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A straightforward analysis of the time-correlation function of interest in response the-
ory involves the entire complicated solution of the dynamical problem. Using projection
techniques we derive a simpler equation obeyed by the time-correlation function. La-
place transforms are used to solve this equation for the case when the driving force is a
step function of arbitrary magnitude. The results are independent of the near-origin ap-

proximation of the Kubo formalism.

The projection techniques of Zwanzig' have
been used to obtain equations for the distribution
functions in nonequilibrium statistical mechan-
ics.!"® Recently one of the authors utilized* them
for deriving an explicit expression for the La-
place transform of the time-correlation function
which is the quantity of interest in the Kubo for-
malism.5 We shall show how the method may be
generalized for the case of the exact time-cor-
relation function appearing in the Peterson for-
malism® which, unlike the Kubo formalism, is
not restricted to the near-equilibrium case., We
employ Laplace transforms to derive an explicit
expression for the exact case where the external
stimulus (the additive part in the Hamiltonian)
appears as a step function with respect to time.
For an arbitrary time dependence our method
yields an integro-differential equation for the
time-correlation function. However, it cannot
be solved by Laplace transforms in as simple
a manner,

We treat the step-function case. The time-cor-
relation function of concern is®

J(t, t')=Tr{p [B(t"A(t)+A{t)B(t")]}, (1)
where

B(t")=U"'(t',0)BU(¢t’, 0),

At)=U"(t, 0)AU(t, 0), (1a)

U(t, 0)= explT(~i) [, H,q (s)ds;

T is the time-ordering operator and p, is the
equilibrium density matrix. H, (#), which equals

H-G f(t), where G is a time-independent opera-
tor and f(¢) is a c-number function, becomes for
the step-function case

H,,(t)=H-G f6(t), (2
where f is a time-independent strength param-
eter and 6(¢) is the Heaviside step function.
Then, the various time-evolution operators take
the forms exemplified by

U(t, 0) = exp(—itH) for ¢ <O,
= exp(-itiC) for >0,

where 3C=H-Q f.
After permutation of the operators within the
trace, Eq. (1) may be cast in the form

J(t, t')=Tr{AU(¢, 0)

®3)

X[poB(t') + B(t")poJU" (¢, 0)}. 4)
We shall write
Tr{A[p,B(t') + B(t")po]} =x (¢"), (4a)
and define
B,(t")=[1/x@")B@", (4b)
Jy(t, ) =[1/x@)]Ja(, ). (4¢c)

Since for ¢ >0, U'(t,0)0U(t, 0)=e***0 for any
operator O, where a is defined by a0 =[5, 0],
we have for >0

Jy(t, ') = Tr{Ae™**[p,B,(t") + B,(t")p,] }
=Trl[Ade ™K(0, t")] (5)
=Tr[AK(t, t')].
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It is the purpose of this note to develop equations for J and J, directly. Equation (5) gives J as a
trace of a complicated operator. Projections are introduced at this point to select that part of K(¢, t’)
needed in Eq. (5). The hope is to find an equation for J which does not require the full solution of the
dynamical problem. We now define an operator P by

PO=K(0,t")Tr(AO) for any operator O. 6)
We note that (i) P is linear, and (ii) P“=P. We apply the Zwanzig formulas'
d PK(t, t')/ot=P oPK(t, t')-ifo’ds PaG(s)(1-P)aPK(t-s, t'), (1)

where the usual initial-condition term is zero since (1-P)K(0, ¢')=0. Multiplying Eq. (7) from the left

by A and taking the trace, there results

BI,(t, ')/ot= CUM,(t, ) =if,ds Qs, )T, (t=s, 1),

(8)

where C(¢')=Tr[AaK(p, t')] and Q(s, t') = Tr[AaG(s)(1-P)aK(0, t')] with G(s) = exp|-is(1-P)a], as is

well known.
We have used here the obvious results
Jl(oy tl) = 1’

Tr(APO)=J,(0,¢')Tr(A0) = Tr(AO) for any O.

Taking Laplace transforms, j(e€)= f:J(t)e‘“dt,
we find that Eq. (8) yields

ji(e, t')=[e+iC+q(e)] . (10)

(Lower case letters denote the Laplace trans-
forms.) Multiplying Eq. (10) by x(¢') we have

jle, ") =x(¢")/[e+iC +q(e)]. (11)

Equation (11) is the principal result of this paper.

It gives an exact expression for the Laplace
transform of a time-correlation function for any
response as long as the stimulus is a step func-
tion; it can be of arbitrary size. We thus see
that an exact and tractable expression can be
obtained independent of the near-origin approx-
imation of Kubo. Equation (11) may be used to
calculate J(¢, t’) through an inversion of the
transform. It may also be used directly because
under certain conditions the quantity

limj(e, ')

€—>0

t'—>
can be shown’ to be equal to a transport coef-
ficient of interest. A result analogous to Eq. (11)
has been obtained in Ref. 4 through the explicit
use of the commutability of p,, the equilibrium
density matrix, and H, the Hamiltonian without
the stimulus. This commutability of p, and the
Hamiltonian holds in the Kubo case treated in
Ref. 4 but does not hold in the more general
Peterson case that we treat because in the latter
case one deals with p, and H,,,, the Hamiltonian
including the stimulus. Our derivation however,
shows that a useful result can be deduced in

10

9)

spite of this difficulty.

The correlation function J depends on two
times, not on a time difference as in the Kubo
case. It can be shown that in the latter case, a
change of variables to £-#’ can be made to result
in the ¢’ disappearing from Eq. (11). One then
gets a simpler result but one which is valid only
for small stimuli. In this simplified form Eq.
(11) can be used” as a starting point for several
investigations which will, for instance, yield the
range of validity of Matthiessen’s rule® and its
refinements,

By using the modified Zwanzig formulas?® it is
possible to obtain the following equation for an
arbitrary time dependence:

iad,(t, t')/at=C(t, t'M,(t, t")

—iflds Q(s, t, ), (s, ). (12)

However, now the C is dependent on ¢ and the
kernel Q(s, ¢, t’) is not Q(s~¢, '), and so Laplace
transforms do not help in the solution to this
equation.

Integro-differential equations like Eq. (10) are
not particular to time-correlation functions and
have been derived’ for general response func-
tions.
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While the ordinary electrostatic drift mode is stabilized by either high-g effects or an
admixture of cold plasma, a compressional drift mode is shown to be destabilized under
these same circumstances. The condition of the instability is approximately given by
ny/nc< Br%p;%/2, where n, and n, are the number densities of the hot and cold compo-
nents, respectively; k4 is a measure of the density, temperature, or magnetic field
gradients; and p; is the ion Larmor radius.

The ordinary electrostatic drift-wave instability is known to be stabilized in a high-g plasma (8
>0.13) by Landau damping of ions drifting as a result of a magnetic field gradient in the same direc-
tion as that of electron diamagnetic drift.!’> This instability can also be shown to be stabilized by a
fractional mixture [n,/n, = (m,/m,;)*’?] of cold electrons that short-circuit the parallel (to the ambient
magnetic field) electric field which is needed to maintain the drift wave.3

On the other hand, drift waves associated with compressional modes (modes which produce changes
in the parallel component of the magnetic field) have a tendency to destabilize at a larger value of 8
because the transit-time damping* which is proportional to 8 plays the role of Landau damping in the
electrostatic mode.

Mikhailovskii and Fridman® have considered drift waves in magnetosonic modes (coupled modes of
an acoustic wave and a compressional wave) and have shown in fact a wider range of unstable regions
in the value of 3. However, these modes are again strongly modified by an admixture of cold plasma
because of the disappearance of the ion acoustic wave. Stabilization of the modes can be shown to oc-
cur when n.~n,. Therefore, most of the drift-wave instabilities presented in the past are stabilized
in a high-8 plasma with an admixture of cold plasma.

We will show here that when the cold-plasma density exceeds a threshold, however, the compres-
sional Alfvén wave is destabilized either by inversed transit-time damping of ions or by inversed Lan-
dau damping associated with resonant particles drifting as a result of a magnetic field gradient.

We consider a nonuniform and high-f plasma embedded in a straight magnetic field B,(y)é,. The
nonuniformity is taken in the y direction. In the low-frequency (w <w,;) and the long-wavelength
(B vp<<w,y) limit, the dispersion relation for the magnetosonic mode can be written as®®

k2 /wP~(€,,+€,,2/€,,)=0. (1)

If we consider an admixture of cold electrons with n,~n,, the €,, component becomes very large and
the dispersion relation can be reduced to

c®k?/w?-€,,=0, (1a)

where €,, can be derived using the ordinary WKB approximation,*®
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where dv=2mv ,dv,dvy, vy (=, 2/2w,)(0 InB,/ay)] is the VB, drift speed, and the other notations are
standard. We consider the velocity distribution function f, to represent an isotropic Maxwellian dis-
tribution with both density and temperature being functions of y. Substituting Eq. (2) into Eq. (1a) and
expanding the derivatives of the Bessel functions, J,’, to a suitable order, we find the following dis-

11



