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Applicability of the Fisher equation to bacterial population dynamics
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The applicability of the Fisher equation, which combines diffusion with logistic nonlinearity, to population
dynamics of bacterial colonies is studied with the help of explicit analytic solutions for the spatial distribution
of a stationary bacterial population under a static mask. The mask protects bacteria from ultraviolet light. The
solution, which is in terms of Jacobian elliptic functions, is used to provide a practical prescription to extract
Fisher equation parameters from observations and to decide on the validity of the Fisher equation.
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I. INTRODUCTION

Bacterial colonies form a subject of obvious medical i
portance and have been studied recently@1–5# experimen-
tally as well as theoretically. Some theoretical descriptions
their dynamics have avoided phenomena such as muta
and have focused on growth, competition for resources,
diffusion. In terms of the respective parametersa ~growth
rate!, b ~competition parameter!, and D ~diffusion coeffi-
cient!, the basic equation governing the spatiotemporal
namics of the bacterial populationu(x,t) at a positionx and
time t has been taken to be the Fisher equation@6#

]u~x,t !

]t
5D

]2u~x,t !

]x2
1au~x,t !2bu2~x,t !. ~1!

For simplicity, we consider throughout this paper only t
one-dimensional situation, which is appropriate to some
periments that have been carried out recently with mov
masks@3#. In contrast to earlier experiments done in co
stantly homogenized media, where methods such as t
based on turbidity are used to measure bacterial conce
tions, the newer mask experiments address the interpla
bacterial diffusion and nonlinearities in their dynamics. Irr
diation with ultraviolet light presents highly unfavorab
conditions to the bacteria except under a moving mask
shades those bacteria that are underneath it in the Petri
Motion of the mask at specified velocities introduces an
fectively convective element in the bacterial dynamics. O
servations in such experiments have been reported abou
tinction transitions suggested earlier in theoreti
calculations@4# and in numerical simulations@5#. Those the-
oretical calculations have focused on systems in which
growth ratea varies from location to location in a disordere
manner, and have employed techniques based on linea
tion of the Fisher equation. The first feature has allowed
analysis to use concepts from Anderson localization@7#, a
phenomenon well known in solid state physics of quant
mechanical systems. The second feature has relegate
nonlinearity character of Fisher’s equation to a second
role. Because we suspect nonlinear features represente
2bu2 in Eq. ~1! to be of central importance to bacteri
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dynamics, we have developed a theoretical approach
generally retains the full nonlinearity of that competitio
term. In the present paper, which is the first of a series b
on this approach of maintaining the nonlinearity in the eq
tion, we focus our attention on the effect of a mask on
spatial distribution of thestationarypopulation of the bacte-
ria.

Consider, as in the moving mask experiments@3#, an ef-
fectively linear Petri dish in which a mask shades bacte
from harmful ultraviolet light that kills them in regions ou
side the mask but allows them to grow in regions under
mask. Unlike in the moving mask experiments, howev
consider that the mask does not move but is left station
Interest is in thex-dependence of the stationary population
the bacteria. As in previous considerations@3#, we will as-
sume that the growth rate has a positive constant valua
inside the mask, and a negative value outside the mask.

If we take the value ofa outside the mask to be negativ
infinite to reflect extremely harsh conditions~due to ultravio-
let light! when the bacteria are not shaded from the light,
can take the population at the mask edges and outside t
identically zero. We will put]u(x,t)/]t50 in Eq. ~1! to
reflect stationarity, introduce a scaled position variablej
5x/AD for simplicity, and begin our analysis with the ord
nary differential equation for the stationary populationu(j):

d2u~j!

dj2
1au~j!2bu2~j!50. ~2!

Our interest is in the regions in the interior of the mask
width 2w, i.e., for 2w<x<w, the boundary conditions be
ing u(6w/AD)50.

The purpose of our investigation is to give a practic
prescription to decide on the applicability of the Fisher eq
tion to specific scenarios such as in the planktonic stag
bacterial dynamics, and to extract parametersD, a, b from
observations if the equation is found to be applicable.

II. ELLIPTIC SOLUTIONS IN THE INTERIOR AND
EXTRACTION OF FISHER PARAMETERS

The solutions to Eq.~2! can be written in terms of Jaco
bian elliptic functions as follows. It is known@8# that the
©2003 The American Physical Society21-1
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square of any of cn(j,k), sn(j,k), or dn(j,k) satisfies an
equation resembling Eq.~2!. Here, we use the notation thatk
is the elliptic parameter@9# rather than the elliptic modulus
which is the square ofk. Thus, y5sn2(j,k) is known to
satisfy

d2y

dj2
14~11k2!y26k2y252. ~3!

Comparison of Eq.~3! with Eq. ~2! shows that the signs o
the linear and quadratic coefficients are the same in the
equations but Eq.~3! has an extra constant term on the rig
hand side. This difference, as well as the fact that the ba
rial system has more independent parameters than the s
k that appears in Eq.~3!, suggests that we augment sn2(x,k)
by phase and amplitude parameters, i.e., take as the sol
of Eq. ~2! within the mask

ui~j!5a sn2~bj1d,k!1g, ~4!

and obtain quantitiesa,b,d,g by differentiating Eq.~4! or
by other means. Suffixi represents the interior of the mas
Symmetry considerations, specifically the requirement t
the maximum ofui(j) be atj50, lead to an evaluation ofd
as half the period of sn2. A shift identity allows rewriting of
Eq. ~4! as

ui~j!5a cd2~bj,k!1g, ~5!

the cd function@8# being simply the ratio cn/sn.
On differentiating Eq.~5! twice with respect tox, using

the relationships among the elliptic functions, and substi
ing in Eq. ~2!, we find

4b2~k211!2a12bg50,

6k2b22ba50,

2ab2~12k2!1g~a2gb!50.

Solution to this algebraic system leads to the result thaa
andg are proportional to each other through a factor tha
a function only of the elliptic parameter,

g5aF2~k211!1A12k21k4

3k2 G .

We also find explicit connections between quantitiesa,b
and two of the Fisher parameters of the bacterial systema,b,

a5S 3a

2bD k2~12k21k4!21/2,

b25S a

4D ~12k21k4!21/2. ~6!

This allows us to write the stationary solution as

ui~j!5~a/b!@ f a~k!cd2
„Aa fb~k!j,k…1 f g~k!# ~7!
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explicitly in terms of the Fisher parametersa,b and three
functions ofk alone:

f a~k!5~3/2!k2~k821k4!21/2,

f b~k!5~1/2!~k821k4!21/4,

f g~k!5~1/2!@12~k211!~k821k4!21/2#. ~8!

Herek82512k2.
Equation~7! provides us with the means to meet the p

mary goal of this investigation. The practical prescription w
seek for investigating the applicability of the Fisher equat
begins with fitting Eq.~7! to the observed stationary profile
A least-squares procedure yieldsa,b,k. For sensitivity pur-
poses we use the nomeq5exp(2pK8/K) for fitting @10#
rather thank. The relation

um5
a

b
@ f a~k!1 f g~k!#5

a

2b
@k22k821~k821k4!1/2#

3~k821k4!21/2 ~9!

between the maximum value of the bacterial populationum
and the extracted parameters provides a check on the pr
dure. The determination of the diffusion constantD follows
the determination ofk. For this we can use the bounda
condition mentioned above, thatu(j) vanishes at the edge
of the mask:j56w/AD. Equation~7! leads then to an im-
plicit expression that yields the diffusion constantD:

cn2
„~a/4!~12k21k4!21/2w/AD,k…

5
@$~k211!2~12k21k4!1/2%~12k2!#

k2@22k21~12k21k4!1/2#
. ~10!

Our prescription for the extraction of Fisher parametersD, a,
b is, thus, complete provided we can assume the condit
outside the mask to be harsh enough to putu at the edges to
vanish. This assumption can be tested from the observati
The question of the very applicability of the Fisher equati
to the bacterial system can be addressed by the quality o
fits of solution to the data. Fits of poor quality would nece
sitate a rethinking of the quadratic nonlinearities assume
the equation, indeed of the entire form of the equation.

We illustrate our practical prescription in Fig. 1. We ha
considered two hypothetical cases of the observed statio
profile of the bacterial population. One pertains to a situat
in which the Fisher equation is applicable@Fig. 1~a!#; the
other in which it is not@Fig. 1~b!#. The ‘‘data’’ correspond,
respectively, to stationary solutions of Eq.~1! and to the
so-called Nagumo equation@11#

]u

]t
5D

]2u

]x2
1~u2C!~Au2Bu2!, ~11!

noise having been added in each case to simulate ex
ments. The amount of noise introduced is of the order
what we have observed in the recent mask experiments.
1-2
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The numerically generated data are plotted as circ
while the full line curve shows the best fit. We see that
Fig. 1~a! the Fisher solution matches well the data. By co
trast, the fitting procedure fails in Fig. 1~b!. The intrinsic
nonlinearities in the data of Fig. 1~b! are different from those
characteristic of the Fisher equation@compare Eqs.~1! and
~11!#. Some of the data features in Fig. 1~b!, as, for example,
the change in concavity and the zero derivative at the bor
of the mask cannot be reproduced by the analytic solu
~7!. Thus, we have shown here how one would determ
clearly the applicability of the Fisher equation to a given
of observations.

How would one proceed if, in the light of experiment, th
Fisher equation turns out to be inapplicable in this way?
suggest an additional prescription to obtain the form of
nonlinearity from the stationary mask observations. The
served stationary bacterial profile isui(x). A numerical dif-
ferentiation procedure can be made to produced2ui(x)/dx2.
A plot of d2ui(x)/dx2 versusui(x), the different points cor-
responding to different values ofx, would either confirm
Fisher behavior or point to nonlinearities, such as that in
Nagumo equation, other than that assumed in the Fis
equation. Figure 2 illustrates this prescription in the cont
of the assumed observations in Figs. 1~a! and 1~b!. The data
were numerically differentiated in each case and the sec
spatial derivative was plotted versusu as shown@12#.

While the quadratic nonlinearity characteristic of t
Fisher equation is compatible with Fig. 2~a!, the curvature of

FIG. 1. Procedure to determine the applicability of the Fis
equation and/or to extract parameters from the observations. Sh
is a least-squares fitting of the analytic solution, Eq.~7!, of the
Fisher equation, to numerically generated data by adding nois
theoretical predictions in two cases. In~a! the Fisher equation can
be considered applicable while in~b! it cannot.
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the data in Fig. 2~b! immediately points out the incompatibil
ity with the Fisher equation and suggests a Nagumo-like
ternative.

III. DEPENDENCE ON MASK SIZE

Obviously, good experimental practice should use for
extraction of the Fisher parameters not a single mask
masks of varying sizes. It is clear that the peak value of
profile, um , will decrease as the mask size is decreased~al-
ternatively as the diffusion coefficient is increased!. How-
ever, what is the precise dependence of the stationary pr
on the size of the mask, as the size is varied? In answe
this question, one finds that a bifurcation behavior emerg
there is a minimum mask size below which bacteria can
be supported because they diffuse into the harsh reg
where they die. We suggest that this effect, known in
study of phytoplankton blooms@11#, be used to validate the
Fisher equation in bacterial population as follows.

The dependence of the peak value of the stationary b
terial population onk is given in Eq.~9! whereas the depen
dence of the mask width 2w on k is obtained by inverting
Eq. ~10!

w5
AD

~a/4!~12k21k4!21/2
cn21

3F S $@~k211!2~12k21k4!1/2#~12k2!%

k2@22k21~12k21k4!1/2#
D 1/2UkG .

~12!

r
wn

to

FIG. 2. Procedure to extract from the experiment the type
nonlinearity in bacterial dynamics. The numerically obtained s
ond derivative ofu is plotted againstu in the two cases~a! and~b!
of Fig. 1.
1-3
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The conjunction of Eqs.~9! and ~12! yields the dependenc
of the profile peak on the mask size. For a given set of Fis
parameters, a decrease in the mask width 2w from large
values causes a decrease ink. This decrease is monotonic
The valuek50 is reached at a finite value of the width.
this limit, the elliptic function cd(bj,k) becomes its trigono-
metric counterpart cos(bj), and Eq.~10! reduces to

cos2S w

2
Aa/D D50.5. ~13!

Thus, there is a critical size 2wc of the mask,

2wc5pAD

a
. ~14!

No stationary bacterial population can be supported be
such a size. An excellent experimental check on the appl
bility of the Fisher equation could be the determination
this bifurcation behavior. On the basis of the quoted@3,5#
values D'1025 cm2/s, a'1024/s, we obtain the critical
mask size to be of the order of half a centimeter, a limit t
should be observable.

If we relax the condition that the environment outside t
mask is harsh enough to ensure zero population of the
teria, Dirichlet boundary conditions used in the previo
analysis are not appropriate. In the steady state, the bac
concentration just outside the borders of the mask wo
then be different from zero as a result of finite diffusio
While the elliptic function solution in Eq.~7! ~but without
the Dirichlet boundary condition! is appropriateinside the
mask, it turns out to be exceedingly difficult to find a sol
tion outsidethe mask. If one starts out with the same~ellip-
tic! form of the solution outside but with a negative but fin
value of a, one gets the requirement thatu(j) be negative.
This is not allowable, sinceu(j) is a bacterial density tha
must remain positive. Other known solutions

u~j!52
~3/2!~a/b!

cosh2S Aaj

2
D ~15!

are also rejected on account of their patent negativity. I
possible, however, to obtain reasonable solutions@13# if it is
assumed that the bacterial densities outside the mask a
small that the quadratic term proportional tob may be ne-
glected in the Fisher equation for the analysis in the exte
of the mask. Such an analysis leads to a smaller critical
relative to that in Eq.~14!. Figure 3 shows the dependence
um on the mask size for both the cases of~a! infinite and~b!
finite ~b! ~negative! a outside the mask. The inset shows t
x dependence of the solution for the latter case.

IV. REMARKS

Our interest in the present paper being in the determ
tion of the applicability of the Fisher equation to experime
currently being conducted on bacterial dynamics in P
dishes, we have displayed an explicit solution~7! to the
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Fisher equation~2! in the infinite-time limit when a station-
ary mask of a given width shades the bacteria under it fr
harsh conditions outside it. Such stationary mask exp
ments we propose are easier and more direct for the purp
of the determination of the validity of the Fisher equatio
and for the extraction of the parameters of the equation.
our suggestion that parameters extracted in this manner
be used subsequently for the analysis of moving mask
periments@3#, with greater confidence in the reliability of th
parameter values.

We have indicated explicitly how the extraction of th
Fisher parameters may be carried out. The numerical fit
procedure in Fig. 1~a! shows the parameters relevant to t
hypothetical observations to beD51025 cm2/s, a
51024 s21, b51028 cm3/s, and w511 cm, while the
nomeq50.8071@16#. The procedure does produce para
eter values when applied to Fig. 1~b! but the quality of the
fits is poor. Such a situation would signal theinapplicability
of the Fisher equation. The data in Fig. 1~b! have been gen-
erated from the Nagumo equation whose intrinsic nonline
ties are incompatible with those of the Fisher equation a
visually clear from the best fits. We have shown in Fig.
how general manipulations of the observed data may be u
to suggest the particular form of nonlinearity to be used
the model. We have also concluded that the critical size
fect that arises directly from solution~7! is probably within
observable limits for bacterial dynamics, the size we pred
in light of quoted parameters being of the order of 0.5 c
This conclusion would necessitate modification if the act
values ofD anda are different from those currently believed

While rich from the point of view of nonlinear dynamics
the Fisher equation is, surely, a highly simplified object fro
the biological point of view. It could by no means provide
universally valid transport instrument for the studies of s
tems as complex as bacterial colonies. Unaided, the Fi

FIG. 3. Reduction of the critical size of the mask as a result
the finiteness ofa outside the mask. Shown as~a! is the dependence
of the maximum of the profile,um , on the width of the mask. For
comparison we give~b!, theum dependence on 2w in the Dirichlet
case. For case~a!, the inset shows the actual profiles for seve
values of the width.
1-4
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equation would contribute little to the diversity of bacter
behavior in biofilms and related systems. Nevertheless,
vestigations such as the present one have the potenti
assist in determining the validity of simple mathematical a
proaches to the complex problem. Elsewhere, we have
scribed our analyses of the spatiotemporal behavior of
bacterial population of relevance to time-dependent exp
ments in which diffusion is negligible but coherent motion
present@14#, and a formalism in which long-range compe
M

.
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re
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tion interactions produce an influence function and con
quently striking patterns@15# in bacterial populations.
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