIEW A68, 023602 ~2003!
C15
N!

S N

2
1

1

2D ! S N

2
2

1

2D !

N21

8
cos~f!

3F tan2S u

2D2
1

tan2S u

2D G , ~38!

C25
N!

S N

2
1

1

2D ! S N

2
2

1

2D !

N21

8
sin~2f!

3F tanS u

2D1
1

tanS u

2D G , ~39!

and the frequenciesFn of Eq. ~33! are

Fn54n12,

n5
1

2
,
3

2
, . . . ,

N

2
21⇒Fn54,8,12, . . . ,2N22. ~40!

The green lines in Figs. 2 and 3 show the analytical exp
sions~32!–~34! together with Eqs.~35! and~36! for evenN,
and Eqs.~38! and~39! for oddN. We see that they accurate
provide the quantum fluctuations of the numerical solutio
since the two evolutions cannot be distinguished on the
sented time scales.

In Fig. 4 we demonstrate the Fourier transform of t
numerical solutions of Figs. 2~e! and 2~f! for the case of an
odd and an even number of bosons, respectively. The re
ing frequencies are in agreement with the calculated va
in Eqs.~40! and~37!, respectively. Also in Fig. 4~a! the split-
ting of the frequencyF1/254 appears weakly, in accordanc
with the discussion following Eq.~34!. In the insets we show
the regime close to zero, where the low frequenciesve ap-
pear. The corresponding result for the case of Fig. 4~a! @Fig.
4~b!#, as obtained through Eq.~31! @Eq. ~29!#, is ve50.2
(ve50.011).

C. Comparison with the mean-field dynamics

The evolution of the quantityuc2u22uc1u2 obeying Eq.
~14! for an arbitrary initial condition is equivalent to th
trajectory of a particle moving in the potentialD1x4

1D2x2, where the coefficientsD1 and D2 depend on the
initial condition @25,26#. D1 is always positive, whileD2
may be positive or negative. The initial position and the v
locity of the particle are given by the quantitiesuc2u2

2uc1u2 and i2k(c2
!c12c1c2

!), respectively, evaluated att
50 @26#. In any case the solution is periodic containing
single frequency and its harmonics. Such a solution can
describe the irregular quantum dynamics exhibited in Fig
and 3.

In Fig. 5 we show the mean-field solutions for some ca
presented in Fig. 2. We have used the same scale in they axis
with the corresponding plots of Fig. 2 in order to compa
02360
s-

,
e-

lt-
es

-

ot
2

s

the results. The mean-field frequency does not coincide w
the dominant frequency of the quantum evolution. It is rath
in the region of the higher frequencies appearing in the fi
order corrections. We note that the amplitude of the me
field oscillations vary in a similar way to the amplitude of th
quantum fluctuations. As a result, for largerN, where the
quantum fluctuations gradually suppress the dominant
quency~see Figs. 2 and 3!, the DNLS solution improves its
agreement with the quantum solution.

We can obtain some analytical results for the mean-fi
evolution of the relative number difference in the smallk
regime. The relevant initial conditions for the DNLS dim
that correspond to a coherent spin state are

c1~t50!5A12z

2
, c2~t50!5A11z

2
eif, ~41!

where z52cos(u)5(uc2u22uc1u2) (t50). In the equivalent
picture of a particle moving in the potentialV(x)5D1x4

1D2x2, its mass is unity and the position of the partic
gives the relative number differenceuc2u22uc1u2. The poten-
tial in our notation is given by@25,26#

V~x!5
~N21!2

2
x41@2~N21!2cos2~u!14k2

14k~N21!sin~u!cos~f!#x2. ~42!

Sincek/(N21)!1 in our case, it suffices to retain the fir
term in the coefficient ofx2 for most of the following calcu-

FIG. 4. ~Color online! Fourier transform of the numerical evo
lution of the relative atom number difference, 2^Jz&/N, between the
two sites of the double well for a coherent initial state withu
5p/4 and f5p/2, in a system consisting of~a! N519 and~b!
N520 bosons@cases demonstrated in Figs. 2~e! and 2~f!, respec-
tively#. The dimensionless tunneling amplitude isk50.01. We ob-
serve the appearance of the characteristic frequenciesFn , provided
by Eq. ~37! for evenN and Eq.~40! for odd N, respectively. The
insets show a magnification of the spectra close to zero, where
low frequenciesve , Eqs.~29! and ~31!, respectively, appear.
2-8
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lations. The corresponding initial conditions for the partic
are given by @26# x(t50)52cos(u) and dx/dt(t50)
52k sin(u)sin(f). The double-well potentialV(x) ~that
should not be confused with the trap of the bosons! has a
local maximum atx50 and two symmetric minima atx
56 cos(u)1o@k/(N21)#. Initially the particle is very close to
the minimumx0 around2cos(u), at a distance of the orde
k/(N21), and has a nonzero velocity of orderk. As a result
its time evolution is a small amplitude oscillation that can
obtained by linearizing the potential around its minimum
x0, i.e.,

N22N1

N
5P cos~vm ft1c0!, ~43!

where c0 is an initial phase. The single frequency of th
mean-field dynamics is obtained by

vm f52~N21!cos~u!, ~44!

where the next correction is of orderk/(N21). The maxi-
mum amplitudeP of the oscillation is obtained through th
relation

1

2 S dx

dt
~t50! D 2

1
1

2
vm f

2 @x~t50!2x0#25
1

2
vm f

2 P2,

which yields in lowest order

P5
k

N21
tan~u!A3 cos2~f!11. ~45!

In deriving the last equation we have used the first correc
in x0, which is @2k/(N21)#tan(u)cos(f).

FIG. 5. Time evolution of the relative atom number differenc
uc2u22uc1u2, in the mean-field approximation for a coherent initi
state withu5p/4 and f5p/2, in a system consisting of~a! N
59, ~b! N516, and~c! N520 bosons@cases demonstrated in Fig
2~a!, 2~d!, and 2~f!, respectively#. The dimensionless tunneling am
plitude isk50.01. In all the cases the dynamics is nearly harmon
02360
t

n

The relations~44! and~45! are in a very good agreemen
with the numerical solutions presented in Fig. 5. We see
the mean-field single frequency, Eq.~44!, lies in between the
zeroth-order frequenciesFn of Eqs. ~37! and ~40! and its
actual position is determined by the angleu of the coherent
initial state. For example, in the case displayed in Fig. 5~c!,
vm f'26.9, while for the same initial condition andN519,
vm f'25.5. One can compare these frequencies with the
responding quantum spectra of Figs. 4~b! and 4~a!, respec-
tively.

V. CONCLUSIONS

By applying results obtained from perturbation theory f
the stationary states of the boson-Hubbard dimer in the sm
tunneling amplitude regime, we have derived analytical
pressions for the time evolution of the number difference
bosons between the two equivalent sites. The obtained
mulas account well for the complex quantum evolution
the system.

In the case that all the bosons initially occupy one trap
the potential, the numerical solution exhibits a rich behav
on different time scales. This multiple time-scale dynamics
determined by the structure of the upper part of the ene
spectrum; the two higher quasidegenerate pairs of levels.
difference between these two quasidegenerate pairs, whi
zeroth order ink, is responsible for the small amplitude o
cillations on short time scales. The small splitting of t
second higher pair, of the orderkN22, determines at longe
times the collapses and revivals that correspond to the v
ishing and the subsequent complete restoration of the o
lation amplitude. Up to this point the bosons remain loc
ized in the initially occupied site. Then, at even longer tim
scales, the very small splitting of the higher pair of levels,
the orderkN, gives rise to coherent tunneling at the initial
unoccupied trap of the potential. The corresponding me
field dynamics is identical with the short time-scale evo
tion but fails to reproduce different behavior observed
larger time scales. Collapses and revivals that contrast
mean-field results have been observed in this context in R
@7#. These characteristic signatures of quantum evolut
have also been studied in quantum optics@33–35#. Further-
more, the complete transfer of all the bosons between
two traps of the boson-Hubbard dimer, as a pure quan
effect for small tunneling amplitudes, has been nicely d
cussed in Refs.@14,15#. With increasingN the periods of the
quantum features are strongly increased, resulting in the
lidity of the mean-field description at much longer tim
@9,14#.

The initial condition of a coherent spin state reveals m
irregular dynamics, with quantum fluctuations that increa
with the number of bosons. The dominant frequency in t
evolution is obtained by the larger splitting occurring at t
unperturbed degenerate pairs. This is determined by
lower part of the spectrum; for an odd number of bosons i
the difference between the ground and the first excited sta
while for evenN it is the splitting between the first and th
second excited states. Apart from this low frequency, of
derk, or k2, depending on whetherN is odd or even, respec
tively, the whole spectrum is manifested on short time sca

,

.

2-9
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through the exhibited fluctuations. The latter are provided
the differences of adjacent quasidegenerate levels, which
of zeroth order ink. The mean-field dynamics is obvious
unable to describe the quantum fluctuations, yielding a sin
oscillation. Its period is much smaller than that of the dom
nant frequency appearing in the quantum dynamics. Ne
theless, as the number of bosons is increased, it more clo
mimics the quantum evolution.

The demonstration of a BEC trapped in a double-w
potential has been experimentally achieved in Ref.@12#. By
focusing a far off-resonant laser beam at the center of a m
netic trap in this experiment, a repulsive optical force is p
duced, which separates the sodium atom condensate into
symmetric wells. Furthermore, these authors were able
create a situation in which all the atoms of the BEC we
localized at one minimum of the double well, b
illuminating—using weak resonant light—the other trap a
pumping its atoms to untrapped states~see Fig. 1~b! of Ref.
@12#!. We note that the presented results for the bos
Hubbard dimer are not applicable in the situation of t
experiment due to the large number of the trapped boson~of
the order of millions!. However, condensates with a fe
thousands of atoms have been realized@3#, and the creation
of barriers in these cases would provide a realistic situa
for the application of the two-mode approximation.
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APPENDIX A

In general, for each pair ofn, n850 or 1/2, . . . ,N/2 is

^hn1uJzuhn81&505^hn2uJzuhn82&. ~A1!

As a result only cross terms of different symmetry survive
the double sum of Eq.~12!.

Using the relations~27!–~34! of Ref. @11# we obtain the
following results up to second order ink. For n85n,

^hn6uJzuhn7&5nS 12
k2

2

4J2n21J224n413n2

~4n221!2 D
1

k2

4 S J22n~n11!

~2n11!2
~n11!

1
J22n~n21!

~2n21!2
~n21!D for n>1

~A2!

and
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^h1/26uJzuh1/27&5
1

2
1

k2

16
~J221!, ~A3!

while for n85n11

^hn6uJzuh(n11)7&5
k

2

AJ22n~n11!

2n11
for n.0 ~A4!

and

^h0uJzuh12&5kAJ2

2
. ~A5!

The matrix elementŝhn6uJzuh(n21)7& for n.1 are obtained
by substitutingn5n21 in the expression~A4!.

The general matrix elementŝhn6uJzuh(n12)7& and
^hn6uJzuh(n22)7& are of orderk2, but we do not use them in
the text. All other matrix elements are zero up to seco
order ink.

APPENDIX B

The next order correction in the result of Eq.~19! contains
the term

2
k4N

8~N22!~N23!2 S N428N3122N228N223

~N21!4
@cos~vmt!

21#2@cos~vm9t!21#2
1

N22
@cos~vm8t!21# D , ~B1!

where the frequencyvm is given by Eq.~18!, andvm8 and
vm9 are given by E(N/2)6

(2)
2E(N/222)6

(2) and E(N/221)6
(2)

2E(N/222)6
(2) , respectively. The corresponding results, up

second order ink, are

vm854~N22!22k2
N22N22

N329N2123N215
~B2!

and

vm952~N23!2k2
N32N225N23

N4212N3150N2284N145
.

~B3!

In order to calculate the term~B1!, we have used the rela
tions ~31!–~34! of Ref. @11# for m5N/2, N/221, andN/2
22. Moreover, it is necessary to calculate for the eigenv
tor uh(N/2)6& the third order correction in the coefficient o
u(N/221)6&, equal to

k3

16

AN~N222N22!

~N21!3~N22!
,

2-10
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and the fourth-order correction in the coefficient
u(N/2)6&, which is

k4

128

N~N326N222N218!

~N21!4~N22!2
,

as well as for the eigenvectoruh(N/221)6& the third-order
v.

s.

nd

d

t

02360
correction in the coefficient ofu(N/2)6&, equal to

2
k3

16A2

AN~N324N215N110!

~N21!3~N23!2
.

The correction~B1! is appropriate for small time scales
since we have not taken into account the small splittin
DE(N/2)6, DE(N/221)6, andDE(N/222)6, of orderkN, kN22,
andkN24, respectively.
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