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Abstract

Finite-bandwidth effects on the temperature dependence of the mobility of injected carriers in pure organic crystals are
explored for a simplifed case of impurity scattering. Temperature-dependent bandwidth effects are discussed briefly through a
simplified combination of band and polaronic concepts.
 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In studying charge carrier (electron or hole) trans-
port in organic crystals, one avoids the use of standard
band theoretic approaches [1] since the carrier band-
width is not an overwhelmingly large energy in or-
ganic, in contrast to inorganic, materials [2]. Mean free
paths calculated on the basis of bare band-theoretic
descriptions have been explicitly found to be smaller
than a lattice constant [3]. Such findings have neces-
sitated polaronic or hopping theories of transport in
organic materials [4,5]. The question arises whether
this trend [6,7] away from bare-band theory, which has
continued in the literature on organic materials in re-
cent times [8], needs to be revised or at least modi-
fied in light of recent observations [9] and calculations
[10] on pentacene. The large low-temperature mobil-
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ity in these materials (orders of magnitude larger than
values reported earlier [11] at other temperatures and
in other organics), sharp power-law dependence of the
mobility on temperature in a wide range [9,12], and
nonlinear saturation phenomena [13] which have been
interpreted [9] in terms of large bandwidths, all could
point to the need for bare-band theory to be considered
seriously in organic materials. On the other hand, the
bandwidths are believed [9,10] not to be of the order
of several eV’s as in inorganic materials but smaller.
One concludes, therefore, that required is a descrip-
tion valid for intermediate bandwidths (B). To begin
the construction of such a description is the main pur-
pose of the present Letter.

Temperature-dependent (Huang–Rhys)B ’s arise in
polaronic transport [4,5,14]. In the past, effective bare
B ’s, which undergo reduction by polaronic effects in
the presence of strong interactions with vibrations,
were themselves believed (or shown) to be rather
small. With naphthalene as an example,B ∼ 10 meV,
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the polaronically reducedB is about a tenth of this
value in light of the magnitude of the coupling con-
stants and is thus well surpassed by the thermal energy
kBT . The latter exceeds 2.5 meV corresponding to
30 K, the lowest temperature in the naphthalene obser-
vations [11]. Therefore, although past explanations of
mobility observations have certainly made use of the
temperature dependence of polaronic bandwidths [4,
5] to address decreasing mobility with increasing tem-
perature [5], polaronic calculations have served as the
investigational procedure. Band considerations have
either not been used at all [5] or assigned a less im-
portant role [4]. Estimates in pentacene raise the pos-
sibility that kBT is smaller thanB for a part of the
observations. To show the results of a simple combi-
nation capable of blending finite-band theory and po-
laronic concepts, is a secondary purpose of the present
Letter.

2. Constant scattering rates and truncated
parabolic bands

Band-theoretic descriptions in inorganic materials
effectively take the bandwidthB to be infinite. The
well-known textbook formula for the mobility

(1)µ=
(
q

kBT

)∫∞
0 dε v2(ε)τ (ε)ρ(ε)e−ε/kBT∫∞

0 dε ρ(ε)e−ε/kBT
,

wherekB is the Boltzmann constant, andq , ε, T , v, ρ,
τ are the carrier charge, energy, temperature, velocity,
density of states, and relaxation time, respectively, has
∞ as the upper limit of the energy integrations. We
will explore, instead, the consequences of replacing it
by the finite value ofB, suitably modifying the density
of states. We consider a one-band model, which means
merely that the band gap is taken to be large enough to
make interband transitions unimportant, and assume a
simpleρ(ε) having the free-electronic form within the
band and to vanish outside:

(2)ρ(ε)=N
(

3
√
ε

2B
√
B

)[
θ(ε)− θ(ε−B)],

whereθ is the Heaviside step function andN is the
number of sites. It is easy to show that the carrier
velocityv(ε) is

(3)v = 1

h̄

dε

dk
= C√

Bε.

The constantC equals(2/
√

3)(a/h̄)(3π2)−1/3 if the
system is isotropic in three dimensions,a being
the lattice constant, given that the charge carriers
are Fermionic (2 spin values per orbital state). The
thermal distribution in (1) is classical for the standard
reasons that the carriers being injected are so small
in number, e.g., in time-of-flight observations, that
the Fermi distribution is well approximated by a
Maxwell distribution. Although space-charge limited
conditions of measurement are common now for some
experimental setups such as in field-effect-transistor
geometry, we will assume here that this assumption
is valid. If the need arises, it can always be relaxed in
subsequent calculations.

Our present purpose being to get at the simplest
consequences of finiteB as economically as possible,
for most of the calculations here, we will first take the
relaxation timeτ to have no energy dependence. Such
a case appears in an early analysis of Erginsoy [15].
Whether the entire set of assumptions behind Ergin-
soy’s analysis applies to organic crystals is of no im-
portance in the present context. Our interest lies only
in exploring, in the first instance, the consequences of
a constantτ in a finite band system. The finite-band
generalization of (1) is then

µ′ = µ

h̄qC2
=
(
B

S

)∫ B/kBT
0 dx x

√
x e−x∫ B/kBT

0 dx
√
x e−x

(4)=
(
B

S

)(
B

kBT

)∫ 1
0 dx x

√
x e−xB/kBT∫ 1

0 dx
√
x e−xB/kBT

.

Displayed in (4), is the dimensionless ratioµ′ of the
mobility to h̄qC2 = (4a2q/3h̄)(3π2)−2/3, andS is the
‘scattering energy’̄h/τ . The dimensionless mobility
µ′ has been expressed in terms of the dimensionless
ratios of the bandwidth to the scattering energy and
to the thermal energy:B/S andB/kBT . While both
expressions in (4) are exact, they can be used respec-
tively in opposite limits most conveniently:

µ′ = (3/2)(B/S) for B/kBT → ∞,
(5)µ′ = (3/5)(B/S)(B/kBT ) for B/kBT → 0.

ThisB to B2 transition as one goes from large bands
to small bands arises from the occupation of states in
the band. The mobility, which involves the thermal
average of the square of the velocity, is proportional
to BkBT , the product ofB and the thermal energy
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in the large bandwidth case, but toB2 in the small
bandwidth case, because the temperature is so large
with respect toB/kB that it makes no contribution: all
states in the band are occupied equally. The transition
takes on different character if the relaxation timeτ is
energy-dependent, the limiting exponents ofB being
different from 1 and 2, respectively.

The two different ways of scaling the energy
apparent in (4) are particular casesQ = kBT and
Q= B of scaling with an arbitrary quantityQ having
the dimensions of energy:

(6)µ′ =
(
B

S

)(
Q

kBT

)∫ B/Q
0 dx x

√
x e−xQ/kBT∫ B/Q

0 dx
√
x e−xQ/kBT

.

This general expression can be used in additional ways
such as by takingQ= S:

(7)µ′ =
(
B

kBT

)∫ B/S
0 dx x

√
x e−xS/kBT∫ B/S

0 dx
√
x e−xS/kBT

.

In that case, extreme limits ofB/S can be studied—
if it is very large, which represents the large mean
free path case,µ′ is proportional to a ratio of Laplace
transforms of powers, withS/kBT as the Laplace
variable.

The three representations of the mobility given
above are useful in understanding limiting behavior
of carrier transport in extremes of the three respective
ratios ofB, kBT , andS. Generally, one can identify
the integrals in (4) with incomplete gamma functions
γ defined viaγ (b, x) = ∫ x

0 e
−t tb−1 dt, and write,

exactly, i.e., for arbitrary relative values ofB, kBT ,
andS,

(8)µ′ =
(
B

S

)
γ (5/2,B/kBT )

γ (3/2,B/kBT )

which can easily be shown to lead to the various
respective limits, or rewritten in other ways such
as in terms only of error functions and exponen-
tials through the use of the chain conditionγ (b +
1, x)= bγ (b, x)−xbe−x and the relationγ (1/2, x)=√
π erf(

√
x ).

3. Power laws

The sharpness of the power laws in the temperature
dependence of the observedµ in organic crystals,

whether in the recent experiments on pentacene [9] or
in experiments on other crystals such as naphthalene
reported a couple of decades back [12], is impressive.
Although Giuggioli et al. [16] have shown recently
that visually acceptable fits to the data can be produced
by a band theory addressing the partial range of
pentacene data from 20–400 K by combining acoustic
and phonon scattering, it is interesting to ask if a
true power law form can be obtained as ananalytic
limit from the expressions. The following simplified
approach produces such as a limit. Assume that the
mechanism of scattering is such that the relaxation
time τ depends both on the carrier energyε and
the temperatureT asτ = τ0(ε/ε0)−p(T /T0)

−r where
ε0, τ0, and T0 are a characteristic energy, time,
and temperature, respectively. Such expressions arise
naturally in many contexts. Thus,p = 1/2 in many
semiconductors [17], andr = 1 for acoustic phonon
scattering at high temperatures. Eq. (1) then yields

µ′ =
(
Bτ0

h̄

)(
ε0

kBT0

)p
γ (5/2− p,B/kBT )
γ (3/2,B/kBT )

(9)×
(
T

T0

)−(p+r)
.

Whether or not this appears as a power form depends
on the particularT dependence of the ratio of the
γ -functions. Forp = 0, one recovers (8) except for
the explicit T −r factor. Forp = 1, the γ -functions
cancel and the mobility is seen to display a clear
power lawT −(1+r). In such a case the valuer = 1.7
could conceivably correspond to the observedT −2.7

dependence in pentacene [9]. It is easy to see that,
even if the value ofp is not 1, a sharp power law
may indeed be the direct apparent consequence of the
assumedτ in an appropriate (although limited) range
of temperature, provided the ratio of theγ -functions
in (9) is largelyT -independent in that range.

4. Huang–Rhys bandwidths and polaronic
expressions

If polaronic effects are present in carrier transport,
it could be argued [9] that some of the physics might
be captured by invoking the well-known Huang–Rhys
dependence

(10)B = B̃ = B0e
−G2 coth(h̄Ω/2kBT ),
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whereB0 is the bare bandwidth, and its exponential re-
duction occurs as a result of strong interaction via the
coupling constantG with vibrations of frequencyΩ .
For instance, the substitution of (10) in the simple
constant-τ version (8) would yield the normalized mo-
bility

(11)
µ(T )

µ(0)
= e

−G2[coth
( h̄Ω

2kBT
)−1

]
3/2

[
γ
( 5

2,
B̃
kBT

)
γ
( 3

2,
B̃
kBT

)
]
.

Eq. (11) displays the qualitative trend of the low tem-
perature data, but not of the high temperature data,
in the acenes. Furthermore, there is always a large
enough temperature at which the Huang–Rhys fac-
tors reduce the polaron bandwidth enough to make the
mean free path smaller than a lattice constant. This
forces the band calculation to lose its accuracy and,
indeed, its applicability. Crystal momentum becomes
an inadequate quantum number in such a case, and
a hopping description becomes necessary. In particu-
lar, a bridging of the present finite-band calculations
and of polaronic theories developed earlier [4,5] is re-
quired. How would one carry out such a combination?
This important and difficult question, along with appli-
cation to pentacene observations, is being addressed in
our ongoing work. Here we sketch a simplified answer
to the question.

Polaronic mobility theory for narrow bands has
been successfully applied [5] more than a decade ago
to naphthalene observations [11] on the basis of an
expression, which, in one of its most simplified forms,
may be written as

(12)µ= cq

kBT

(
B̃a

h̄

)2( 1

α

)
I0

(
2G2

sinh
(
h̄Ω

2kBT

)),
wherec is a numerical constant andI0 is a modified
Bessel function. The scattering rateα is essentially
the constant 1/τ appearing in band expressions shown
earlier in this Letter. The expression comes about from
the time integration of the velocity autocorrelation
function. The velocity autocorrelation function is a
product of a polaron part which arises from the
interaction of the charge carrier with vibrations and
a parte−αt which arises from interaction with static
defects [18]. Eq. (12) is appropriate to a narrow band.
An extension of the narrow-band expression to an
intermediate-band situation may be made by using the
calculation given earlier in this Letter to obtain the

static parte−αt . It leads to the replacement ofα in
(12) by an effectiveα which is dependent onT andB
in addition to being proportional to the constant 1/τ .
The result is (withc′ a numerical constant)

(13)

µ= c′qτ
(
a

h̄

)2

B̃

[
γ
(5

2,
B̃
kBT

)
γ
(3

2,
B̃
kBT

)
]
I0

(
2G2

sinh
(
h̄Ω

2kBT

)).
The general result (13) combines the polaronic and
band-theoretic character in a simple way. It reduces
to the polaronic form (12) for largeT , i.e., for
kBT � B̃ where B̃ is the reduced bandwidth given
by (10). In this limit, the reduced band is fully occu-
pied and the ratio of the twoγ -functions simplifies to
(3/5)(B̃/kBT ). In the opposite limit of small temper-
atures,kBT � B̃, the occupation of the band is con-
trolled by the temperature, the zero-T limit of the ratio
of theγ -functions is simply 3/2, and (13) simplifies to
the band result. Indeed, if alsokBT � h̄Ω/2, the ar-
gument of theI -Bessel function is negligible and the
Bessel function is simply 1. The mobility then reduces
to (5) with the zero-T reduced bandwidthB0e

−G2
in

place ofB in (5). Generally, the mobility, normalized

Fig. 1. Dependence of the mobilityµ on the temperatureT plotted
for two (arbitrary) parameter combinations. In units ofh̄Ω , the bare
bandwidthB0 is 0.5 and the coupling constantg is 1.5 in (a) while
B0 is 2 andg is 1.8 in (b). The temperatureT is plotted in units of
h̄Ω/2kB andµ is normalized to its value atT = 0. Qualitatively
only, (a) and (b) have resemblance to naphthalene and pentacene
reported data, respectively.
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to itsT = 0 value, is

(14)
µ(T )

µ(0)
= µah(T )I0

(
2G2

sinh
(
h̄Ω

2kBT

)),
whereµah(T ) is the right-hand side of (11).

The ad hoc expression (11) obtained by straightfor-
ward substitution of the bare bandwidthB by the po-
laronic reduced bandwidth̃B in (8) differs precisely
by the introduction in (14) of the Bessel function fac-
tor. This agrees with the well-known fact [4,5] that
the excess of that factor over 1 represents the hopping
contribution of the mobility. We plot (14) in Fig. 1.
Parameters chosen are arbitrary but illustrate the re-
spective behaviors reported in the literature for naph-
thalene where a flat temperature dependence is ob-
served [11], and for pentacene where a turn-over with
increasing mobility in the higher temperature region
dependence has been reported [9].

5. Remarks

Through simplified calculations, we have presented
here arguments towards an intermediate finite-band-
width theory which extends previous narrow-band
treatments. The new results obtained are: finite-band
effects stemming from full occupation of the band at
temperatures large enough so that the thermal energy
exceeds the bandwidth,B to B2 transition of the
mobility dependence on the bandwidth with variation
of temperature, an indication of how power laws might
arise as analytical limits of appropriate scattering
mechanisms, the specific form of the mobility under
the ad hoc Huang–Rhys temperature dependence of
the bandwidths and the relation of such an expression
to polaronic expressions, and a usable interpolation
formula which combines polaronic and bare-band
characters.

These calculations should by no means be treated
as a complete theory of polaronic and band effects.
More realistic analyses of the band transport are
being carried out by Giuggioli et al. [16], taking
into account acoustic and optical phonon interactions
which lead to striking new finite-band effects. While
not totally accurate, the simple truncated free-carrier
density of states used here has the correct broad
(bare) band limit in contrast to Gaussian forms [4]
and should, therefore, be able to capture the essential

physics at that end. It is hoped that the present simple
calculations will contribute towards the construction
of a general picture of quasiparticle transport in pure
organic crystals which treats both the temperature
dependence of the mobility, and high field effects
such as velocity saturation that have been treated
recently [13].
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