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Abstract

Analytic solutions are presented for a simple nonlinear convective equation of use in population dynamics. In spite of
its simplicity the equation predicts rich behavior including a velocity inversion transition. Stability considerations are also
presented.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Population dynamics of bacterial colonies have often been analyzed [1–5] with the help of the Fisher equation [6]
which combines diffusion with a logistic nonlinearity [7–10]. Identical or related equations have also appeared in
the study of the dynamics of infected mice in hantavirus epidemics [11–13]. Exact solutions of the Fisher equation
are not known except in very special conditions [7]. Analytic research regarding entities that are similar to the Fisher
equation [14–16] has, therefore, the potential to be of use in diverse situations in population dynamics. The purpose
of the present paper is to report on analytic solutions we have found of an equation which is similar to, but simpler
than, the Fisher equation, and which might be applicable to systems such as bacterial colonies in certain situations.

Because of its potential for the understanding of propagation of infection in living tissue, a lot of interest has been
generated theoretically as well as experimentally in the study of bacteria in Petri dishes. Experiments have been
carried out [3,4] to verify an interesting extinction transition predicted by a theoretical analysis [5]. That analysis
has focused on a form of the Fisher equation which includes a ‘wind’ term responsible for convection in addition
to diffusion, and wherein the rate of growth of the bacteria is spatially dependent. The significance of such a wind
term is that it describes the effect of a moving mask which is part of the experiments. The method of analysis [5]

∗ Corresponding author. Tel.: +1-505-2770848; fax: +1-505-2771520.
E-mail addresses: giuggiol@unm.edu (L. Giuggioli), kenkre@unm.edu (V.M. Kenkre).

0167-2789/$ – see front matter © 2003 Elsevier B.V. All rights reserved.
doi:10.1016/S0167-2789(03)00176-3



246 L. Giuggioli, V.M. Kenkre / Physica D 183 (2003) 245–259

has employed techniques based on linearization of the logistic nonlinearity. Our interest is in systems wherein the
nonlinearity is central but diffusion is negligible, or at least quantitatively less important than the convection term.
Therefore, starting with the general equation

∂u(x, t)

∂t
+ v(t)

∂u(x, t)

∂x
= a(x, t)u(x, t)− b(x, t)u(x, t)2 +D

∂2u(x, t)

∂x2
, (1)

where u(x, t) represents the population density (e.g., of a bacteria colony) at position x at time t, which grows at
a rate a(x, t) and is limited by a mutual competition–annihilation coefficient b(x, t), is subjected to convection at
velocity v(t), and moves diffusively with coefficient D, we consider the case wherein D may be neglected

∂u(x, t)

∂t
+ v(t)

∂u(x, t)

∂x
= a(x, t)u(x, t)− b(x, t)u(x, t)2, (2)

obtain exact analytic solutions, and show that interesting conclusions can be extracted from the solutions.
The paper is organized as follows. In Section 2 we analyze the case of constant a, b, and v. We observe unexpected

phenomena such as a transition in the propagation direction depending on the steepness of the initial density and
a curious reversal in the direction of propagation for certain initial conditions. Time-dependent v and a are studied
in Sections 3.1 and 3.2, respectively. The case of spatially dependent a is the subject of Section 3.3. Stability
considerations are given in Section 4, and conclusions in Section 5.

2. Constant coefficients

When a, b and v are constants, Eq. (2) becomes

∂u(x, t)

∂t
+ v

∂u(x, t)

∂x
= au(x, t)− bu(x, t)2. (3)

The simple transformation φ(x, t) = 1/u(x, t) converts Eq. (3) to

∂φ(x, t)

∂t
+ v

∂φ(x, t)

∂x
+ aφ(x, t) = b, (4)

which is solved at once to yield

u(x, t) =
u0(x− vt)

e−at + (b/a)(1 − e−at)u0(x− vt)
, (5)

where u0(x) is u(x, 0), i.e., the initial shape of the density. Eq. (5) is an exact solution valid for arbitrary initial
conditions. It shows that the initial shape u0(x) travels at first with the medium velocity v while, at long times, the
behavior depends on the long-time limit of exp(−at)u−1

0 (x− vt). If the spatial dependence of u0(x) is such that this
limit is zero, u tends to a/b. Otherwise, the solution becomes a traveling wave at long times.

2.1. Traveling fronts

Traveling fronts (traveling waves with constant velocity and shape) can be shown to obey Eq. (3). Inserting the
ansatz u(x, t) = ufront(x− ct) in Eq. (3), such a solution can be written as

ufront(x− ct) =
a

b

1

1 + e−(a/(v−c))(x−ct)
, (6)

where the constant of integration has been chosen so that the front at t = 0 is centered around x = 0. We see that
the parameter c characterizes both the propagation velocity and the steepness. If the shape is a fall from a/b at
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x = −∞ to 0 at x = +∞, c is larger than v. If the shape is a rise from 0 at x = −∞ to a/b at x = +∞, c is smaller
than v. We will call these two kinds of fronts ‘right’ front and ‘left’ front, respectively. For right fronts higher c’s
correspond to shallower profiles. The opposite is true in the latter case.1

If the initial distribution is given by a right front, the corresponding solution (c > v) propagates to the right.
If the initial distribution is given by a left front profile exactly equal to g(x) = (a/b)[1 + exp(−ax/v)]−1, the
corresponding solution (c = 0) is stationary. For an initial profile steeper than g(x), 0 < c < v, i.e., the (left) front
propagates to the right. For an initial profile shallower than g(x), c < 0, i.e., the (left) front propagates to the left. In
other words, a right front propagates always in the direction of the medium velocity. A left front is not so restricted:
its shape determines in which direction it moves or whether it moves at all.

2.2. Initial exponential tails

When the initial shape does not coincide with one of the traveling fronts, but involves exponential tails, there is a
transient during which the shape changes to that of an appropriate traveling front solution, followed by propagation
at the front velocity as described in Section 2.1. An initial right leading edge always evolves into a right moving
front. If u0(x) as x → −∞ is steeper (shallower) than exp(ax/v), a left front will eventually propagate to the right
(left). The terms ‘left’ and ‘right’ front have the meaning explained in Section 2.1.

The value c of the eventual velocity attained by the distribution can be determined with great accuracy from the
(exponential) spatial dependence of u0(x) at infinity. Through an analysis similar to one used in the past for the
study of front propagation in the Fisher equation [17], we consider only the leading edge ū(x, t) of u(x, t) in Eq. (3).
Neglecting ū2, and looking for a propagating solution of the form ū(x− ct), we obtain

c = v− a
ū

ū′ , (7)

which relates the eventual velocity c to the growth rate a, and the behavior of u0(x) at x → ±∞. Here, ū′ is the
spatial derivative of ū. If ū(x) ∝ exp(±x/σ)where the + (−) sign represents a left (right) leading edge, Eq. (7) gives
the simple recipe c = v∓aσ. The − (+) sign is for the left (right) leading edge. Numerical calculations fully verify
this recipe. Eq. (7) also shows that for initial pulses with exponential tails, the left face has a value of the propagating
velocity c always smaller than the right face. This in turn implies a broadening of the initial pulse as time evolves.

In Fig. 1, we show an example of the evolution of an initial pulse with exponential tails. We have chosen the
values of v, a, and σ such that c = 0 for the left face according to Eq. (7). The initial condition is set to be
u0(x) = [sech(x/σ)]α, whose corresponding ū(x) ∝ exp(αx/σ) for the left face. With a velocity v = aσ/α, the
propagation velocity becomes exactly zero. After an initial transient in which u0(x)moves to the right, the left face
evolves into the front solution of Eq. (6) with velocity c = 0, while the right face evolves into the front solution
with velocity c = 2v.

Initial pulses with exponential tails exhibit, thus, a transition in the direction of propagation depending on the
steepness of their left face. Does such a transition occur if the left face is qualitatively (not merely quantitatively)
different than an exponential? We pursue this question in the next subsection.

2.3. Initial non-exponential tails

Non-exponential initial tails mean that ū/ū′ is either exactly zero or it is not constant. For the non-constant case,
Eq. (7) suggests that the propagation velocity is variable. This has been verified both numerically and through a

1 Throughout the paper we assume, unless it is mentioned otherwise, that v > 0, i.e., we suppose that the convection term is to the right. All
the results can be trivially reformulated for the case v < 0.
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Fig. 1. Example of an evolution of u(x, t) with initial exponential tails when the left front stays steady: u0(x) = [sech(x/σ)]
√

2 with
v/(aσ) = 1/

√
2. The distribution initially moves to the right but later adjusts its left profile to the traveling front profile with velocity c = 0,

while the right profile evolves as a front with velocity c = 2v. The dotted, dashed and solid lines correspond, respectively, to t = 0, 10, 20 in
units of 1/a.

stability analysis of the front solutions (see Section 4). The movement of a right leading edge is always to the
right. If initially the right face is shallower (steeper) than an exponential, the velocity increases (decreases) and the
steepness decreases (increases).

For a left leading edge, similarly to Section 2.2, the motion can be opposite to the direction of the medium velocity.
A profile shallower than an exponential will eventually move to the left, decreasing its steepness and increasing
its velocity. If the left profile is steeper than an exponential, the movement will eventually be to the right with an
increasing steepness and a decreasing velocity. In Fig. 2 we have plotted a situation in which the two faces move in
opposite directions, i.e., when the left and right faces are shallower than an exponential. It is evident from the plot
that there is an increase in the velocity of each face.

The growth of the velocity for shallow initial tails is unbounded while the decrease of the velocity for steep
initial tails is bounded. If the steepness of a leading edge becomes infinite, the ratio ū/ū′ goes to zero and Eq. (7)
dictates that the velocity is now constant and exactly equal to the medium velocity v. Clearly, what has just been
described is a limiting situation for t → +∞. However, if initially u0(x) is such that ū(x) ∝ Θ(x− x1) for its left
face, ū/ū′ = 0 for x < x1 and its velocity is exactly v. If a similar condition applies for the right face, it translates
to a constant propagation for the whole profile at the medium velocity v. We observe that, for initial conditions
with compact support, i.e., when u0(x) vanishes outside a finite interval, there is a transient during which the initial
shape rearranges itself into a square pulse with height a/b and width equal to its initial value, while simultaneously
moving to the right. From then on, the square pulse proceeds without changing shape. Fig. 3 shows an example of
such a scenario.

A simple way to verify if an initial pulse indeed develops into a front solution is to plot the area A(t)

A(t) =
∫ +∞

−∞
d
( x
σ

)
u(x, t), (8)
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Fig. 2. Evolution in time for an initial pulse with non-exponential tails. At time t = 0, u0(x) = [1 + (x/σ)8]−1/2 with v/(aσ) = 0.1. Even with
a convection (medium velocity) to the right, the left face moves to the left, i.e., in the opposite direction. The dotted, dashed, dash-dotted, and
solid lines corresponds, respectively, to t = 0, 7, 14, 21 in units of a/b.
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Fig. 3. Example of evolution for an initial condition with compact support with v/(aσ) = 1 and u0(x) = [Θ(x/σ + 1) − Θ(x/σ − 1)]
[0.2 + 2(x/σ)]2[1 − (x/σ)2]9/2, where the first square bracket gives the cut-off, the second the dip in the middle, and the third the basic profile.
From left to right, the curves are at t = 0, 2, 5, 10, 15, and 20, respectively, in units of 1/a. After the steady profile (step function) is reached
(around at = 20), the evolution is that of a solitary wave.
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Fig. 4. Evolution in time of the area A(t) for four different initial conditions. uI(x, 0) = 2[Θ(x/σ + 1) − Θ(x/σ − 1)][1 − (x/σ)2]1/2/π

for the dotted line, uII(x, 0) = exp[−(x/σ)2]/
√
π for the dash-dotted line, uIII(x, 0) = [sech(x/σ)]2/2 for the solid line, and

uIV(x, 0) = 2 sinh (π/4)[1 + (x/σ)4]−1/π for the dashed line. uI and uIII are the only cases in which, after an initial transient, a traveling
front solution develops. For uII and uIV, instead, velocity and shape of the leading edges is changing in time, thus making the area increase
nonlinearly. The four curves have been chosen normalized so that Ai(0) = 1 with v/(aσ) = 1. The inset shows the variation of the steepness of
the right leading edge of uIV at time t = 1, 2, and 3, respectively, in units of 1/a.

where σ is the characteristic width of the initial shape. If the leading edges of u evolve to front solutions, A(t)
increases linearly in time at a rate proportional to the difference in the velocities of the right and left fronts. If A(t)
does not show a linear dependence, it means that at least one of the two faces has not settled into a propagating
front: it is in the process of changing its shape and velocity. Fig. 4 displays the area A(t) as a function of time for
four qualitatively different initial shapes: uI, uII, uIII, and uIV. All shapes have been taken symmetric for simplicity.
The dotted line corresponds to an initial condition with compact support (I), the dash-dotted line to one with steep
tails (II), the solid line to one with exponential tails (III), and the dashed line to one with shallow tails (IV). In case
I, A(t) flattens out since both leading edges move with velocity c = v without changing shape. In case III, both
faces settle into front solutions moving at constant velocity and without changing shape: A(t) increases linearly. In
cases II and IV, however, the velocity and shape of the leading edges are changing in time. In the former case the
velocity is decreasing and the steepness is increasing. The reverse is true for the latter case. The increase of AII(t)

is shallower than AIV(t), the former being sublinear and the latter superlinear. If u(x, t) is integrable over all space,
the time dependence of A(t) can be determined analytically. We give two examples below:

• If u0(x) = [1 + (|x|/σ)α]−1/N, with α > 0 and the normalization constant N = 2π/[α sinh (π/α)], we have

A(t) = eat
[

1 +
b

Na
(eat − 1)

](1−α)/α
. (9)

Because the rate of increase of the area is proportional to the difference in the velocity between the right and left
faces, v does not appear in (9). The superlinear increase is actually exponential at long times, A(t) ∼ exp(at/α)
but linear at short times, A(t) ∼ 1 + [(1 − α)b/(αN)]t. Since 1/N equals u0(0) (the maximum of u0(x)), for
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values of N sufficiently smaller than b/a, A(t) shows a minimum which represents the transient during which
u(x, t) decreases its peak value to the saturation value a/b.

• If u0(x) = sech(x/σ)/π, an integration over all space gives

A(t) =





4

π
√

e−2at − α2(t)
tan −1

(√
e−2at − α2(t)

e−at + α(t)

)
t <

ln(1 + (πa/b))

a
,

2

π
√
α2(t)− e−2at

ln

(
α(t)+ e−at +

√
α2(t)− e−2at

α(t)+ e−at −
√
α2(t)− e−2at

)
t ≥

ln(1 + (πa/b))

a
,

(10)

where α(t) = [1 − exp(−at)]b/(πa). The expected linear time dependence can be recovered in the two limits:
for t → +∞ A(t) ∼ 2 ln(2)a2t/b and for t → 0 A(t) ∼ 1 + 2bt[aπ2/(2b)− 1]/π2. As in the first example, for
the same reason at initial times A(t) can have a minimum if a/b < 2/π2.

2.4. Phenomenon of velocity inversion

We have seen that, except for initial conditions with compact support, non-exponential tails do not lead to
traveling fronts. A remarkable phenomenon that can occur for such non-exponential initial shapes is an inversion
in the propagation direction of the left face. If the initial profile (of the left face) is shallow (steep) enough, the
propagation can be first to the right (left) and later to the left (right). Fig. 5 shows this curious behavior for
u0(x) = exp[−(x/σ)2]/2, i.e., for the case of a steep ū(x).

The velocity inversion can be interpreted as follows. In Eq. (3) the propagation arrow is determined by the
combined effect of two terms: −vux and au. For a left face −vux accounts for a reduction of u while au gives an
increase of u. If −vux prevails, the movement is to the right, otherwise it is to the left. Thus, even in the case of a
shallow initial tail, the term −vux can be made bigger than au with a big enough velocity v. The movement in that

Fig. 5. Velocity inversion of the left front. The initial shape (dotted line) is a Gaussian. The dash-dotted and solid lines are at time t = 20 and
220 in units of 1/a. Around time at = 22, the left front changes its direction of propagation and proceeds then to move to the right, i.e., in the
direction of v. Parameters are chosen such that v/(aσ) = 0.1.
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case is initially to the right. However, since the profile is becoming shallower as time evolves, at a certain moment
−vux becomes smaller than au and the propagation direction is reversed. A similar behavior happens for steep initial
tails but now the initial movement is to the left if the velocity v is small enough. This transition happens only for
the left face. For the right face the two terms do not compete. They both contribute to a right movement. In other
words we can say that the value of the right-hand side of Eq. (7) decreases or increases up to the point when c = 0.
At that moment an inversion in the direction of propagation appears.

3. Variable coefficients

Consider, first, the situation wherein the velocity v and the growth term a are time-dependent but the only position
dependence is in the competition term b. Thus,

∂u(x, t)

∂t
+ v(t)

∂u(x, t)

∂x
= a(t)u(x, t)− b(x, t)u(x, t)2. (11)

The corresponding transformed equation for φ = 1/u,

∂φ(x, t)

∂t
+ v(t)

∂φ(x, t)

∂x
+ a(t)φ(x, t) = b(x, t) (12)

is solved at once to yield

φ(x, t) = e−
∫ t

0 ds a(s)φ0

(
x−

∫ t

0
ds v(s)

)
+
∫ t

0
dt′ e−

∫ t
t′ ds a(s)b

(
x−

∫ t

t′
ds v(s), t′

)
(13)

and, therefore, u(x, t) explicitly. We examine two particular cases in Sections 3.1 and 3.2, and return to spatially
dependent growth rates in Section 3.3.

3.1. Time-dependent medium velocity

Let the medium velocity be oscillatory and given by

v(t) = v cos (ωt). (14)

Taking a and b to be independent of time and space, we obtain

u(x, t) =
1

(e−at/u0[x− (v/ω) sinωt])+ (b/a)(1 − e−at)
, (15)

which shows that the distribution oscillates around the origin while increasing its total area as in the case of constant
velocity. Unlike the constant velocity case, the profile and the velocity are continuously changing in time. As for the
case of constant coefficients, the steepness of u0(x) determines the direction and the velocity at which the leading
edges are propagating. For an initial (symmetric) shape with tails shallower than exp(|x|a/v), the leading edges of u
always move outwards independently of the medium velocity direction. For an initial (symmetric) shape with tails
steeper than exp(|x|a/v), the leading edges change propagation direction as the medium velocity changes direction.
To describe this behavior, we consider the normalized mean-squared-displacement 〈x2〉, which, for symmetric initial
pulse of characteristic width σ, obeys

〈x2〉 =
( v

ωσ

)2
sin 2(ωt)+

∫ +∞
−∞ d(y/σ)(y/σ)2p(y, t)
∫ +∞
−∞ d(y/σ)p(y, t)

, p(y, t) =
1

exp(−at)u−1
0 (y)+ [1 − exp(−at)]b/a

.

(16)
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Fig. 6. Evolution of 〈x2〉 for u0(x) = (π/10) sinh (π/20)[1 + (x/σ)20]−1 versus at with ωσ/v=0 (dashed line), 0.01 (dotted line), 0.002
(dash-dotted line), and 0.05 (solid line), respectively. Because u broadens as time evolves, 〈x2〉 increases in time.

The first term in 〈x2〉 in Eq. (16) arises from the oscillation in the medium velocity. The second term represents
two simultaneous effects: an increase of the area of the distribution, and a displacement of the distribution from
the origin. If p(y, t) and y2p(y, t) are integrable over all space, the time dependence of 〈x2〉 can be determined
analytically.

For an initial condition u0(x) = [1 + (|x|/σ)α]−1[α sinh (π/α)]/(2π), we have the explicit analytical result

〈x2〉 =
( v

ωσ

)2
[ sin 2(ωt)] +

sinh (π/α)

sinh (3π/α)

[
1 +

bα sinh (π/α)

a2π
(eat − 1)

]2/α

. (17)

Exponential growth coexists with an oscillation at frequency 2ω. In Fig. 6 we have plotted 〈x2〉 for initial power
law tails for different values of the ratio δ = ωσ/v. When the medium velocity is constant, the oscillating term
in Eq. (17) becomes quadratic in time. Any value of δ different from zero gives rise to oscillations. However, as
δ increases, the oscillations gradually disappear since the frequency of the velocity sign reversal is so high that u
remains essentially centered around the origin while its area increases. Analytically, we can also see in Eq. (17) that,
as the exponential term increases, the relative value of the oscillating term to the exponential term goes to zero.

3.2. Time-dependent growth rate

Eq. (13) shows that, for a constant velocity v but a time-dependent growth rate, we have

u(x, t) =
1

(e−
∫ t

0 ds a(s)/u0(x− vt))+ b
∫ t

0 dt′ e−
∫ t
t′ ds a(s)

. (18)

Given the special form of this solution, it is possible to draw general conclusions about its long-time behavior
simply through the analysis of the time-averaged û(t) of the corresponding logistic equation (i.e., Eq. (11) without
the velocity term and with b constant). The corresponding solution when the velocity term is included can be thought
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of as an evolution of u subject to a logistic nonlinearity whose initial value u0 is displaced in space to the right. The
time-averaged solution of the logistic equation can be written out explicitly as

û(t) =
1

T

∫ T

0
u(t) dt =

1

b

ln
[
1/u0 + b e−A(0) ∫ T

0 dt′ eB(t
′)
]

T
, (19)

where B(t) =
∫ t

0 ds a(s), and T is an appropriate interval. If

lim
T→+∞

û(t) �
1

b

ln
[∫ T

0 dt′ eB(t
′)
]

T
→ 0 (20)

u(t)will decay to zero at long times. On the other hand, if the above limit is different from zero, the logistic equation
will have a non-zero solution at long times. If a is constant,

∫ T
0 dt′ exp[B(t′)] equals [exp(aT) − 1]/a with a/b as

the long-time average. If a(t) = ε+ a cos (ωt) with ε ≥ 0, exp[B(t)] can be expanded in I-Bessel functions:

lim
T→+∞

û(t) �
ε

b
+

1

T
ln

[
I0

( a
ω

)
+

∞∑

k=1

gk(ωT)

]
, (21)

where gk(ωT) is a periodic function of ωT , and
∑∞

k=1 gk(ωT) is a convergent series. Eq. (21) shows that û(t) cannot
tend to a vanishing value for any ε > 0. Therefore, u(t) will not decay. If ε = 0, we have

lim
T→+∞

û(t) �
1

T
ln

{[
2

∞∑

k=1

(−1)kI2k

( a
ω

) sin (2kωT)

2kωT
− 2

∞∑

k=0

(−1)kI2k+1

( a
ω

) cos ((2k + 1)ωT)

(2k + 1)ωT

]}
,

(22)

which shows a decay to zero as T → +∞. We have tested these predictions numerically from Eq. (18). At long
times, u decays to zero if Eq. (20) is satisfied. For such a case, as umoves to the right, it broadens and its peak value
at each cycle of the oscillation of a(t) decreases until u reaches the value zero uniformly. If, instead, Eq. (20) is not
satisfied, asu broadens, its peak value at each oscillation is always the same. Foru0(x)with compact support, Eq. (20)
can still be applied to predict the long-time behavior, the evolution being different only in that u does not broaden.

3.3. Spatially dependent growth rate

We now return to Eq. (2) and take the growth coefficient to have a spatial dependence a(x), and the velocity v to
be constant. The resulting equation for φ = 1/u,

∂φ(x, t)

∂t
+ v

∂φ(x, t)

∂x
+ a(x)φ(x, t) = b(x, t), (23)

can be solved using a method recently employed in the study of carrier velocity saturation in organic materials [18].
The general solution is

φ(x, t) = e−(1/v)
∫ x
x−vt dx′ a(x′)φ0(x− vt)+

∫ t

0
dt′ e−(1/v)

∫ x
x−v(t−t′) dx′ a(x′)

b(x− v(t − t′), t′), (24)

leading, for the case of constant b, to

u(x, t) =
1

(e−(1/v)
∫ x
x−vt dx′ a(x′)/u0[x− vt])+ b

∫ t
0 dt′ e−(1/v)

∫ x
x−vt′ dx′ a(x′)

. (25)

In the context of bacteria in a Petri dish [3], the inhomogeneity in the growth rate could represent a localized
distribution of food from which a population is driven away. In order to mimic harsh conditions of survival, a(x) is
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Fig. 7. Evolution with an initial u0(x) = exp(−x2/σ2), and the following inhomogeneous growth coefficient: a(x) = a{(0.55)Θ
[(x/σ) + 5] − Θ[(x/σ) − 5] − 0.1}. The solid line centered around the origin, the dotted line, the dash-dotted line, and the dashed line
correspond, respectively, to t = 0, 3, 6, 9 in units of 1/a. As the distribution is pushed out of the region of positive growth, its peak value
decreases and eventually decays to zero. For clarity, we have also plotted (solid line) the profile a(x)/b in the region of the mask which occupies
the interval (−5 ≤ x/σ ≤ 5) in which a(x) is positive. Parameters are v/(aσ) = 1, and σ/L = 0.1 where L is the total width of the mask.

chosen to be negative (or zero) for large |x|. We have seen that in Section 2 a population can propagate in a direction
opposite to that of the medium velocity. Therefore, it is natural to ask whether a population subjected to Eq. (2) can
survive when regions of positive growth are confined to a finite segment.

The evolution is as follows. As for the homogeneous case, the spatial dependence at large x determines the
direction and the velocity of propagation of the leading edges. As shown in Section 2, all those initial conditions
that have a ū(x) for x → −∞ steeper than exp(ax/v), simply grow to the saturation value and move to the right.
Since the saturation value is now x-dependent, u adjusts its value to the profile a(x)/b, while drifting to the right.
In particular, once the region where a(x)/b < 0 is reached, u decays to zero at a rate equal to |a(x)|. It should be
noted that, even when a(x) = 0 rather than being negative, u decays but the decay is slower, i.e., not exponential
but algebraic: (bt)−1. In Fig. 7 we show an example with a(x) positive inside a region of width L around the origin
and negative outside it.

On the other hand, for an initial condition whose ū(x) for x → −∞ is shallower than exp(ax/v), the left leading
edge moves to the left until the left boundary of the mask is reached. At that point, an inversion in the velocity
direction occurs and the left front starts moving to the right. Eventually, u is pushed outside the region of positive
growth and decays to zero as in Fig. 7. The inversion in the velocity of the left front is due to the fact that ū(x) is
changing its dependence from shallow to steep. In the region where a(x) is negative, the growth coefficient is actually
a coefficient of linear loss, which, together with the saturation coefficient, contributes to make the spatial profile
steeper. Once the left profile has become steeper than exp(ax/v), the left leading edge reverses its velocity direction.
From then on, the evolution is as for a steep initial condition described above. If the left leading edge has a profile
exactly equal to exp(ax/v) for x → −∞, the left face settles initially into the front solution with velocity c = 0,
but, once the profile for large x becomes steeper than exp(ax/v), the growth coefficient cannot balance perfectly
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Fig. 8. Evolution for an initial u0(x) = sech(x/σ) with the inhomogeneous growth coefficient as in Fig. 7. The solid line, the dotted line, the
dash-dotted line, and the dashed line correspond, respectively, to t = 0, 2, 4, 6 in units of 1/a. Parameters are v/(aσ) = 0.1, and σ/L = 0.1
where L is the total width of the mask.

the movement to the right, the velocity c becomes positive, u is pushed outside the region of positive growth and
decays to zero. In Fig. 8 we have plotted an example for a shallow initial condition with an a(x) as in Fig. 7.

4. Stability analysis

Stability analysis is obviously of great importance to the solutions of an equation such as (2). We perform such an
analysis for the case of constant coefficients discussed in Section 2. There are three steady-state solutions of Eq. (3):
two are homogeneous in space (u = 0 and u = a/b), and the third is inhomogeneous. Of these, u = 0 is clearly
unstable due to the presence of the growth coefficient a. For u = a/b, we rewrite Eq. (3) as u(x, t) = a/b+ f(x, t)

where f represents a generic finite perturbation, and obtain

∂f(x, t)

∂t
+ v

∂f(x, t)

∂x
= −af(x, t)− bf 2(x, t). (26)

For any finite f , Eq. (26) shows a decay due to both a linear and a nonlinear term and a movement to the right with
velocity v, thus demonstrating the stability of the steady state u = a/b. Solving Eq. (3) without time dependence
allows us to write the inhomogeneous steady state

us.s.(x) =
a

b

1

1 + e−(a/v)x , (27)

which implies that, to the left of the origin, u(x) is exponentially equal to zero while, to the right of the origin, it is
exponentially equal to a/b. Comparison of Eq. (27) with the (left) front profile in Eq. (3), shows that the former is a
special case of the latter, the propagation velocity c being equal to zero. The stability of the inhomogeneous steady
state can thus be determined from the stability of the front solution.
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For the front solution we write Eq. (3) in the moving frame of reference, i.e. with u(x, t) = U(z, t) where
z = x− ct, we have

∂U(z, t)

∂t
+ (v− c)

∂U(z, t)

∂z
= aU(z, t)− bU(z, t)2. (28)

Substituting U(z, t) = ufront(z)+ f(z, t) into Eq. (28) we get, for the perturbation f(z, t) from the front,

∂f(z, t)

∂t
+ (v− c)

∂f(z, t)

∂z
= (a− 2bufront(z))f(z, t)− bf2(z, t). (29)

We consider also the nonlinear term f 2 in Eq. (29). The reason is that a simple linearization does not allow us to
determine the stability of the front, since the corresponding eigenvalue is exactly equal to zero. Using Eq. (25),
Eq. (29) can be solved exactly to yield

f(z, t) =
(1 + e−at e(a/(v−c))z)2(1 + e(a/(v−c)z)

(e−at(1 + e(a/(v−c))z)3/f0[z− (v− c)t])+ (b/a)(1 − e−at)(1 + e−at e(a/(v−c))z)
, (30)

where f0(z) is the perturbation in the moving frame at time t = 0. Plotting the evolution of Eq. (30) for various initial
conditions, we have found the following. For any f0 which is either finite or has tails steeper than an exponential,
Eq. (30) shows a decay to zero together with a movement to the right. On the contrary, for perturbations which have
exponential tails or have tails shallower than exponential, Eq. (30) shows unbounded growth. When the front is a
step profile, i.e., when c = v, the stability analysis in the moving frame turns out easier if we separate the analysis
into two regions: one where u = a/b (region I) and one where u = 0 (region II). Then,

fI(z, t) =
fI(z, 0)

eat + (b/a)(1 + eat)fI(z, 0)
, (31)

fII(z, t) =
fII(z, 0)

e−at + (b/a)(1 − e−at)fII(z, 0)
. (32)

Any finite fI decays to zero exponentially. Any finite fII shows an exponential growth to the value a/b. Since
Eq. (32) shows that the full spatial extent of the perturbing fII grows to the value a/b, it means that the front is
translated by an amount equal to the extent of fII(z, 0). For a right front, the shift is in the direction of the medium
velocity while for a left front it is opposite to the medium velocity. This analysis is compatible with the dynamics
studied in Section 2 for initial conditions with compact support. We have observed there that, independently of the
form of u0(x), the system evolves into a step profile with height a/b and width given by the width of the support.
In other words, any finite perturbation to a step profile does not change its velocity or its shape. It simply translates
the step profile by a finite amount.

We thus see that a given leading edge for any initial condition is attracted either to the homogeneous steady state
u = a/b or to a front solution. If a leading edge has compact support, it settles into the front solution with velocity
c = v. If the left (right) leading edge of u0 goes to zero as exp(x/σ)(exp(−x/σ)) for x → −∞ (x → +∞), it
settles into the front solution with velocity c = v − aσ (c = v + aσ). If the left (right) leading edge has a decay
to zero for x → −∞ (x → +∞), qualitatively steeper than an exponential, it is attracted to the step profile front
solution. On the other hand, if the initial left (right) leading edge has a decay to zero for x → −∞ (x → +∞)
qualitatively shallower than an exponential, it is attracted to the steady-state solution u = a/b. In other words, if the
initial distribution has non-exponential tails, it cannot settle to any front solution: the spatial dependence of the tails
cannot match any exponential shape. In terms of phase space trajectories we can say the following: a left (right)
leading edge steeper than an exponential is in the basin of attraction of the left (right) front solution with velocity
c = v, while a left (right) leading edge shallower than an exponential is in the basin of attraction of the steady state.
If an initial condition has its left (right) profile exponentially decaying for x → −∞ (+∞), it represents a small
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perturbation to the stable front solution with a specific velocity c. As time grows, the finite perturbation decays to
zero and the left (right) edge of u becomes exactly as in Eq. (6). This analysis can help us understand Fig. 4. The
superlinear increase in Fig. 4 can be understood occurring because u is increasing its velocity and decreasing its
steepness in order to reach the attracting steady state u = a/b. Similarly, the sublinear increase occurs because u is
decreasing its velocity and increasing its steepness in order to reach the attracting step profile front solution.

The spatial dependence of the left leading edge of u0(x) determines whether there is a bifurcation in the behavior
at long times. If ū(x) is shallower than exp(ax/v) for x → −∞, the left leading edge moves to the left and u becomes
equal to a/b in the left semi-infinite space. If, on the contrary, ū(x) is steeper than exp(ax/v) for x → −∞, it moves
to the right and u represents a traveling wave solution to the right. The right leading edge does not play any role
in the bifurcation because, independently of its shape, is always traveling to the right, making u = a/b in the
semi-infinite right space at long times. Finally, if u0(x) ∼ exp(ax/v) for x → −∞, the long-time behavior is the
inhomogeneous steady state given in Eq. (27).

5. Conclusions

In this paper, we have analyzed the effect of convection on the evolution of a population which follows logistic
growth. Interesting phenomena emerge. For the case of constant coefficients, the propagation direction of the left
leading edge (the right leading edge if v is to the left) can, under certain conditions, be opposite to the direction
of the medium velocity. This effect is responsible for a bifurcation in the long-time behavior of the solutions. If
the initial population has a left tail shallower than exp(ax/v), the steady state is the spatially homogenous solution
u = a/b. If the left tail is steeper than exp(ax/v), the solution is a traveling wave solution. If the left tail is exactly
equal to exp(ax/v), the steady state is spatially inhomogeneous. We have also observed a curious phenomenon of
velocity inversion, wherein the left face can first move in one direction and then reverse direction, and have studied
the case of coefficients which depend on time and space. This analysis has been made possible by the considerably
greater simplicity of the nonlinear convective equation (2) relative to equations such as the Fisher equation which
is diffusive rather than convective.

It is important to ask whether the results we have obtained analytically from Eq. (2) are changed substantially, or
only slightly, when a small diffusion constantD is introduced. To answer that question, we have carried out numerical
analysis of Eq. (1) for several initial profiles considered analytically above from Eq. (2). We chose the dimensionless
parameter Da/v2 as an indicator of the amount of diffusion introduced. When the values of that parameter (the square
of the ratio of half the Fisher velocity to the convection velocity) were small, the departure from our analytic results
were found to be small. The departure was found to occur more quickly when Da/v2 was increased. In addition,
diffusion tended to smooth out the profiles. Preliminary studies along these lines suggest that richer evolution could
result from an interplay of drift and diffusion in specialized cases. We will report on these possibilities elsewhere.

Our exact solutions of the simplified equation (2) are useful in two ways. The first is for direct application
to systems such as bacterial colonies in a Petri dish in which, either as a result of genetic engineering or the
preparation of the environment, the diffusion is negligible (by contrast, the convection is produced mechanically
and controllably by moving a mask, see [3,4]). The second is in using our solutions of (2) as an aid in addressing
the more complex Fisher equation. Our ongoing work concerning the latter issue also includes comparison of the
exact solutions presented in this paper to analytic solutions of several other different but related equations: the
Montroll [14] and the Rotenberg [15] equations which add further nonlinear terms to the Fisher equation to ensure
analytic solutions, the bidirectional wave equation with logistic nonlinearity whose traveling wave solutions have
been obtained analytically by Abramson et al. [10], and the Fisher equation in the steady state analyzed in the
bacterial context [16,19] as well as in ecological contexts such as in the study of phytoplankton distributions [20].
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