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Abstract. Distinct applications of the tools of statistical mechanics to address several unconnected
complex observations in interdisciplinary science are explained in four parts. The first deals with
the memory function formalism and its application to varied topics: the origin of irreversibility,
photosynthesis, sensitized luminescence, stress distribution in granular compacts, and magnetic res-
onance imaging. The second focuses on techniques of nonlinear equations applied to problems
ranging from the Davydov soliton and the discrete nonlinear Schrödinger equation, to the propa-
gation of epidemics and the Fisher equation. The third part discusses a few meeting places for the
twin procedures of memory methods and nonlinear techniques. The fourth describes miscellaneous
applications based on the Fokker-Planck and the Boltzmann equations to topics of current interest
in ceramic science and condensed matter physics.

INTRODUCTION

The practitioner of statistical mechanics in modern times must possess the skills of a
linguist, crossing over interdisciplinary barriers with the help of multiple vocabularies
and techniques. Several such techniques are described in this article in the context of a
number of diverse and unconnected phenomena. Two themes thread through the major
part of this description: memory functions, and nonlinearity. What memory functions
are good for, viz., the unification of coherent and incoherent transport, how they arise,
e.g., from microscopic equations through the use of projection operators, and how they
are utilized in often non-overlapping fields, e.g., in photosynthesis, stress distribution
in granular compacts, or magnetic resonance imaging, are described in the first two
sections. Nonlinear phenomena and the relevant techniques form the content of the
next two sections where elliptic function solutions for the quantum nonlinear dimer
are examined as well as the spread of epidemics and population dynamics of bacteria.
Nonlinear equations with memory functions are treated next, with focus both on the
competition and the coexistence of the two methods. Miscellaneous methods outside
these two themes, particularly based on the Fokker-Planck and the Boltzmann equation,
which have found use in recent investigations in ceramic science and condensed matter
physics form the next section, and remarks conclude this article.
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OSCILLATIONS VERSUS DECAYS: THE MEMORY
FORMALISM

Background: why and how of Memory Functions

Among the bewildering variety of time evolutions found in the pursuit of statistical
mechanics, two can be identified as extreme limits: oscillations, and decays. A mass at-
tached to a spring, a planet circling a star, an ammonia molecule shuttling between two
states, a Bose-Einstein condensate tunneling between two traps, and a Bloch electron in
a pure crystal viewed in a localized representation all perform oscillations. All these sys-
tems, if or when affected by strong damping influences, exhibit decay in their evolution.
The arrow of time, ever clear in macroscopic phenomena, presupposes decays. (For an
exception, demonstrated by Alexandre Rosas at the PASI, see Fig. 1.) Reversible equa-
tions such as Newton’s, Schrödinger’s, or von Neumann’s, accepted by most to underlie
mechanical behavior, generally predict oscillations at the microscopic level. Irreversible
equations such as the Boltzmann, Navier-Stokes or the Master equation, lead to approach
to equilibrium, i.e., decays. One of the major problems of statistical mechanics, consid-
ered by some to be the central problem of the field, concerns the perhaps paradoxical
coexistence of, and generally the relation between, microscopic short-time oscillations
and macroscopic long-time decays. Furthermore, the study of that relation has practical
relevance in many fields such as photosynthesis, electron conduction, and energy trans-
fer. We begin by introducing the memory function approachwhich is eminently suited
to investigate and describe this relation between oscillations and decays.

The simplest way to understand the power of the memory approach is by attempting
with its help a unification of the evolution represented by

d2y
dt2

+ω2y = 0 (1)

which is reversible, oscillatory, and has trigonometric functions as solutions, with

dy
dt

+Γy = 0 (2)

which is irreversible, approaches equilibrium, and has an exponential as solution. Such
unification is naturally performed by

dy(t)
dt

+Γ
∫ t

0
dsφ (t −s) y(s) = 0 (3)

via the “memory function” φ (t) which connects y at all times in the past to its derivative
at the present. First, we note that (3) reduces to (2) and (1) in the respective extreme
limits that the memory φ (t) is a δ -function, and that it is a constant (with the value
ω2/Γ). Second, if the memory is of neither extreme form but is intermediate,

φ (t) = α exp(−αt) , (4)

where the decay constant α equals ω2/Γ, the evolution of y is that of (1) at times short
with respect to 1/α but of (2) at longer times. We thus see that the memory functions,
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FIGURE 1. Ballistic motion with practically no damping, illustrated by a non-interacting Brazilian on
the snowy slopes of El Catedral during the PASI.

by their very existence, can (i) unify oscillations and decays in extreme parameter limits
(here, α → 0 and α → ∞), and (ii) provide an intermediate description for arbitrary α
which is oscillatory at short times and decaying at long times (here, with respect to 1/α).
It is of interest to note additionally that, if the memory is given by (4), differentiation of
(3) yields the familiar equation for the damped harmonic oscillator:

d2y
dt2

+α
dy(t)

dt
+ω2y = 0. (5)

The combination of oscillatory and decaying behaviors as a function of time as well as
of parameter ratios present in this elementary equation is well known.

Proceeding along identical lines, it is easy to see how memory functions unify trans-
port which is coherent or wave-like as in the classical wave equation

∂ 2P(x, t)
∂ t2 = v2 ∂ 2P(x, t)

∂x2 (6)
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which describes waves of a field P at a time t at position x which propagate with speed
v, with its incoherent or diffusive counterpart characteristic of the classical diffusion (or
Fourier’s heat) equation

∂P(x, t)
∂ t

= D
∂ 2P(x, t)

∂x2 (7)

which predicts no waves at all but diffusive motion with a diffusion constant D. It is well
known, for instance, that if you pluck a string in which the amplitude obeys the above
respective equations, the disturbance would travel along the string without change of
shape and with speed v in the former case while it slumps irreversibly spreading along
the string in the latter case. These profoundly different kinds of transport are captured in
one fell swoop by the memory function equation

∂P(x, t)
∂ t

= D
∫ t

0
dsφ (t −s)

∂ 2P(x,s)
∂x2 . (8)

For instance, for the case of exponential memory (4) with α = v2/D, one obtains from
(8) the telegrapher’s equation

∂ 2P(x, t)
∂ t2 +α

∂P(x, t)
∂ t

= v2 ∂ 2P(x, t)
∂x2 (9)

which, as is well-known, produces an intricate joining of wave-like propagation with
diffusive evolution: in extreme parameter limits as well as in time for given parameter
values. At short times, waves propagate but decay in time, and residual diffusive motion
coexists in addition [1]. Indeed, for a localized initial condition, the mean square dis-
placement defined as < x2 >=

∫
x2P(x, t)dx which is quadratic in t for the wave limit

but linear in t for the diffusive limit, has the intermediate form

< x2 >= 2D

(
t − 1−e−αt

α

)
(10)

for the telegrapher’s equation and passes smoothly from the quadratic form v2t2 to the
linear form 2Dt (except for a constant term negligible by comparison at long times), as
time increases from being smaller than, to larger than, 1/α.

The lesson learnt from these elementary considerations is that one might achieve
much in the unification of the totally different limits of oscillatory and decaying time
evolution, by focusing on memory functions. Is there a way of calculating memory
functions for a given system from basic equations of motion such as the Schrödinger
equation for a quantum system? We address this practical question via projection oper-
ator techniques next.

Projection Technique: Memories from Microscopics

The derivation of macroscopicequations of motion from the underlying microscopics
is one of the central concerns of statistical mechanics [2]. Of the variety of procedures
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and constructs such as the well-known BBGKY hierarchy that are met with in this con-
text [3], one, the projection operator technique, leads naturally to memory functions. It
was introduced originally [4] for the purpose of investigating the validity of the passage
from the (microscopic) Schrödinger equation for the quantum mechanical amplitude of
a system, equivalently the von Neumann equation for the density matrix ρ , given by

ih̄
dρ
dt

= [H,ρ] = Lρ, (11)

where H is the Hamiltonian and L is the so-called Liouville operator, to the (macro-
scopic) Master equation for the probabilities Pξ of occupation of states ξ , given by

dPξ

dt
= ∑

ξ ′

[
Fξ ξ ′Pξ ′ −Fξ ′ ξ Pξ

]
, (12)

where the F ′s are transition rates among the states. The projection method defines a
linear, time-independent, idempotent operator P which, through its action on whichever
operator it acts, extracts a part of that operator. This extracted part could be, for instance,
the diagonal part of that operator in a given representation, or some generalization
thereof. Application of P and of 1−P successively to (11) yields (on putting h̄ = 1
for simplicity),

dρ ′

dt
= −iPLρ ′ − iPLρ ′′,

dρ ′′

dt
= −i (1−P)Lρ ′′ − i (1−P)Lρ ′. (13)

An exact formal solution of the second of these equations followed by a substitution in
the former produces, perhaps surprisingly, a closed equation for ρ ′ alone, except for a
formally known driving term in terms of the initial value of ρ ′′ :

dρ ′ (t)
dt

= −iPLρ ′ (t)−PL
∫ t

0
e−i(t−s)(1−P)L (1−P)Lρ ′ (s)ds

−iPLe−it (1−P)Lρ ′′ (0) (14)

Notice the emergence of the memory in the middle term on the right hand side
as is clear from the bridging that it performs between ρ ′ (s) at past times s with the
present time t. The last term is exactly zero if ρ ′′ is zero at the initial instant of time.
Such a situation corresponds to what is called an ‘initial random-phase approximation’
unlike the ‘repeatedrandom-phase approximation’ shown by van Hove to be untenable
[2]. The first term in the projected equation vanishes identically if the action of P
involves diagonalization. In such cases, we have a closed memory-function evolution
for ρ ′. Although the expression for the memory appears complicated because of the
tetradic operators, and although its precise nature will depend both on the system and the
realization chosen for the projection operator, this technique [4] bypasses an enormous
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amount of arduous calculation which characterizes other procedures employed for the
same purpose [2]. It allows one to pass directly, in a certain sense effortlessly, from the
microscopic von-Neumann equation (11) under certain conditions to an equation which,
while not identical to the Master equation (12), has a striking resemblance to it:

dPξ (t)
dt

=
∫ t

0
ds∑

ξ ′

[
Wξ ξ ′ (t −s)Pξ ′ (s)−Wξ ′ ξ (t −s)Pξ (s)

]
. (15)

This so-called generalized master equation (GME) possesses memory precisely the way
(3) and (8) do and is therefore able to describe coherent and incoherent transport in
a unified manner. In appropriate limits it may tend to the Master equation (12) from
which it differs in that the memory in the W functions in the GME is not generally
short-lived as in the implied delta-function in (12). The GME (15), which made its first
appearance only as a temporary step in the passage from microscopics to macroscopics,
possesses all the powerful features of unification which its memory bestows upon it [5].
These features can been used in multiple ways in practical investigations [5, 6]. Recipes
involving approximation procedures in some cases, and exact methods in others, can be
developed to obtain the explicit forms of the W functions in terms of the Hamiltonian
of the system in (11). This brief demonstration clarifies how the projection technique
introduces memory functions and allows one to compute them, at least in principle. The
intimate relationship of the projection technique and memory functions lies in the fact
that P’s project, i.e., contract the description; and generally, focusing on only a part of
a system state produces memory function evolution, i.e., evolution non-local in time, for
that contracted part. Of the many possible realizations of P’s, let us mention one that
diagonalizes an operator, thereby producing an evolution of the diagonal elements of the
density matrix in a chosen basis, i.e., producing a Master equation for the probabilities
as in (15),

< ξ |PO|µ >=< ξ |O|ξ > δξ , µ (16)

where O is any operator, ξ , µ are states of the system making up the chosen basis, and δ
is the Kronecker delta; and one that coarse-grains and thermalizes in addition to diago-
nalizing, consequently producing an evolution of (coarse-grained) thermal probabilities
of occupation of groups of states, producing a more appropriate Master equation for
macroscopicprobabilities,

< M,m|PO|N,n >=
e−βEm

∑m′ e−βEm′ ∑
m′′

< M,m′′|O|M,m′′ > δm , nδM , N (17)

where β is 1/kT, the reciprocal of the product of the Boltzmann constant and the
temperature, and Em are energies of states m over which the coarse-graining (along
with thermalization) is performed. The result of the coarse-graining is evolution in
the probabilities of occupation of groups of states denoted by M. We refer the reader
elsewhere [5, 6] for detailed derivations but point out here that M could, for instance, be
the state of an electron (say a Wannier state centered around one lattice site in a band)
while the m’s could refer to phonon states over which one often wishes to coarse-grain
the description.
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The problem of the passage from reversible microscopics to irreversible macroscopics
is understood rather simply through the use of GME’s obtained with the help of projec-
tion operators which employ coarse-graining as in (17). The memory functions then
have the form of Fourier transforms of entities, denoted by Y(ω), which are products of
interaction matrix elements and density of states of the system [5]:

W (t) =
∫

dωY(ω)cos(ωt). (18)

Appropriate behavior of these entities Y(ω) in the energy (or frequency) space results in
the decay of the memory functions in time, when the thermodynamic limit is taken. The
thermodynamic limit eliminates Poincaré cycles. The width of Y(ω) in ω-space is re-
lated reciprocally to the decay time of the memories W (t). Sharp peaks in Y(ω), arising
either from sharp peaks in the density of states or in interaction matrix elements, result in
long-lived memories. A large width of Y(ω) corresponds to sharp decay of the memory
in time. The decaying memory functions describe reversible (or coherent) behavior at
times short with respect to the decay times of the memories and irreversible (or incoher-
ent) behavior at times long with respect to them. The philosophical requirements that the
onset of irreversibility should depend on the system properties, that it should stem from
looking at the system at a sufficiently coarse level, that it not occur for too small a sys-
tem, and that it be valid only at sufficiently long times compared to microscopic times,
are all fulfilled smoothly by this description without invoking abstruse arguments. A
simple but satisfactory understanding of the reversibility-irreversibility problem in sta-
tistical mechanics is provided naturally, in this way, by the memory formalism (see the
Appendix ‘Poor Man’s Version of the Origin of Irreversibility’ in [5] for further details.)

The memory formalism is particularly useful in practical contexts. Two examples of
memory functions derived for quantum mechanical systems follow, one obtained exactly
and one perturbatively. Consider an electron or other (single-band) quantum particle
moving via translationally invariant interaction matrix elements Vmn among the sites
m,n of a 1−dimensional lattice with periodic boundary conditions, and obeying (again
we put h̄ = 1 for simplicity)

i
dcm

dt
= ∑

n
Vmncn. (19)

Using no coarse-graining, and following the diagonalization definition (16) of the pro-
jection operator, it is possible to show [6] that the Laplace transform of the memory
function Wmn(t) is given by

W̃mn(ε) = −∑
k

 e−ik(m−n)

∑q

[
ε + i

(
Vk+q−Vq

)−1
]
 (20)

where k,q are reciprocal lattice vectors, and Vk is the Fourier transform ∑(m−n)Vmneik(m−n).
Indeed, it is possible to invert this Laplace transform and show that, for an infinite lattice
and nearest neighbor V’s, Vmn = V(δm,n+1 + δm,n−1), the memory functions in the
resulting GME for the probabilities Pm = |cm|2 , which is merely (15) with ξ = m and
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ξ ′ = n, are

dPm(t)
dt

=
∫ t

0
ds∑

n
[Wmn(t −s)Pn(s)−Wnm(t −s)Pm(s)] (21)

are given by

Wmn(t) =
1
t

d
dt

J2
m−n(2Vt) (22)

where the J’s are ordinary Bessel functions [6, 7].
A second example, obtained perturbatively, has to do with the motion of an excitation

moving between the two sites of a dimer (a 2−site system) via matrix element V while
at the same time interacting very strongly with vibrations. The Hamiltonian is

H = V (|1〉〈2|+ |2〉〈1|)+∑
q

ωqb†
qbq +(|1〉〈1|− |2〉〈2|)∑

q
gqωq

(
bq +b†

−q

)
(23)

in standard notation. The kets and bras describe the sites, and the b’s are the second
quantized phonon operators associated with the vibrations of mode q with frequencies
ωq and coupling constants gq. Projection operators of the type of (17) which coarse-grain
and thermalize over phonons, lead through a perturbative treatment [6, 8], to

dp(t)
dt

+2
∫ t

0
W (t −s) p(s)ds= 0 (24)

for the probability difference p(t) of the excitation occupation of the two sites. The
memory function is given generally by

W (t) = 2V2eh(t)−h(0) +c.c. (25)

h(t) = 2∑
q

g2
q

[
nqeiωqt +

(
nq +1

)
e−iωqt] . (26)

Here nq is the Bose factor
(

eβωq −1
)−1

. For the case of zero temperature and a single

mode of vibration, the memory reduces to

W (t) = 2V2e−2g2(1−cosωt) cos
(
2g2 sinωt

)
(27)

Although simple in form, this memory function is rich in content. Much can be learnt
about the dynamics of the dimer from a mere inspection of the memory [9] and the
interplay of its several characteristic time constants, for instance, 1/ω, 1/gω, and
1/g2ω .

The generalized form this memory function takes at finite temperatures and multiple
vibrational modes does not seem to be widely known. In the case appropriate to optical
phonons centered around frequency ω with a narrow width σ , it can be written down as

W (t) = 2V2e−2g2 coth(ω/2kT)(1−ζ (t)cosωt) cos
(
2g2ζ (t)sinωt

)
(28)
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.

FIGURE 2. Normalized memory function W (t) from (27) and (28) for a quantum quasiparticle moving
between two dimer sites while interacting strongly with vibrations, plotted as a function of the dimension-
less time ωt. Parameter values are arbitrary: g = 2 in both (a) and (b), σ = 0.1 in (a), and ω/2kT equals
0.2 in the solid line of (b). The dotted line is the single-mode zero-temperature prediction of (27).

where ζ (t) is the Fourier transform of the phonon density of states, typified by a Gaus-
sian exp(−σ2t2). The general memory reduces to the single-mode zero-temperature ex-
pression (27) in the appropriate limit. We show in Fig. 2 a plot of (28), for arbitrary val-
ues of the parameters. The dotted line in both (a) and (b) is the zero-temperature single-
mode version in (27) and exhibits ‘silent runs’ followed by full recurrences, repeated de-
cays (of the envelope), and fast oscillations within the envelope, on the three respective
time scales. The recurrences do not occur fully in the solid line in (a) which describes the
effect of multiple modes represented by a finite frequency width σ/ω = 0.1: the maxi-
mum value of the memory function decays strongly from one recurrence to the next. The
temperature is taken to be zero in (a). In (b) we display the effect of finite temperature.
The solid line corresponds to 2kT/ω = 5 while the dotted line is the zero-temperature
case, σ being zero in both cases in (b). We see that the oscillations to negative values
are substantially suppressed at non-zero temperatures.

The second of the three characteristic inverse times mentioned above for the zero-
temperature case (27) as being gω, and best looked upon as the geometric mean of
the polaronic binding energy g2ω and the phonon energy ω (we have put h̄ = 1 in all
these considerations), is, in the general case (28), equal to gω

√
coth(ω/kT). As T → 0,

when the coth saturates to 1, we get back the earlier form, but for large T, the second
of the three characteristic inverse times is the geometric mean of g2ω and the thermal
energy 2kT. Considerable insights into dynamics may be obtained thus through a direct
inspection of the memory functions. We remark in passing that a simple relation exists
[9] between the memory description via (28) and the so-called ‘non-interacting blip
approximation’ [10] introduced in the analysis of the spin-boson problem.
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APPLICATIONS OF THE MEMORY FORMALISM

Applications of the memory formalism abound. We mention illustrations from three
areas selected because they are rather unrelated to one another: photosynthesis and sen-
sitized luminescence, nuclear magnetic resonance probes of confined motion, and stress
distribution in granular compacts. Through this selection, we illustrate the enormous
breadth of applicability of the formalism.

Photosynthesis and Sensitized Luminescence

The study of the biological process of photosynthesis is important and intriguing: im-
portant in that understanding it might save mankind from starvation when food resources
run out, and intriguing because of the complex physical processes underlying it, includ-
ing energy transfer. Much work has been directed at the understanding of the energy
transfer that occurs in photosynthetic systems as the electronic excitation created by ab-
sorption of sunlight travels from whatever location it lands at, to the reaction centers
where it is caught and used to cook carbon dioxide and water into sugar. The nature of
the transport of excitation, in particular whether it proceeds coherently or incoherently,
has been an active goal of investigations. One application of the memory formalism is a
unification of coherent and incoherent transfer rates carried out [11] simply on the ba-
sis of the mean square displacement formula (10). Another illustrates coherence effects
on the quantum yield observed in sensitized luminescence experiments in molecular
crystals [6]. Here we will briefly touch upon a third application which addresses the
calculation of realistic memories directly from optical spectra [12].

Equation (18) shows that the memory W (t) is intimately tied to the quantity Y (ω),
and that the latter is determined by the transfer interaction matrix elements and the den-
sity of states. The transfer of excitations in photosynthetic systems proceeds primarily
via dipole-dipole interactions [13]. A close relation exists between optical spectra of the
molecules in the photosynthetic unit, and transfer rates in an ordinary Master equation
such as (12) describing excitation transfer. In order to address the issue of how coherent
the transfer is, it is possible to employ the GME (15) instead of (12), and to calculate
its memory directly from the optical spectra. Förster’s well-known prescription [13] to
calculate Master equation rates Fmn from spectra obtains them from the overlap of the
spectra:

Fmn = const.
1

R6
mn

∫ ∞

0
dω

A(ω)E (ω)
ω4 . (29)

The constant of proportionality is unimportant for the present discussion. The inverse
dependence on the 6th power of the intermolecular distance Rmn between the donor and
acceptor molecules at sites mand n is characteristic of the dipole-dipole interaction, and
A and E are the absorption spectrum of the acceptor, and the emission spectrum of the
donor, respectively.

The generalized prescription to obtain memories Wmn(t) consists of calculating the
overlap indicated in (29) after displacing the modified spectra relative to each other on
the frequency axis by an amount z for all possible values of z from −∞ to +∞, and
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FIGURE 3. The prescription (30) to obtain memories from spectra illustrated for anthracene in cy-
clohexane solution at room temperature: (a) shape of the extended overlap integral as a function of the
displacement z termed in the figure ∆ν̃ and (b) memory function W (t) termed in the figure φ (t) as a
function of time obtained through a Fourier transform of the dependence in (a). See [12].

then Fourier-transforming the z−dependence of the overlap thus obtained. The resulting
expression [12],

Wmn(t) = const.
1

R6
mn

∫ z=+∞

z=−∞
dz cos(zt)

∫ ∞

0
dω

A(ω −z)E (ω +z)

(ω −z)3 (ω +z)
, (30)

wherein the proportionality constant differs from that in (29) by a factor of π, can be
used directly for coherence investigation purposes. We display in Fig. 3 the spectra in
(a) and the memory in (b) for anthracene in cyclohexane solution2 . Notice that (30) is
precisely of the form (18) discussed above in the context of the origin of irreversibility.
These considerations are of practical importance not only in photosynthesis but also in
the more general subject of sensitized luminescence in molecular crystals and aggregates
[6] as well as in more modern observational contexts such as transient gratings [6, 14].
Cited references should be consulted for further detail.

NMR Probes of Confined Motion

Nuclear magnetic resonance probes of confined spaces, as in porous rock or capillar-
ies in the human body, are of great current importance in the industry and in medicine.
The basic idea underlying the NMR probe is to monitor the spin dynamics of protons
associated with water molecules, in the presence of a static (gradient) magnetic field.
The latter systematically changes the precession frequency of the spins in space. Ob-
servations of the spin echo kind allow one to gather information regarding the diffusion
of the spins [15]. The diffusion is affected by the walls of the confined spaces. It is

2 Although the presence of inhomogeneous broadening in these spectra may raise issues about the detailed
applicability of the available spectra in this prescription, the example makes clear the procedure.
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thus possible to collect information about such properties as the connectivity of space
inside the confined regions. The theoretical interpretation of the observations is based
on the Torrey-Bloch equation [16] which describes the evolution of ρ (r, t), the space-
dependent density matrix of the spin at position r and time t. This evolution is in part
quantum mechanical, in that it describes the spin dynamics, and in part classical, in that
it describes spatial diffusion. Written for the magnetization M (r, t) instead of for ρ (r, t),
the Torrey-Bloch equation is

∂M (r, t)
∂ t

= −iγgx f (t)M (r, t)+D∇2M (r, t) , (31)

where g is the strength and f (t) the time dependence of the applied gradient magnetic
field, γ is the gyromagnetic ratio, and D is the diffusion constant. The observable of
interest is the total magnetization integrated over all space: M (t) =

∫
M (r, t)dr.

Projection techniques and resulting memory functions find excellent employment here
[17]. The definition of a projection operator P whose essence is to integrate over all
space whatever it operates on,

PO(r, t) = σ (r,0)
∫

O
(
r ′
)

dr′, (32)

where σ (r,0) describes the initial distribution of spins, allows one to obtain a memory-
function equation for the total magnetization:

dM(t)
dt

+ f (t)
∫ t

0
f
(
t ′
)

φ
(
t − t ′

)
M

(
t ′
)

= 0. (33)

The memory function φ (t) can be shown in the weak-coupling approximation to be
proportional to the classical autocorrelation function of the displacement of the diffusing
spin. Restricting our analysis to a 1-dimensional system, we can write

φ (t) = γ2g2 〈xx(t)〉 . (34)

Standard manipulations with the diffusion equation result in an infinite series expression
for 〈xx(t)〉 . If the diffusing spin is confined to a finite segment of length a,

〈xx(t)〉 =
8a2

π4

∞

∑
n=1

1

(2n−1)4 exp

[
−(2n−1)2 π2Dt

a2

]
. (35)

It has been shown [17] that, independently of the values of the physical parameters,
this expression for 〈xx(t)〉 can be represented by a single exponential to an excellent
approximation, and that the memory is, then,

φ (t) = C2e−2λ t . (36)

Here C is (γga)2 /12 and λ = 5D/a2. This memory-function description leads to the
explicit prediction that, even for a time-independent applied gradient field, i.e., if f (t)
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is a constant, the signal represented by M (t) can exhibit oscillations in time, provided
the ratio C/λ is large enough. The quantity C/λ is, except for a numerical constant, the
ratio of the extreme difference between the precessional frequencies of the spin in the
confining space, viz., γga, to the reciprocal of the time it would take the spin to diffuse
from one end of the confining segment to the other, viz., D/a2. The prediction of this
memory description that oscillations will occur for large enough gradient field strength,
or for small enough diffusion constant, are borne out by experiment. By contrast, other
calculational approaches, for instance the frequently used cumulant expansion technique
[18], are unable to predict such oscillations [17].

Stress Distribution in Granular Compacts

An unexpected application of the memory formalism crops up in the field of stress dis-
tribution in granular compacts [19–21]. The behavior of granular materials [22] under
compressive stresses is poorly understood, despite more than a century of research in
civil engineering under the topic of soil mechanics, in mechanical, ceramic, and met-
allurgical engineering in the context of the pressing and sintering processes; and in
geodynamics such as in the study of earthquakes and avalanches. A key observation
reported [23, 24] in the study of granular compacts is stress oscillations in space(not
in time). A theoretical framework has been constructed [19] to address such observa-
tions on the basis of the idea of the formal interpretation of the vertical spatial coordi-
nate as time [19, 25]. A variety of different starting points, stress balance equations and
phenomenological constitutive equations in one case [19], effective medium approxima-
tions in another [20], and the use of stochastic considerations in yet another [21], have
led to the demonstration that a plausible equation governing σzz(x,y,z), the diagonal
z−component of the stress tensor, where z is the vertical direction or the direction along
which external stress is applied, is the memory equation

∂σzz(x,y,z)
∂z

= D
∫ z

0
dz′ φ(z−z′) ∇2σzz

(
x,y,z′

)
. (37)

Properties of the granular material are reflected in φ (z) and D.
The ‘memory’ in this formalism is not temporal, but spatial. The formalism provides

a unification of two seemingly unrelated treatments of stress distribution available in the
literature: a wave-like treatment [25] which might apply to a granular system consisting
of identical, frictionless spherical particles arrayed in a perfectly ordered lattice, and a
diffusion-like analysis [26] in which the transmitted stress is described as arising from a
sum of contributions from random probabilistic transmission of forces from particles in
one layer of the granular material to particles in the next lower layer.

Application [19] of the memory formalism to the analysis of stress distribution in
unbounded media may be illustrated by taking the applied stress σzz(x,0) at the ‘surface’
z= 0 to be a delta function δ (x). If the memory is assumed exponential for simplicity,
i.e., if φ(z) = c2 exp(−αz), the stress is found to be

σzz(x,z) = e−αz/2
[

δ (x+cz)+δ (x−cz)
2

+T

]
, (38)
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FIGURE 4. Memory description of stress distribution in a granular compact showing the presence in
some samples and the absence in others of stress oscillations with depth within the compact. The upper
frames are contour plots of the stress while the lower frames show oscillations with depth explicitly. Units
are arbitrary. Value of the decay constant α of the memory, consequently its incoherence and diffusive
behavior, increases from (a) through (c).

where the term T vanishes identically for cz≤ x, and equals, for cz≥ x,

T =
( α

4c

){
I0

( α
2c

√
c2z2 −x2

)
+

cz√
c2z2 −x2

I1

( α
2c

√
c2z2 −x2

)}
, (39)

the I ’s being modified Bessel functions. The so-called phenomenon of ‘light cones’
mentioned in [25] is recovered in the limit α = 0. Diffusive stress propagation with
its characteristic Gaussian profile is recovered in the opposite limit.

Stress distribution in laterally boundedmedia, such as pipes and compacts, has also
been addressed satisfactorily with the help of this memory formalism [19]. The basic
calculational step is the solution of a partial differential equation with mixed boundary
conditions at the walls. Observed [23, 24] oscillations of stress emerge naturally. For
want of space we only display one of these results pictorially (see Fig. (4)) and refer the
reader to the original articles for the analysis.
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NONLINEAR TECHNIQUES: QUASIPARTICLES, MICE, AND
BACTERIA

As we pass from the memory formalism to techniques based on nonlinear equations in
this section, we lose the support of powerful, universally applicable, procedures of linear
mathematics based on superposition, such as Laplace and Fourier transforms, but gain
remarkable features such as threshold phenomena and abrupt transitions. We analyze
these phenomena for two quite disparate kinds of systems: microscopic quasiparticles
such as electrons interacting with vibrational excitations or Bose-Einstein condensates
obeying the discrete nonlinear Schrödinger equation in condensed matter, and macro-
scopic entities such as moving mammals or growing bacteria obeying Fisher-like equa-
tions in the ecological/biological contexts of the spread of epidemics or of infections in
surgical wounds.

Quasiparticles and Elliptic Functions

If the amplitude cm of a quantum particle, e.g., an electron or exciton, to be at a site m
obeys (19) augmented by a nonlinear term [27],

i
dcm

dt
= ∑

n
Vmncn−χ|cm|2cm, (40)

the transport of the particle changes drastically [28, 29] as the nonlinearity parameter
χ is varied with respect to the interaction matrix elements Vmn. The physics behind the
nonlinear term has been often assumed to be that the site energy of the particle is low-
ered as a result of strong interactions with vibrations, whenever the site is occupied
by the particle. Equation (40) is known as the discrete nonlinear Schrödinger equation
(DNLSE). Doubts have been cast on the derivation of the DNLSE from quantum me-
chanics in this polaron context [30–33]. More recently, (40) has reappeared in new guise
as the Gross-Pitaevskii equation in Bose-Einstein condensate tunneling [34–36]. In that
setting, it is not vulnerable to the objections raised to its derivation for polaron dynamics.
The insights gathered from the equation in the polaron field [28, 29] are being reused
[35, 36] in the Bose-Einstein context.

Much can be understood within a two-site system, i.e., when m,n in (40) take on
values 1,2 only. Conversion of (40) into a density matrix equation, followed by focusing
on the probability difference p = |c1|2 −|c2|2 , leads to

d2 p
dt2

= Ap−Bp3, (41)

where A and B are given in terms of the system parameters as well as the initial
conditions of the system:

A =
(
χ2/2

)
p2

0 −4V2 −2Vχ (ρ12 +ρ21)0 ,

B = χ2/2. (42)
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The suffix 0 denotes the initial values, and ρ12 and ρ21 are site-offdiagonal matrix
elements of the density matrix. The probability difference p between the sites can be
solved exactly in terms of Jacobian elliptic functions. Solutions for arbitrary initial
conditions will be found elsewhere [37]. For a localizedinitial condition, wherein the
quasiparticle occupies one of the two sites initially, p is given by

p(t) = cn(2Vt,χ/4V) f or χ < 4V,

= dn(χt/2,4V/χ) f or χ > 4V, (43)

showing oscillations on both sides of zero if the nonlinearity is small enough, and
oscillations only on one side of zero, signifying selftrapping of the quasiparticle, if the
nonlinearity χ exceeds 4V. In (43), χ/4V is the elliptic modulus. The transition evolution
occurs at χ = 4V, i.e., when the elliptic modulus equals 1. At that point, p(t) becomes the
hyperbolic secant of 2Vt, equivalently of (1/2)χt. The physical description is that, as the
quasiparticle moves between sites, its site energy is repeatedly lowered at the site which
it occupies. The energy mismatch, introduced by the very existence of the quasiparticle
at one or the other of the sites, hinders the motion to an extent determined by the value of
the nonlinearity χ relative to the transfer matrix element V. If the latter is large enough,
the site energy returns to the unlowered value when the quasiparticle leaves the site
and the motion, while slowed, is still fully oscillatory. This is the cn situation. If the
nonlinearity χ is larger than the critical value 4V, the lowered site energy cannot ever
return to its value in the absence of the quasiparticle, and the particle is selftrapped.
A lucid explanation of the phenomenon of selftrapping is provided with ease by the
DNLSE.

We refer the reader to the extensive literature [38] that has gathered around descrip-
tions of the nonlinear evolution described by the DNLSE, and point out here a general-
ized form of the equation which was constructed through a mixture of some rigorous,
and some phenomenological, arguments:

ih̄
dρmn

dt
= [V,ρ]mn−χ (ρmm−ρnn)ρmn− i

χ
Γ

ρmn([V,ρ]mm− [V,ρ]nn)

−iα (1−δmn)(ρmn−ρeq
mn) . (44)

This equation, termed the ‘ecumenical equation’ [29], describes the evolution of the
density matrix elements in the site representation in the presence of interactions with
a thermal reservoir, and unifies a number of aspects of the nonlinear behavior of the
quasiparticles. In addition to the intersite transfer matrix elements Vmn and the nonlin-
earity parameter χ present in (40), we have here Γ, α , and ρeq. The first describes the
rate at which dissipation results in driving the vibrational part of the system to its slaved
state so that it can be eliminated from consideration, in other words the rate at which
the nonadiabatic process occurs [39]. The second describes the dephasing process [40]
which drives the off-diagonal elements of the quasiparticle density matrix to their ther-
mal values, ρeq being the thermal density matrix. The ‘ecumenical equation’ combines
all these, motion, nonlinearity, nonadiabaticity, and thermalization into the single evo-
lution (44), and predicts exceedingly interesting phenomena such as limit cycles and
bifurcations [29, 41].
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Of mice and men

At the macroscopic end of the application spectrum of nonlinear techniques, we
consider two systems. The first is the spread of the hantavirus, a terrifying epidemic
discovered in the last decade, transmitted from mouse to mouse, and passed on to human
beings from the mice. The second is the evolution of bacteria in a Petri dish. We begin
with considerations of the hantavirus [42, 43]. When infected by the hantavirus, the mice
live happily ever after (having coexisted for millions of years with the virus), but humans
much less so, if fortunate enough to live at all after being infected. Because the evolution
of humans lies on top of that of the mice, meaning that no feedback effects are known
from the human to the mice population, it is sufficient to consider the evolution of the
mice alone. Appropriate description [44] is in terms of two classes of mice, susceptible
and infected, represented by MS and MI respectively. Sex and age composition of the
population are considered details and disregarded in this basic AK model:

∂MS

∂ t
= bM−cMS− MMS

K
−aMIMs+D

∂ 2MS

∂x2 , (45)

∂MI

∂ t
= −cMI − MMI

K
+aMIMs+D

∂ 2MI

∂x2 . (46)

Here c is the decay rate by natural death, a is the rate at which encounters of the two
types of mice convert susceptible to infected, and D is the diffusion constant with which
the mice move over the terrain, whether infected or susceptible. The resources (food,
water, vegetation) are described by K which is generally time and space dependent: it is
the primary control parameter in the AK analysis 3. The effect of the terms containing
K is to limit the growth of the populations at a rate proportional to the susceptible or
infected mice population and also to the total population M = MS+ MI with which it
competes for resources. Since infected mice are made, not born, the term bM which
describes growth via birth, appears only in the MS equation, and is proportional to the
total mice population. We have written the single second spatial derivative in the last
term in each of the (45) and (46) for simplicity. In a realistic situation we replace it by
the Laplacian.

Steady-state analysis in the absence of diffusion shows [44] that a bifurcation phe-
nomenon occurs according to whether the control parameter K is smaller or larger than
a critical value given by

Kc =
1
a

(
b

b−c

)
. (47)

The infected mice population at infinite time is found to vanish if K ≤ Kc but to be non-
zero otherwise. Field studies [45] indeed show such behavior including the fact that, if
ecological conditions at a place in the landscape get temporarily adverse for the mice (as
the result of a drought, for example) the infection can drop to zero. (See, for instance,

3 Although called the ‘carrying capacity’ by Abramson and Kenkre in [44], K differs from what is
normally denoted by that phrase by a multiplicative factor, e.g., (b−c) , and will be therefore simply
referred to as the control parameterhere.
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FIGURE 5. Changes in ecological conditions reflected in temporal infection patterns. If the control
parameter K falls below the critical value (as in a drought), infection disappears after a lag. If K shows an
upward surge, infection follows suit.

Fig. 5). We have recently found simple but exact solutions of (45), (46) in the absence
of diffusion, which lead to these bifurcations, described numerically in [44]. We present
them below.

Noticing as in [44] that the addition of (45), (46) yields a Fisher equation for the total
mice density,

∂M
∂ t

= (b−c)M− M2

K
+D

∂ 2M
∂x2 , (48)

we use the substitution y = 1/M to get a linear equation for y in the absence of D,

dy
dt

+(b−c)y =
1
K

, (49)

which is solved at once. The solution for M (t) is, then, generally,

M (t) =
1

e−(b−c)t

M(0) +
∫ t

0 dt′ e
−(b−c)(t−t′)

K(t ′)

. (50)
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If we rewrite (46) in the absence of D as

dMI

dt
− f (t)MI +aM2

I = 0, (51)

where f (t) is given in terms of the exact expression (50) as

f (t) = −c+M (t)
(

a− 1
K (t)

)
, (52)

we can use the same reciprocal transformation as above to solve (51). The result for the
infected population is the exact expression

MI (t) =
1

G(t,0)
MI (0) +a

∫ t
0 dt′G(t, t ′)

, (53)

G
(
t, t ′

)
= exp

[
−

∫ t

t ′
f (s)ds

]
. (54)

Explicit solutions for various given time variations of K (t) can be obtained to produce
graphs as in [44], or as in Fig. 5, but fully analytically.

If we restrict attention to time-independent K, (50) simplifies to

M (t) =
1

e−(b−c)t

M(0) + 1−e−(b−c)t

K(b−c)

. (55)

In the trivial case that the birth rate is exceeded by the natural death rate, the total mice
population decays to zero. This is uninteresting. In the other case, b− c is positive and
M (t) settles from whatever initial value to the saturation value K (b−c) . By approxi-
mating the total mice density M (t) by this saturation value, we see that (52) gives

f (t) ≈ f (∞) = −c+K (b−c)
(

a− 1
K

)
= −b+a(b−c)K. (56)

Note that f (∞) vanishes for the critical value of the control parameter Kc given by (47),
and can be generally written as

f (∞) = a(b−c)(K−Kc) . (57)

Clearly, f (∞) changes sign as K varies from being greater than, to smaller than, Kc. If
the former, G(t,0) in (53) decays to zero and the term

∫ t
0 dt′G(t, t ′) yields a finite result

as t increases without limit. Under the approximation f (t) ≈ f (∞) , this finite result is
[a(b−c)(K−Kc)]

−1 so that (53 ) yields, for the limiting value of the infected mice,

MI (∞) = (b−c)(K−Kc) . (58)

If, however, K < Kc, the denominator of (53) blows up and

MI (∞) = 0. (59)
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This dynamicalexplanation of the bifurcation shows how temporal patterns in the
hantavirus infection arise directly from temporal variations in the ecological parameter
K (t) . An extension of this idea has led to the understanding [44] of the emergence of
spatial patternsin the hantavirus, observed in the field [46], and known by the term
‘refugia’. These refugia, which correspond to reported indications of ‘focality of the
infection’, stem from the mobility of the mice over the terrain and the diversity of the
landscape. The former is described by the diffusive terms in (45), (46), and the latter
by a spatial dependence in the control parameter K (x) . Generally, a 3-dimensional de-
pendence may be used, but practically, a 2-dimensional description suffices. Application
of these ideas to fully realistic landscapes may be found in [47]. Because the Fisher
equation is not analytically soluble, we have recently studied some of its modifications.
Exact solutions of two of these modified equations also show analytically the occurrence
of refugia [48].

We refer the reader to the literature where a good deal of further development of these
ideas has been carried out from the AK model including the examination of fluctuations
[49] and the validity of moment equations, and the study of waves of infection [50]
emanating from the refugia. The study of fluctuations is based on simulations, and
addresses the obvious shortcoming of the AK model that it deals with continuous mouse
densities, and results [49] in consequences such as a shift in Kc, the critical value of
the control parameter responsible for the bifurcation onset (see Fig. 6.) Waves of the
hantavirus [50] are fascinating consequences of our analysis, have special importance in
these troubled days in the context of bioterrorism, and have been excellently described
by Abramson elsewhere in these Proceedings.

Bacteria in Petri Dishes

Exceedingly pretty patterns [51] characterize the evolution of bacterial colonies. A
subject of obvious medical importance, such evolution has been studied recently [51–57]
experimentally as well as theoretically. The Fisher equation that we have encountered
in this article in the hanta context as applying to the sum of the infected and susceptible
mice, but not to each class individually, resurfaces here directly in the description
of the bacterial population. In terms of the respective parameters a (growth rate), b
(competition parameter), and D (diffusion coefficient), the basic equation governing the
spatio-temporal dynamics of the bacterial population u(x, t) is taken to be

∂u(x, t)
∂ t

= D
∂ 2u(x, t)

∂x2 +au(x, t)−bu2 (x, t) . (60)

A lucid set of lectures on this topic were delivered by Lin in the PASI but are unfor-
tunately not part of her Proceedings article which focuses on other interesting areas of
pattern formation. We describe below theoretical studies that were stimulated by those
lectures.

First we point out that the logistic part of the Fisher equation (i.e., (60) without the
diffusion term), has a simple physical origin in the bacterial context. Start with two
coupled equations for the bacterial density u(x, t) and a food density f (x, t) such that
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FIGURE 6. Shift of the critical value of the control parameter relative to the prediction of the AK
model resulting from simulation analysis which incorporates the effect of finiteness of the population and
the discreteness of the mice number. Parameter values are arbitrary.

the rate of change of each of the densities is proportional to their product u f . The
proportionality constants, respectively A and −B, are different in value and opposite
in sign since the food is eaten by the bacteria. Cross-multiplying the proportionality
constants and adding, we find that Bu+A f is an invariant and therefore equal to its own
initial value. Solving for f and substituting in the u equation leads, effortlessly, to the
logistic evolution for u. A clear meaning may also be assigned in this fashion to the a
and the b of the Fisher equation in terms of the initial values of the food and the bacterial
densities.

Returning to the experiments that have been carried out on bacterial evolution in Petri
dishes, we observe that such experiments have employed moving masks [55] and have
resulted in reports of extinction transitions suggested earlier in theoretical calculations
[56] as well as in numerical simulations [57]. The focus of the theoretical calculations
has been on systems in which the growth rate a varies from location to location in a
disorderedmanner, and in which linearization of the Fisher equation (60) makes sense.
Such linearization has made possible the use of concepts from Anderson localization
[59], a phenomenon well-known in the solid state physics of quantum mechanical
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systems. It is likely, however, that the nonlinear features represented by −bu2 in the
Fisher equation are important and may not be relegated to a secondary role. It is possible,
as we show next, to carry out interesting analysis of the system while retaining the full
nonlinearity of the competition term.

As in the moving mask experiments [55], we consider an effectively linear Petri dish
in which a mask shades bacteria from harmful ultraviolet light. The light causes the
bacteria to die in regions outside the mask. They grow in regions under the mask.
Contrary to the situation in previous analyses, however, we do not allow the mask to
move. Focusing attention on stationary masks, we analyze the x-dependence of the
stationary population of the bacteria. As in previous considerations [55], we assume
that the growth rate has a positive constant value a inside the mask, and a negative value
outside the mask. It is perhaps interesting to note here that inhomogeneity in resources
appears to be customarily represented in the K term in the hantavirus context, which
would correspond to the b term here, but that it is taken into account via the a term in
the bacterial context. Arguments could be given in support of such a distinction but the
choice is largely arbitrary. Realistically, both a and b here should be affected by resource
differences.

First, let us take the value of a outside the mask to be negative infinite to reflect ex-
tremely harsh conditions (due to ultraviolet light) when the bacteria are not shaded from
the light. This makes the population at the mask edges, and outside, to be identically
zero. The boundary conditions are thus of the Dirichlet form. In the steady state, intro-
ducing ξ = x/

√
D for simplicity, we obtain the ordinary differential equation for the

stationary population u(ξ ):

d2u(ξ )
dξ 2 +au(ξ )−bu2 (ξ ) = 0. (61)

Our interest is in the regions in the interior of the mask of width 2w, i.e., for −w ≤
x ≤ w, the boundary conditions being u

(±w/
√

D
)

= 0. How can we give a practical
prescription to decide on the applicability of the Fisher equation to bacterial evolution
with this setup? And how can we extract the parameters D, a, b from observations if the
equation is found to be applicable? These are the questions we now address.

The answers are straightforward [60]. Solutions of (61) can be written in terms of the
Jacobian elliptic function cd = cn/dn:

ui (ξ ) = (a/b)
[

fα (k)cd2 (√
a fβ (k)ξ ,k

)
+ fγ (k)

]
. (62)

The solution involves the Fisher parameters a,b and three functions of k alone:

fα (k) = (3/2)k2 (
k′2 +k4)−1/2

fβ (k) = (1/2)
(
k′2 +k4)−1/4

fγ (k) = (1/2)
[
1− (

k2 +1
)(

k′2 +k4)−1/2
]
, (63)

with k′2 = 1−k2. Fitting (62) to the observed stationary profile would yield a,b,k. For
sensitivity purposes the nome q = exp(−πK′/K) , rather than k, should be used for
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fitting [60]. Once k is found, the determination of the diffusion constant D follows in the
light of the Dirichlet boundary condition that ui vanishes at ξ = ±w/

√
D.

An interesting effect involving a critical mask size emerges from the analysis [60]. For
any size, there is a conflict between the growth process which tends to bring the bacterial
population to its saturation value, and the diffusion process which tends to move the
population out of the mask where it dies because of the adverse conditions. This conflict
is won by the diffusion process if the mask size is below a certain critical value; a steady-
state population then cannot be supported. There is, therefore, an abrupt transition at a
critical value of the size. This result is similar to one known in the study of phytoplankton
blooms [61]. We have recently suggested [60] that it be used observationally to validate
the Fisher equation in bacterial populations. Indeed, for a given set of Fisher parameters,
a decrease in the mask width 2w from large values causes a monotonic decrease in k.
The value k = 0 is reached at a finite value of the width. This vanishing of k means that
the elliptic function cd(βξ ,k) becomes its trigonometric counterpart cos(βξ ), and one

gets cos2
(

w
2

√
a/D

)
= 0.5, showing that a critical size 2wc of the mask exists:

2wc = π
√

D
a

. (64)

It is relatively easy to estimate a value of a from suitable monitoring of bacterial
growth [55] but much more difficult to arrive at a reasonably precise value of D. On
the basis of quoted [55, 57] values, D ≈ 10−5 cm2/s, a≈ 10−4/s, the critical mask size
can be calculated [60] to be of the order of half a cm. Since masks of this size are
easy to use, there is hope that the effect might be observable in the bacterial context.
Dirichlet boundary conditions used in the previous analysis are not appropriate if we
relax the condition that the environment outside the mask is harsh enough to ensure zero
population of the bacteria. In such a case, the critical size becomes smaller than that
in the Dirichlet case [60, 61]. Line (b) in Fig. 7 shows for this case the dependence of
the maximum of the bacterial density in the mask while line (a) shows the case with
Dirichlet boundary conditions. In the inset are shown the stationary profiles for several
mask sizes for the non-Dirichlet case. The tendency towards extinction as the mask size
approaches the critical value is clear [60].

Much further exploration of Fisher-like equations has been carried out recently for
bacterial evolution. It includes solutions of a nonlinear drift equation applicable to bac-
teria whose diffusion constant is practically negligible [62], and pattern formation from
the Fisher equation in the presence of long-range, i.e., spatially nonlocal, competition
interactions [63]. We comment briefly on each.

If the bacteria move via a convection term v∂u(x)/∂x, where v is an externally
imposed velocity, instead of diffusively as in the Fisher equation, analytic solutions can
be written down for a number of physically relevant situations. As one example, we give

u(x, t) =
1

e−at

u0[x−(v0/ω)sinωt] +
b
a (1−e−at)

, (65)
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FIGURE 7. Critical effect of mask size showing that bacteria cannot be supported below a critical size
because they diffuse out of the mask into the hostile environment.

which describes the exact evolution of the bacterial density when the velocity varies
sinusoidally in time as v0cosωt but a and b are constant. As another example, we show

u(x, t) =
1

e−
1
v

∫ x
x−vt dx′a(x′)

u0[x−vt] +b
∫ t

0 dt′e−
1
v

∫ x
x−vt′ dx′a(x′)

, (66)

which applies when v and b are constant, but a(x) is space-dependent as when there is a
mask [62].

What happens if we return to the Fisher equation (with its diffusive term) but modify it
to include a nonlocal competition term? Such a term would describe bacteria competing
with other bacteria not only at their own location but also at finite distances. Nonlocal
competition of this kind could come about from a variety of sources such as fast motion
of nutrients. Let the competition occur via an ‘influence function’ fσ (x−y) whose range
is σ . Thus, let

∂u(x, t)
∂ t

= au(x, t)+D
∂ 2u(x, t)

∂x2 −bu(x, t)
∫

fσ (x−y)u(y, t)dy. (67)

The Fisher equation is one extreme limit of (67) when fσ (x− y) = δ (x− y). The
other extreme, in which the influence range is infinite, is trivial to solve analytically.
Integration of (67) over x shows that the quantity u(t) =

∫
u(x, t)dx obeys the logistic

equation. Its solution is obtained as in (50) or (55):

u(t) =
[

e−at

u(0)
+

b
a

(
1−e−at)]−1

= e
∫ t

0 [a−bu(s)]dsu(0) . (68)
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FIGURE 8. Steady-state solution for u(x,y) in a 2-d set up of 30 x 30 sites with periodic boundary
conditions with Eq. (67) governing the evolution. Patterns appear as the result of the non-local competition
interaction. Lighter regions represent larger values of u. Parameters are arbitrary: a= b= 1 and D = 10−2

in appropriate units, and the influence function is Gaussian with a range σ of 10 sites.

This means that we have simply the diffusion equation

∂w(x, t)
∂ t

= D
∂ 2w(x, t)

∂x2 (69)

for the normalized transformed quantity

w(x, t) =
u(x, t)

[u(t)/u(0)]
, (70)

and that the complete explicit solution for u(x, t) is

u(x, t) =
[
e−at +

bu(0)
a

(
1−e−at)]−1 ∫

Ψ(x−y, t)u(y,0)dy, (71)

where Ψ(z, t) is the standard Gaussian propagator (4πDt)−1/2exp(−z2/4Dt) of the
diffusion equation. On discrete infinite space, the propagator is made of products of
modified Bessel functions and exponentials.

Although exact analytic solutions are possible to obtain in this extreme (because the
diffusion and the logistic growth are completely uncoupled), little of striking interest
emerges in this extreme. As soon as the range of the influence function is taken to be
intermediate, noteworthy patterns appear (see, e.g., Fig. 8). Such patterns are not present
as predictions of the original Fisher equation. The long-range nonlinear interaction is
responsible for their emergence. The nature of the influence function fσ determines
major properties of the patterns, the presence or absence of tails in fσ being an important
factor [63].
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NONLINEAR EQUATIONS AND MEMORIES IN COMBINATION

While nonlinear techniques and the memory formalism have little in common, there
are systems and phenomena whose study involves the two in combination. We discuss
these in three parts: nonlinear equations with memories, nonlinear equations which yield
memories, and nonlinear equations which compete againstmemories.

Nonlinear Equations with Memories

We have seen that the transport of the Fisher equation is incoherent, i.e., governed
by diffusion. What are the consequences of replacing it by one with arbitrary degree of
coherence? The answer to this question leads to interesting conclusions and may be pur-
sued in several different ways other than by adding drift terms as in the bacteria problem
described in the previous section. One of them consists of replacing the diffusion part in
the Fisher equation by a wave counterpart [64]; another of replacing it by a combined
wave and diffusive form (9) characteristic of the telegrapher’s equation [65]; and yet an-
other of replacing it by diffusion but with a memory function attached [66]. We examine
each in turn.

If the transport in the Fisher equation is completely coherent, we have

∂ 2u(x, t)
∂ t2 = v2 ∂ 2u(x, t)

∂x2 +au(x, t)−bu2 (x, t) . (72)

Traveling wave solutions of the kind u(x−ct) = U (z) , where z is x−ct, satisfy

d2U (z)
dz2 +

aU (z)−bU2 (z)
v2 −c2 = 0, (73)

which can be solved exactly. We may cite, as an example, the solution

u(x, t) =
3
2

{
sech2

[(
x−ct

2

)√
k

c2 −v2

]}
, (74)

which applies to the scaled case when the expression au−bu2 is written as ku(1−u) . If
the variance of the solution is called σ , the speed c of this profile is found [64] to obey

c2 = v2 +k
(√

2π2σ2
)2/3

. (75)

The striking conclusion that emerges from the analysis of other similar coherent equa-
tions is that, in contrast to the Fisher equation, the coherent transport case supports two
kinds of coexistingsolutions: anti-fronts as well as fronts [64].

If the transport in the Fisher equation is only partly coherent, the Fisher equation may
be replaced by

∂ 2u(x, t)
∂ t2 +α

∂u(x, t)
∂ t

= v2 ∂ 2u(x, t)
∂x2 +au(x, t)−bu2 (x, t) (76)
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as in [65]. The transport part is a telegrapher’s equation, equivalently, a diffusion equa-
tion with an exponential memory appended. Two kinds of new results relative to the
Fisher equation appear: generalization of Fisher results to include finite correlation times
of transport, and unexpected results not known earlier. To the latter kind belongs the ex-
istence of a speed beyond which spatialoscillations appear in the wave-front shape, and
the possibility of wave trains of infinite extent [65].

While (76) is certainly an allowable manner of introducing partial transport coherence
into the Fisher equation, there is an obvious alternative. Instead of first generalizing the
transport part of the Fisher equation by incorporating an exponential memory, converting
the resulting integro-differential equation via differentiation into a differential equation,
and finally adding the nonlinear logistic term to obtain the starting point of the analysis,
we may take as our point of departure,

∂u(x, t)
∂ t

= D
∫ t

0
φ(t − τ)

∂ 2u(x, t)
∂x2 dτ + f (u), (77)

where f (u) = au(x, t)− bu2 (x, t) . This equation reduces to the Fisher equation if the
memory function φ(t) is a δ−function in time. If φ(t) = αe−αt , we obtain

∂ 2u
∂ t2 +[α − f ′(u)]

∂u
∂ t

= v2 ∂ 2u
∂x2 +α f (u), (78)

where Dα = v2. In contrast to (76), the starting point (78) is characterized by a nonlinear
damping term. The investigation [66] of this equation reveals an expression for the
minimum speed of wavefronts

c≥ cmin = v
1√

1+ 1
4(y−1/y)2

, (79)

where y =
√

α/k. Again we use here, for simplicity, the scaled form with a single k
instead of a and b. This minimum speed expression is different from that obtained [65]
from (76) and different also from the result of the Fisher equation: cmin = 2

√
kD (see for

example [67]). If we make the formal identification Dα = v2 , as in (9), the Fisher result
becomes

c≥ cF
min = 2v

√
1/y2, (80)

whereas the telegrapher’s result as obtained in [65] is

c≥ cMHK
min = v

1√
1+ 1

4y2
. (81)

Reaction-diffusion systems in which the transport process is wave-like at short times
and diffusive at long times provide, thus, an arena for the combination of memory
functions and nonlinear techniques. The passage of the character of the motion from
coherent to incoherent is a general feature of all physical systems. So is nonlinearity. We
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have noticed that our generalizations converge to the Fisher equation result in the limit
of diffusive transport but sharp differences occur in the wave-limit. These include new
kinds of solutions we have not mentioned here for lack of space, which involve “inverse”
fronts, in which the state U = 0 invades the state U = 1 [66]. For these and other aspects
we refer the reader to the literature.

Nonlinear Equations which yield Memories

Projection operators explained earlier in this article for derivation of memory func-
tions have been clearly fashioned to be used in the context of linear equations. Could
they have any utility in conjunction with nonlinear equations? Our obvious intuitive
answer would be that they would not. We now give a remarkable instance [68] in which
they are useful, perhaps contrary to expectation.

The result we will obtain is that, starting from the discrete nonlinear Schrödinger
equation (40), explicit and exact prescriptions can be written for a GME with nonlinear
memories, and that, in particular, the probability difference p of the two sites in a dimer
as in (24), obeys

dp(t)
dt

+4V2
∫ t

0
ds p(s)cos

[
χ

∫ t

s
dz p(z)

]
= 0 (82)

which displays a memory function nonlinearin the probability difference

W (t,s) = 2V2 cos

[
χ

∫ t

s
dz p(z)

]
. (83)

We begin with the DNLSE (40) expressed as a density matrix equation

dρmn

dt
= −i [V,ρ]mn+ i

(
Lχρ

)
mn, (84)

and note that we could define the nonlinear operator Lχ in one of two ways. For any
operator O, we could either choose the definition(

LχO
)

mn = χ (Omm−Onn)Omn, (85)

or the definition (
LχO

)
mn = χ (ρmm−ρnn)Omn. (86)

Use of the first of these in conjunction with a diagonalizing projection operator P
does indeed agree with our ‘intuition’ that projection operators should be of no value in
conjunction with nonlinear equations. The other definition, however, makes the second
of the Zwanzig equations (13) formally linear! That linearity is all that is required to
make the procedure go through without problems, and to result in a usable GME. The
memory functions obtained are generally complicated. A simple form, approximate for
extended systems, but exact for a two-site (dimer) system, is

Wmn(t,s) = 2V2 cos

[∫ t

s
dz (Em(z)−En(z))

]
. (87)
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The site energies E are proportional to the probabilities of occupation of the sites because
of the nonlinearity inherent in the original equation (40). Thus, we have (82).

The meaning of the nonlinear GME (82) is surprising. The definition of a new quantity
ξ through

ξ (t) =
∫ t

0
ds p(s) (88)

allows us to rewrite (82) in the form of the differential equation

d2ξ (t)
dt2

+
4V2

χ
sin [χξ (t)] = 0, (89)

which is nothing other than the familiar equation obeyed by the displacement of the
classical physical pendulum under the action of gravity. It can be solved at once in terms
of elliptic functions and shown to yield results completely equivalent to the selftrapping
results of (43).

Nonlinear Equations which compete against Memories

Evolution equations at the macroscopic level of description take forms which are
substantially different from evolution equations at the microscopic level. Generally ac-
cepted lore assumes the latter to be linear, local, and reversible. The former are found to
be sometimes nonlinear, sometimes nonlocal in time and space, and often irreversible.
The problem of the passage from microscopics to macroscopics has always been a cen-
tral concern of statistical mechanics. Whether one or the other form of macroscopic
equations is appropriate and compatible with the given microscopic starting point (typi-
cally Newton’s or Schrödinger’s equation) is obviously an important question. In certain
contexts this question takes the form of a competition between a nonlinear equation
and a linear equation, the latter sometimes with memory. An example is found in con-
densed matter physics systems in which electrons or other moving quasiparticles inter-
act strongly with vibrations, with the resulting phenomenon of polaronic selftrapping
and the emergence of entities such as Davydov solitons [38]. Intellectual wars have
been waged on this subject. Early objections to the nonlinear equation raised on gen-
eral grounds [30], more recent arguments based on Wigner distribution functions [31],
and even more recent studies based on explicit numerical solutions of simple models
[32] have combined to show that polaronic systems are not well served by a description
based on the discrete nonlinear Schrödinger equation. It has been additionally found that
a memory function analysis [8] does a much better job for many parameter ranges of in-
terest. For want of space we give no discussion here but only direct the reader to the vast
literature on the subject (see, e.g., [31], [33], and references therein).

In concluding this section on nonlinear techniques, we emphasize the emergence
of thresholdsin nonlinear systems. Excitons or electrons obeying the DNLSE (40)
are free to move or become selftrapped in localized regions as the critical parameter
χ/V passes a threshold value. Infection appears or disappears in mice as the control
parameter K, determined by resources such as vegetation, exceeds a certain magnitude.
Bacterial populations vanish or survive under masks shading them from lethal ultraviolet
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light according to whether the mask size is smaller or larger than a threshold. Spatial
oscillations in shock fronts make their abrupt appearance as steepness or speed crosses
a critical value. Such interesting occurrences are quite out of bounds to linear equations
and to linear methods of surveying the world.

MISCELLANEOUS TECHNIQUES BASED ON KINETIC
EQUATIONS

The diversity of phenomena encountered in the practice of statistical mechanics surely
requires that one go beyond the memory formalism or the nonlinear techniques described
thus far in this article. In this final section of the article we illustrate two approaches lying
outside the memory/nonlinear regimes. One of them uses the Fokker-Planck equation,
the other the (linear) Boltzmann equation.

Fokker-Planck Techniques

The quantum world underlying all phenomena around us is generally very different
from the classical world visible at the macroscopic level. Nevertheless, there are mathe-
matical similarities in the methods of analysis. We begin by treating two problems, one
concerning the classical phenomenon of microwave heating in ceramic materials, the
other concerning the quantum motion of charge carriers in an organic crystal. The tool
we will use for the study of both is the Fokker-Planck equation. The mathematics we
will employ for the solution of that equation will be identical. The results will turn out
to appear, however, completely different. In the study of microwave heating of ceramic
materials [70], one is interested in analyzing the absorption of electromagnetic radiation
by moving ions or vacancies in a solid. Therefore, one studies the motion of a charge in a
spatially periodic potential under the simultaneous action of an external field and of ran-
dom forces responsible for thermalization. Under the high-damping approximation, the
governing equation for the probability density function P(x, t) is of the Fokker-Planck
(or Smoluchowski) form [69]

∂P(x, t)
∂ t

=
1

mα
∂
∂x

[(
dU
dx

−qE

)
P(x, t)+

1
β

∂P(x, t)
∂x

]
. (90)

Here m and q are the ionic mass and charge respectively, E is the electric field of
the microwave, α is representative of bath interactions, and β is proportional to the
reciprocal of the temperature as defined earlier.

In investigations of the mobility of photoinjected charge carriers in strong electric
fields, one begins with the effective mass equation for a carrier augmented by Brownian
motion terms. The resulting Langevin equation leads, via standard methods such as those
explained by Wio and Lindenberg elsewhere in these Proceedings, to the Fokker-Planck
equation [72] for the distribution function f (k, t) in k-space

∂ f (k, t)
∂ t

=
1

h̄2

∂
∂k

[(
γ

dεk

dk
− h̄qE

)
f (k, t)+

1
β

∂ f (k, t)
∂k

]
, (91)
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where γ is a friction coefficient.
There is a clear analogy between the position variable x and the crystal momentum k,

and between the potential U (x) and the band energy εk. The latter two are both periodic
and often well represented by sinusoids. In both cases, the observable of interest is
the average steady-state drift velocity as a function of the field E. The computational
procedure is to put the time derivative of the distribution function equal to zero, and to
solve the resulting first-order differential equation for the derivative of the distribution
function. The details may be found in [69] or [72].

Given that the two problems appear to be essential identical, it is remarkable that the
field dependence of the velocity is sharply different in the two cases. Fig. (9) makes
this difference clear. The (normalized) drift velocity in each case is plotted against
the (normalized) electric field for different values of the (normalized) temperature, v0
and vmax, E0 and Ec, and 2U0 and V, being the respective normalization quantities.4

The carrier velocity shows activated behavior in the classical system of microwave
heating. The temperature increases upwards in the curves in the upper frame. At low
temperatures, the average drift velocity is negligible and picks up only at temperatures
high enough to kick the ion (carrier) out of the potential well which confines it. Once the
temperature is high enough, sufficiently large fields tilt the periodic potential so sharply
that the corrugation characteristic of the atomic potential makes negligible contribution.
The velocity is then linear in the field, increasing with field as it would for a free particle.
This behavior, visible in the upper frame of Fig. (9), should be contrasted with what
one encounters in the lower frame which depicts the hole or electron in the organic
crystal. The low-field behavior is Ohmic: the carrier velocity is proportional to the field.
At higher fields, the velocity decreasesas the field increases. This negative differential
mobility phenomenon occurs at all temperatures. Note that, contrary to the upper frame
in Fig. (9), the lower frame has temperature increasing downwards among the curves.
At low temperatures, the transition from the Ohmic increase to the further decrease is
sharper, the transition at zero temperature displaying a prominent cusp. Physically, the
transition signals Bloch oscillations: the carrier exits the Brillouin zone at one end and
reenters it at the opposite end. Being proportional to the derivative of the band energy, the
velocity varies non-monotonically in the zone as a function of k. As the carrier samples
regions in the zone where the velocity is smaller, the average drift velocity decreases.
This is what yields negative differential mobility.

We have thus seen that it is not difficult to gain a physical understanding of the sharp
difference between the classical and quantum problems we have considered. But how
is this difference reflected in the calculations? The answer lies in the manner the drift
velocity is computed from the distribution function. In the organic crystal case, once
f (k) = f (k,∞) is found, one calculates the average of the velocity through the prescrip-
tion 〈v〉 = (1/h̄)

∫
(dεk/dk) f (k) dk: the carrier velocity in a band is related straightfor-

wardly to the band energy. In the classical microwave heating case, the ion velocity is
not given by the average of the x−derivative of the potential U(x) in the same way but
is obtained quite differently. The high-damping (Aristotelian) approximation used in the
treatment of this problem means that the velocity is proportional to the force. This force

4 It is not important in the present context to specify their detailed meaning, for which see [72].
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FIGURE 9. Strikingly different nonlinear dependences of carrier velocity on electric field obtained
essentially from the same mathematical content of the Fokker-Planck equation in two cases: (upper graph)
classical motion in regard to microwave heating in a ceramic material, and (lower graph) quantum motion
of a charge carrier in an organic crystal.

is the sum of the electric force qE and the potential force −dU(x)/dx. The notewor-
thy difference in the classical expression for the velocity is that, relative to its quantum
counterpart, there is a change of sign as well as an additive component (proportional
to the field). This difference is responsible for the curious apparent discrepancy in the
velocity behavior in the two parts of Fig. (9). If the lower frame curves in Fig. (9) are
reflected about the field axis to represent the change in sign, and a term linear in the
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field is then added to it, one indeed obtains the curves in the upper frame in Fig. (9)
in the correctly reversed temperature order. In fact, the expressions for the average drift
velocity derived for the microwave heating problem of (90) and for the charge carrier
problem of (91) respectively, show this relationship clearly. The drift velocity is given
in the former (classical) situation by

〈v〉 =
2

βmα�

sinh(βqE�/2mα)
I−iβqE�/2πmα(2βU0)IiβqE�/2πmα(2βU0)

, (92)

and in the latter (quantum) situation by

〈v〉 =
qE
γ

− 1
π

asinh(πh̄βqE/γa)
β h̄I−ih̄βqE/γa(2βV)Iih̄βqE/γa(2βV)

, (93)

where Iν(z) is the modified Bessel function of (imaginary) order ν and argument z, and
U0, V are proportional to the peak values of the respective potentials (U(x) and the band
energy). The quantity � in (92) is the spatial period of the potential and is analogous
to 2π/a in (93). It is amusing that the same mathematics leads to completely different
behaviors for the drift velocity.

The investigation of the quantum carrier velocity dependence on the electric field
explained above was recently undertaken [73] to verify an idea related to velocity satu-
ration observed in the organic crystal naphthalene [71] and later claimed also to be ob-
served in pentacene. The idea being verified was that such saturation is a consequence of
the nonparabolic nature of bands in organic crystals. As we have seen above, velocity sat-
uration at high fields cannot arise merely from the band being sinusoidal (nonparabolic),
the natural consequence of such nonparabolic bands being negative differential mobil-
ity. This means a decreasein the velocity at high fields, not a saturation. In the next
section we will reexamine this issue of saturation from a starting point different from
the Fokker-Planck equation.

Other Kinetic Equation Techniques

One of the quantum kinetic equations widely used to describe transport is the so-called
Stochastic Liouville equation (SLE) for the density matrix ρ of the carrier, employed
extensively in exciton transport in molecular crystals [6]. In terms of the representation
of Wannier states m, n, etc., it is written as

ih̄
dρm,n

dt
= [V,ρ]m,n +(qEa)(m−n)ρm,n

−ih̄α0 (1−δm,n)
[
ρm,n−ρe

m,n

]
(94)

where the scattering is represented by the single relaxation rate α0 at which the off-
diagonal elements of the density matrix relax to their equilibrium values ρe

m,n in the
absence of the field. By Fourier-transforming the SLE to k-space, the distribution func-
tion

f (k) = 〈k|ρ|k〉 =
a

2π ∑
m,n

ρm,neika(m−n), (95)
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obtained from the diagonal part of ρ in reciprocal space, is found to obey

∂ f (k, t)
∂ t

= −E
∂ f (k, t)

∂k
−α0

[
f (k, t)− f th(k)

]
, (96)

where E = qE/h̄ and f th(k) is the thermal distribution. Equation (96) is restricted in its
applicability to high temperatures because it contains a singlerelaxation time 1/α0. A
more accurate description is provided by its counterpart with arbitrarily k−dependent
relaxation times 1/αk:

∂ f (k, t)
∂ t

= −E
∂ f (k, t)

∂k
−α (k)

[
f (k, t)− f th(k)

]
. (97)

In the condensed matter physics community [75], this equation is called the linear
Boltzmann equation under the relaxation time approximation5. It, or its more general
form which displays the transition rates from one k−state to another [75], is not bilinear
in the distribution function as in the case introduced by its originator, Boltzmann.
The bilinear form, explained elsewhere in these Proceedings by Romero-Rochín, is
appropriate for the kinetic theory of gases in which molecules collide against molecules.
The present linear form is appropriate in electron and hole transport theory in which
transitions are assumed to occur because of interactions of the carriers with other objects
such as impurities and phonons rather than with themselves.

The Boltzmann equation is traditionally used in textbook treatments of the mobility
of carriers under the approximation that the electric field is weak enough that only linear
terms in the field need be retained. By contrast, we will give here an analysis [73] which
is valid for arbitrarily strong field strengths and for arbitrary k-dependence of α (k) .

Rewriting (97) in terms of the linear operator α +E ∂/∂k , and constructing the Green

function G(k, t) = exp
[
−t

(
α +E ∂

∂k

)]
, the solution is written down at once:

f (k, t) = G(k, t) f (k,0)+
∫ t

0
ds G(k,s)α (k) f th(k) . (98)

The identity
ec(A+B) = ecAe

∫ c
0 dx e−xA B exA

(99)

where c (or x ) is a c−number and A and B are generally non-commuting operators not
involving time, is easily proved. Applied to (99), it gives

e−t(α+E ∂
∂k) = e−E t ∂

∂k e−
∫ 1

0 dx e
xE t ∂

∂k αt e
−xE t ∂

∂k
. (100)

5 This form, ubiquitous in solid state treatments, has served as the basis of an enormous number of
practical computations in realistic applications. An often forgotten peculiarity it possesses is that it cannot
conserve probability at all times. This is clear on putting the field equal to zero and summing over all k.
This feature, which has not stopped generations of solid state investigators (including the present author)
from using the form in the region of long times where it is valid, is not possessed by the single-relaxation-
time approximation!
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Expansion of the integrand and the recognition that
[

∂
∂k,α

]
= ∂α/∂k leads to the result

that, for any function Ω(k),

e−
∫ 1

0 dx e
xE t ∂

∂k αt e
−xE t ∂

∂k Ω(k) = e−t
∫ 1

0 dxα(k+xE t)Ω(k) . (101)

Explicit evaluation of the Green function operation is now possible:

G(k, t)Ω(k) = e−α(k−E t,t)tΩ(k−E t) (102)

for any function Ω(k) . Here

α (k, t) =
1
εt

∫ k+E t

k
α (y)dy (103)

is the average of the reciprocal relaxation time α (k) over a region in k-space of extent
E t centered around k+ E t/2. The general solution of the Boltzmann equation (97) is
thus obtained as

f (k, t) = e−α(k−E t,t)t f (k−E t,0)+
∫ t

0
ds e−α(k−E s,s)sα (k−E s) f th(k−E s) . (104)

It leads to the average time-dependent velocity

〈v〉 =
∫ π/a

−π/a
dk e−α(k,t)tv(k+E t) f (k,0)

+
∫ t

0
ds

∫ π/a

−π/a
dk e−α(k,s)sα (k) f th(k)v(k+ E s) . (105)

and, in the steady state, to

〈v〉 =
∫ ∞

0
ds

∫ π/a

−π/a
dk e−α(k,s)sα (k) f th(k)v(k+E s) . (106)

Equation (106) is an exact consequence of the Boltzmann equation in the relaxation
time form for arbitrarily k−dependent relaxation times [73]. For the constant relaxation
time case, α (k) = α0 = α , one gets

〈v〉 =
∫ ∞

0
ds

∫ π/a

−π/a
dk e−α0sα0 f th(k)v(k+E s) . (107)

Explicit evaluation is trivial in the tight-binding limit where v(k) is taken as v0 sinka,
and

f th(k) = a[2πI0 (2V/kBT)]−1 exp(2V coska/kBT) , (108)

where I0 the modified Bessel function, and V the nearest-neighbor transfer integral
which is proportional to the bandwidth. One obtains [73, 76]

〈v〉 = v0
E α0

E 2 +α2
0

I1 (2V/kBT)
I0 (2V/kBT)

(109)
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showing an Ohmic rise for low fields and negative differential mobility for high fields
as in (93), but no saturation. An asymptotic analysis presented in [73] shows that such
a Boltzmann result can be understood as a relative high temperature consequence of the
Fokker-Planck treatment.

Possible Origin of Velocity Saturation

There should be no doubt that, as shown in the previous two sections on the basis
of two different methods of analysis, velocity saturation in organic crystals cannot arise
as a consequence solely of nonparabolic nature of the carrier bands. Is there anything
that can naturally give rise to such saturation? A simple answer has been given recently
[74] on the basis of an effective mass equation treatment augmented by Fokker-Planck
considerations. The key ingredient necessary in that answer is a k−dependent γ in the
effective mass equation for the carrier:

h̄
dk
dt

+ γkvk = qE. (110)

At finite temperatures, we append a noise term to the right hand side of (110) and,
through standard procedures, obtain for the evolution of the probability distribution
f (k, t) a Fokker-Planck equation

∂ f (k, t)
∂ t

=
1

h̄2

∂
∂k

[(
γk

dεk

dk
− h̄qE

)
f (k, t)+ γkkBT

∂ f (k, t)
∂k

]
, (111)

which differs from (91) only in the fact that γk is here k−dependent.
To motivate this suggested mechanism for velocity saturation, start with the Drude

equation for the velocity of the carrier,

dv
dt

+
v
τ

=
qE
m∗ =

qEa
h̄

√
v2

0 −v2, (112)

where τ is a relaxation time assumed independent of k. We have written the effective
mass of the carrier explicitly as m∗ = (1/h̄)(dvk/dk) to obtain the extreme right hand
side. Here v0 is the peak value 2Va/h̄ of the velocity in the band assumed sinusoidal for
simplicity. From (112), saturation is obtained immediately: at infinite time,

v∞ =
qEτ
m∗ =

qEτa
h̄

√
v2

0 −v2
∞ = v0

E√
E2

c +E2
(113)

where Ec = h̄/qτa. The behavior is Ohmic at small fields (E 
 Ec) with mobility
µ0 = v0/Ec = 2Vqτ (a/h̄)2. The velocity saturatesfor large fields (E � Ec) to the
maximum value v0 = 2Va/h̄ that the carrier velocity can have in the band.

What does this mean for the effective mass equation (110) obeyed by the crystal mo-
mentum? It is easy to see that to obtain this saturation behavior, the damping coefficient
γk in (110) must have the steepness of the effective mass. Equation (110) gives the same

Downloaded 19 Nov 2004 to 64.106.63.200. Redistribution subject to AIP license or copyright, see http://proceedings.aip.org/proceedings/cpcr.jsp

admin
98



result as (112) if γk is proportional to dvk/dk. A damping coefficient that is not patholog-
ical like m∗, but is nevertheless very steep, will be sufficient to give saturation behavior.
Assume an initial occupation by the carrier of a k−state at or near the center of the Bril-
louin zone, and take the k−dependence of the damping coefficient to be steep enough so
that the carrier, in being accelerated towards the edge of zone, never reaches it, produces
no Bloch oscillation, but comes to a steady state. From (110), this will happen when the
carrier reaches a k−value which satisfies

γkvk = qE. (114)

The steady-state value of the velocity is vk at that value of k. The field E that produces
this velocity equals 1/q times the value of γkvk at that value of k. The k−dependence of
γk will thus be reflected in the field dependence of the velocity. As a result, the plot of v
versus E will show a saturation if γk is sufficiently steep: small changes in k will result in
large changes in γk and thereby of E. In other words, as a consequence of the steepness
of γk, large changes in the field would be required to produce a discernible change in k
and therefore in the velocity. The velocity versus field curve is, thus, essentially the vk
versus γkvk curve.

Thus, while saturation does not arise merely from non-parabolic nature of bands, it
can arise very simply from steep damping coefficients, at least at zero temperatures.
What happens at finite temperatures? From (111), we have

fk =

∫ 2π/a
0 dp h′k+peβ(εk+p−εk)e−β h̄qE(hk+p−hk)∫ π/a

−π/adk
∫ 2π/a

0 dp h′k+peβ(εk+p−εk)e−β h̄qE(hk+p−hk)
(115)

where a is the lattice constant and

h′k =
dhk

dk
=

1
γk

. (116)

The steady-state velocity is obtained from fk in (115)

v =
∫ π/a

−π/a
vk fkdk. (117)

Numerical, as well asymptotic, evaluation procedures show [74] that the saturation
phenomenon which can be understood for T = 0 simply as explained, can persist or
be destroyed according to the value of the temperature and the steepness of γk. We refer
the reader to that analysis [74] for further details, and emphasize here that the essence
of the mechanism can be appreciated pictorially by visualizing the manner in which the
carrier is stopped in the Brillouin zone by the steep ‘wall’ presented by γk despite the
encouragement by the applied field to move in its direction. Perhaps the best way of
understanding the mechanism of the velocity saturation of the carrier is in terms of the
following modification of Lord Tennyson’s well-known charge-related work:
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PLIGHT OF THE CHARGE (brigade?)

“I am the carrier,” said the hole, “I will not stop.”
“Whatever the barrier, I will cross, by flow or hop.”

“You forget, you puny charge,” replied the wall.
“How steep I rise, above your fields, large or small.”

“From this height, I pity your plight, you have much gall.”

“Fear not, hole, you ar’n’t the sole, wisher of currents.”
Said a friendly field, “We will not yield, to scattering tyrants.”

Much she tried, the friendly field, to push the hole.
But whatever the p or h̄k, the scattering stole.

Every time, the hole was forced, to the bottom of the bowl.

CONCLUSIONS

If our description of some techniques of modern statistical mechanics in this article has
given the appearance of a random walk, we hope it will be regarded to be, at the very
least, a directedrandom walk. First, we have examined the memory function formalism
and seen how it unifies coherent and incoherent motion, and how it addresses matters as
abstract as the origin of irreversibility and topics as concrete as photosynthesis, confined
spaces, and granular compaction. Second, we have introduced nonlinear techniques for
excitations, mice, and bacteria and investigated selftrapping, epidemic spreads and pat-
tern formation in Petri dishes. Next, we have studied a combination of memory tech-
niques and nonlinear approaches in various juxtapositions: where they blend, coexist,
and compete. Finally, we have briefly touched upon kinetic equation approaches and
seen how, although ‘identical equations have identical solutions’ as Richard Feynman is
reputed to have said, the same equations can result in very different physics in classical
and quantum contexts.
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