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Saturation of charge carrier velocity with increasing electric fields: Theoretical investigations
for pure organic crystals
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Should one expect injected charge carrier velocities to saturate as the applied electric field is increased
simply because of the nonparabolicity of bands? Does the apparent saturation observed in recent experiments
in hydrocarbon crystals signify, as supposed in some current interpretations of the data, that the carrier motion
is coherent or bandlike and that the disappearance of the saturation at higher temperatures is indicative of a
crossover from coherent to incoherent motion? These questions are addressed with the help of general theo-
retical investigations involving Drude-like considerations, quantum kinetic equations, and a Fokker-Planck

analysis.
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I. INTRODUCTION: NEED FOR CLARIFICATION ing the emission of optical phonons, also due to Shockley;

and the third on a related argument apparently due to Warta

Recent transport experiments on injected charges in ultraand Karl®> whose focus was the nonparabolicity of bands,
pure organic solids have revealed high mobilities with tem4.e., the wave-vector dependence of the effective mass.
perature dependences more typically associated with inor- The first mechanisfappears to do a reasonable job of
ganic crystalline semiconductotsTwo striking features of explaining the nonlinear increase of the velocity at fields
these observations are worthy of note. The first has to dbelow about 18 V/cm, but predicts velocities that asymp-
with the temperature behavior of the mobility, and bearstotically continue to grow as the square root of the ffeldn
close kinship to the so-called band-hopping transition probeontrast to the saturation which appears in the low-
lem which arose a couple of decades ago as the result of themperature data for pentacéras well as in early observa-
experiment$® on pure crystals of naphthalefi@he second tions for naphthalen&ln the second mechanism, the carrier
has to do with the observed saturation of carrier velocitiegepeatedly gains momentum as the result of the field and
with increased applied fields which occurs at low temperaioses it through the emission of an optical phonon of energy
tures. The focus of the present paper is this second featurg(}, returning the carrier to the initial state k&=0. For a
This observed velocity saturation was recently interpretsd  parabolic band this leads to a saturation velocity
demonstrating coherent, bandlike motion of the carrier when=%Q/2m*, wherem* is the carrier effective mass. How-
it is present, and incoherent hopping when it is absent—amever, the velocity calculated from it leads, according to Refs.
interpretation recently used by its proponents for the quanti3 and 1, to unreasonably large bandwidths.
tative extraction of bandwidths. Because the latter are an It is the third mechanism, based on the nonparabolic
essential input into studies of the nature of charge carriershape of bands, which is deserving of close inspection, since
the character of their motion, and related fundamental issues was invoked by the authors of Refs. 3 and 1 to explain
that have been the target of investigations into coherence isaturation, and used by them to interpret data and extract
excitation and carrier transport in organic materials forbandwidths. Bandwidths in organic crystals being generally
decades;’ a theoretical investigation into the phenomenonsmaller than their counterparts in inorganic materials, it is
of velocity saturation at this time is of particular importance.important to consider the nonparabolic nature of bands in the

An examination of the field dependence of carrier velocitypolyacenes. The argument invoked in Refs. 3 and 1 is based
in pentacene, as reported in Fig. 2 of Ref. 1, shows saturatioon a physical picture in which, starting with the initial value
at a lower temperature but no saturation as temperature lks=0, the wave vector of the carrier grows linearly for a
increased. The qualitative appearance of those observdixed collision timer, before a scattering event returns it to
curves is identical to that displayed in Fig. 6 in Sec. V of thethe initial value. An average of the particle velocity is taken
present paper. We begin our discussion with such plots, andver the time interval between collisions to yield, for a tight-
ask whether it is true that such data inevitably lead to thébinding band, the drift velocity
conclusion, currently popular in some circles, that the differ-
ent behavior displayed by the two curves is indicative of a
crossover from coherent to incoherent motion. Three sepa- D= —
rate mechanisms were discussed in the experimental litera- 2h
ture as possible sources for the nonlinear dependence of the
drift velocity with field. The first is based on Shockley’s hot whereW is the bandwidthE the electric fieldg the carrier
electron theory: the second on a heuristic argument involv- charge, andh the lattice constant. It was asserted in Ref. 3,
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08 T T T T T T T T T we consider a simple quantum kinetic equation treatment
based on the stochastic Liouville equation obeyed by the
carrier density matrix, or equivalently on the Boltzmann
equation. That approach is also found to predict an Ohmic
increase followed by a decrease, but no saturation. We then
- . present, in Sec. IV, a treatment based on a Fokker-Planck
description of the dynamics, which not only interpolates
cleanly between the extreme temperature limits, but provides
- a clear and quantitative bridge from the quasi-Newtonian to
the kinetic equation approach. Once again, however, no satu-
ration is observed. In our final remarks in Sec. V, we com-
ment in passing on two other possible sources of saturation
which are different from coherence considerations, and con-
o o JJ, AU A A T R S Y R RN P clude that observed saturation may have little to do with
0 1 2 3 4 5 coherence, in contrast to current interpretations.
field strength E /E, Most of our considerations apply for general band shapes,
but in the interest of specificity in many cases we will use
FIG. 1. Explicit demonstration that the expression frequentlyformulas applicable to the one-dimensional tight-binding
used for interpreting velocity saturatiggq. (1)], exhibits no satu-  situation in which the band energy is given by 2/(1
ration. Plotted is the drift velocity scaled to=Wa/24 as a func-  —coska), wherefik is the quasimomentunV, is the nearest-
tion of the fieldE.=7/qra. The circular symbol identifies the peak neighbor overlap integral and, as noted earkés the lattice
value of the velocity, incorrectly taken in Ref. 3 to be the saturationconstant. These formulas include the velocity and effective-
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value. mass expressions
and repeated in Ref. 1, that this leads to a saturation velocity 1de, 2Va | i
approximately given by V=7 gk Tsm ka=vgsinka, (©)]
v~(0.7249 \;L; (2 1 1 d%, voa a -
F:ﬁW:TCOSka:% vo— V. (4)

This relation between the saturation velocity and the band-
width is then used by Scicet al. and Warta and Karl for a

guantitative interpretation of data taken for a large number of Il EVOLUTION OF THE CRYSTAL MOMENTUM AND A
polyacenes:® ZERO-TEMPERATURE TRANSITION

One .Of the_ motivations for the present paper arises from Effective-mass theor states that, provided its necessary
':)he easily r\: erllfled fZCt that E‘g?) cannotarise _from fE?]'(l) conditions such as the slow spatial and temporal variation of
I egauTe dt N attecrj. oest prrle ict a||’1y 'saturalttlonf'ol dt € Ve~ external fields are satisfied, forces exerted on the carrier by
ocity. It does predict an O mic velocity at low fie 92 agencies other than the periodic potential in the crystal can
<fh/7) and a peak whegEa~2.3i/7. Rather than a satu- g represented as additive terms in the evolution equation for
ration, Eq.(1) actually precﬁct.s a deqrease in the velocity forthe carrier crystal momenturhk. The appropriate starting
high flelds.bThe \I/elocnr)]/ |nd|c|?ted| 'n.qu) fefefs tghf‘o point to develop a quasi-Newtonian approach to our problem
saturation, but only to the peak value in expressinThis s yherefore the crystal momentum evolution equation aug-

should be clear from Fig. 1, where we have plotted ®#in  \onteq by the addition of a damping force proportional to
terms of the maximum velocity,=2Va/# that the carrier . velocity in the band

can have in the band, and the characteristic electric Egld

=f/gra. No mechanism considered so far seems, thus, to dk

predict the velocity saturation clearly observed in the low- h gt T rox=dE 5
temperature data.

We therefore ask under what conditions simple modelghrough a constant of proportionality, which we take to be
based on the obvious dependence of the effective mass d@ndependent ok for the sake of simplicity, and with, given
velocity (i.e., on the nonparabolic nature of the banatsuld by Eq. (3) in a tight-binding situation. To quadratures, the
show such a velocity saturation at high fields. In Sec. I, weevolution of the crystal momentuntin the tight-binding
treat a simple quasi-Newtonian model which captures thease obeys
essential features of the nonparabolic dispersion, and find

that it also predicts no saturation, but an Ohmic rise, fol- E 4 . dk 5
lowed by a peak, and an eventual decrease of velocity with 7 |t const= Al ©)
increasing field. We also find a sharp transition, with a strik- 1- g/sn ka

ing cusp separating the low-field Ohmic from the high-field
non-Ohmic regime. In order to go beyond the simplifiedDifferent kinds of behavior result according to whether the
single-particle ideas characteristic of this model, in Sec. lllapplied fieldE is greater or smaller than the critical value
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in EqQ. (6) can diverge, but not for fields exceeding the criti-
cal value. What this means is that, for small fields (

<E.), kand the corresponding velocity, approach a con-  gptained by integrating E6) over appropriate limits. Thus,
stant value, but not for large field(E.). In the latter it yhe field is sufficiently large, there is no approactkafr of
case, the carrier exits the Brillouin zone at one end to reentgpe yelocityw, to a constant value. The oscillations are clear
it at the other and asymmetric Bloch oscillations oCCur. fom the fact that Eq(8), which governs the carrier motion
This is the well-known phenomenon of an ac current beingo; |arge field, has the trigonometric tangent on its right-hand
produced by a dc field. Because of the damping term, howsjge This is in contrast to Eq7) appropriate to the small
ever, the average velocity is not zero—the carrier actuallfie|q case, which contains the hyperbolic tangent, and thus
spends more time in the half of the Brillouin zone along thereaches a constant value for large times. While there is thus

direction parallel to the field. This difference in the time o constanw. for large fields, there is a nonzero average
spent in each half ultimately decreases with increasing field, ’

E.=yvo/q. For small fields, the denominator in the integral 2mia dk L 2a
Tozf : (11)

[—sinka  yuo J7Z_1

with the consequence that the average velocity ultimately 1 (To

decreases with increasing field. Thus the prediction of our Uav:T_j vi(t)dt

guasi-Newtonian model straightforwardly leads, for large 070

fields, to the widely known phenomenon of negative differ- 1 (272 p,(t)

ential mobility. =T (dkidD) dk

The above qualitative statements can be verified explicitly 070

from an analytical evaluation of the integral in E§). Iden- % re2wxlasinkadk

tifying, for notational convenience, the quantijy,a/# by = —j ==
vToJo {—sinka

1/ wherer is a “relaxation time,” and introducing the ratio
{=E/E_, the solution fork(t) is =vo(L— JZ=1) (12)

ak(t) (1 t J1-¢2 of the oscillating velocity over the period of tinTe,.
tan——= (Z) 1-1-’tan T2 +const| |, The time dependence of the velocity as predicted by Egs.
@) (7) and (8) is displayed in Fig. &) for E<E. and in Fig.
2(b) for E>E.. The steady-state velocity that a dc detector
which can also be written as would measure i% .. in the low-field case ana,, in the
high-field case. We call this observable velocity,s, and
ak(t 1 t J72-1 lot its ratio
tan 2( ):(Z 1+\/§2—1tar(; gzg +c0nst) . P
(8) vobS/v0=§ for (=1,
These two results are useful for small fields<(E.) and Vobs/vo={— V{1 for (=1 (13

large fields E>E,), respectively.' For all field values smaller tg the maximum band velocity, in Fig. 3a) as a function
than or equal td,, the hyperbolic tangent saturates to 1 for of the dimensionless electric field= E/E, . The transition at
large times and the crystal momentum approaches the coz=E_ from linear (Ohmic) behavior to nonlinear behavior
stant value displaying a negative differential mobility is worthy of note.
Beyond the critical field, the slope of the velocity with re-
2 1-V1-¢2 spect to the field is negative and infinite at the transition, and
ﬁkm—?arcta I3 ' ©) decreases in value as the field increases. The velocity tends
to vanish as the field is increased without limit. No saturation
which lies between 0 andr/2. For this caseE<E., the s visible. The existence of the cusp Bt=E. where the
velocity of the carrier approaches the constant value  differential mobility (slope is negative infinite, and the tran-
Substitution of the value ofk,. in the expressionv,  sition from a constant slope on the low side to one with
=vy sink.a shows that the steady-state veloaityis always  decreasing magnitude on the high side of the transition are
proportional to the electric field: remarkable, but entirely physical, consequences of this
simple analytical model.
Vo=v0{. (10

That the behavior iperfectlyOhmic for all fields below E Il QUANTUM KINETIC EQUATION ANALYSIS

is also directly clear from Ed5), which shows that, itik/dt How do the predictions of a quasi-Newtoni@bBrude-
vanishes at long time&his happens foE<E. but not if E like) model such as the one treated above differ from those
>E.), vy is equal togE/a which isvy{l. of one based on quantum kinetic equations normally used in

If the field is larger than the critical value, i.E>E., the  transport theory? We address this question in the present sec-
dynamics differs sharply. The carrier exits the Brillouin zonetion. The so-called stochastic Liouville equati¢8LE) for
at one end, reenters from the other, and periodically passeke density matrixp of the carrier, employed extensively in
through the zone in a time period exciton transport in molecular crystdlsnay be written in
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FIG. 2. Instantaneous velocity as a function of time for a par- E/E,
ticle starting withk=0, at various field strengths=E/E_ as indi- . .
cated, for (@ ¢<1 and (b) ¢>1, as predicted by the quasi- FIG. 3. Steady-state velocity,,s/vo as a function of the
Newtonian theory of Sec. II. electric-field strengthE/E., as predicted by(a) the quasi-
Newtonian theory of Sec. Il an) the single relaxation time Bolt-
real spacedrepresentation of Wannier states n, etc) as zmann equation from Sec. Ill.
dp af(k,t)  af(k,t)
i dT’n=[V,p]m’n+(an)(m—n)pm]n—iﬁao(l—5m’n)  HE o ek~ f"(]=0. (17)
X[ pmn— P& nl, (14) Here £=qE/A. Whereas textbook procedut®gor solving

an equation such as E¢l7) replace the second term by
where the scattering is represented by the single relaxatior £9f'"(k)/ 9k under the linear approximation, we will keep
rate oy at which the off-diagonal elements of the densitythe full nonlinearity in the field and develop a method of
matrix relax to their equilibrium valuesy, , in the absence solving Eq.(17) without approximation.
of the field. By Fourier transforming the SLE kospace, the Casting Eq.(17) in terms of the linear operatdr = «

distribution function + &0l 9k, the solution is written down at once,
t
a .
f(k)=(k|p|k)= o > i pelkam-n. (15) f(k,t)=G(k,t)f(k,0)+ fodsc(k,s)a(k)fth(k), (18
T m,n '
obtained from the diagonal part pfin reciprocal space, can where the Green function is given by the exponential opera-
be shown to obey tor
_ oLt o—[at+Et(alaK)]
of(kt)  [qE| af(k,b) N Glkp=e "=e : (19)
ot \ k| ok ~aolf(k)=(k)], (16 In order to understand the action of the Green function, we

consider the identity
wheref'"(k) is the thermal distribution.

A well-known shortcoming of Eq(16) lies in its assump- eC(A+B) — gCAg/jdxe *ABe A (20)
tion of a single relaxation time 1&y. A more accurate de- '
scription is provided by the Boltzmann equation with arbi-wherec (or x) is a c number andA and B are generally
trarily k-dependent relaxation timesdi/: noncommuting operators. Such an identity is easily préted
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by noting that the derivative of the left-hand side with re-
spect toc is equal to that of the right-hand side for ajland
that the identity holds for one specific value aof viz., ¢
=0. If c=1, and the operatorB and A are respectively,
multiplication by the scalark-dependentfunction — at and
the differentiation operation-£&to/ gk, application of Eq.
(20) gives

o ta+Ea10k) — o= EW(a13K) = [ gAxe UM gre= XA K) (21)

PHYSICAL REVIEW B35 205104

Equation(28) is an exact consequence of the Boltzmann
equation in the relaxation time form for arbitrarily
k-dependent relaxation times. It can be used to explore the
nonlinear dependence of velocity on the field in complex
systems. The constant relaxation time cagk)=ag=«
gives

o0 mla
Vobs= fo dsf_ ke Sy "(u(k+£3). (29

Expansion of the integrand, and the recognition thatExplicit evaluation is trivial in the tight-binding limit where

[919K, a]=dal 3k, lead to
exEt(&/&k)ae—Xft(r?/(?k):a(k+xgt) (22)

which may also be understood immediatélfrom Eq. (21).
We now see that, for any functidi (k),

e—fé dxet ;Rate’xgt ;Rﬂ(k) — e—tffl) an(k‘*'X&)Q(k)_ (23

Explicit evaluation of the Green function operation is now

possible,

G(k,t)Q(k)=e " Q(k)= e—<at+&5k>ﬂ(k)

= ka0t (k- 1) (24)
for any function{)(k), where
— 1 [k+ét
atk)= [ ay)ay (29
et )k

is the average of the reciprocal relaxation timgk) over a
region ink space of extenft centered arounéd+ £t/2.

The general solution of the Boltzmann equatidr) is
thus obtained as

_ t _
f(k,t):e*a(kfé‘t,t)tf(k_gtlo)_kf dsefa(kfé,‘s,s)s
0

X a(k—Es)fN(k—Es). (26)

It leads to the average time-dependent velocity

wla —
<v>=J dke™ *®0% (k+ &) f(k,0)
—zla

t mla —
+ J dsf dke™ “k9Sq (k) (k) v (k+Es).
0 —la

(27)

This exact evolution equation can be used for several differ-

ent purposes. One is to develop a general response formali
for all times* Our present interest being in the steady stat

v (k) is taken avsinka, and

fi(k)=a[ 27l o(2V/kgT)] * exp(2V coska/kgT)
(30)

wherekg is Boltzmann’s constanil the temperaturd,; the
modified Bessel function, andthe nearest-neighbor transfer
integral which is proportional to the bandwidth. One evalu-
ates the factof ;dse “0°sin¢s as the Laplace transform of
the sine function, uses the symmetryfdf(k) and the anti-
symmetry of sirka in the band, and obtains

_ gao I 1(2V/kBT)
PobsT00 024 02 To(2VIkgT)

(31)

in agreement with a result given by Dunlap and Kehkie
their treatment of dynamic localization. We plot this result in
Fig. 3(b). Unlike in Fig. 3a), no sharp transition is visible,
but we see a similar Ohmic rise for low fields and negative
differential mobility for high fields.

General resulf28) may be used along with specific real-
izations ofa(k) through an evaluation of the double quadra-
ture. We also provide an approximation procedure which is
useful for practical calculations. It interpolates between lim-

its in which the average in Eq.(25) may be replaced by the
value of « atk, on the one hand, and by the averagexof
over the band on the other hand. The motivation for the
approximation can be understood by considering a particular
form of the relaxation rate, e.g.,

a(k)=ay— a; coska, (32
which leads from Eq(25) to
_ 1 (k+é&s
a(k,s)= Efk a(y)dy
= ag— aq cog ka+ Eas/2) %}. (33

Figure 4 shows this exact time dependenca?()lk,s). We
e, both from Fig. 4 and from E¢33), that, on the one

}and, for small QEa/%)s, when the sinc function is equal to

only, we neglect the first term which decays at long times1. the approximation(k,s) = a(k) holds, and that, on the

For the steady-state velocity, we obtain

% mla —
Vobs= f dSJ dke &g (k) fN(K)v (k+ Es).
0 —mla
(28)

other hand, for largeqEa/#)s, when the sinc function is

equal to 0, the approximatioE(k,s)z aq holds. The cross-
over occurs in a time of the order oféH. This suggests that,
for arbitrary k dependence of(k), the time integration in

Eq. (28) be performed by replacing_z(k,s) by the time-
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=2Valh, a factor describing the nonlinear field dependence
which rises or falls with the field according to the value of
the field relative tcE., and a factor describing the tempera-
ture dependence of the velocity which is decided by the ratio
of the bandwidth to the thermal energy. The last factor shows
that while temperature effects appear in the quantum kinetic
equation analysis, they are treated there in a rather simplistic
manner: unless is taken to have a prescribed temperature
dependencé’ the field dependence and the temperature de-
pendence appear in separate multiplicative factors in this
simplified treatment® For high temperaturekgT=>2V), I,
tends to 1 whilel; tends toV/kgT, and the maximum ve-
locity becomes inversely proportional to the temperature. If
we introduce a thermal velocity,,=akgT/% obtained by
dividing the lattice constant by the thermal timiékgT, the
high-temperature limit can be written as

0 ] ] ] ] ] ] ] ] ] ] -
0 2 4 6 8 10 12
dimensionless time

FIG. 4. Decay ofx(k,t) as a function of the dimensionless time 2
T=~¢at/2, as given by Eq(33), with @;= aq. The different curves Vo EE.
shown correspond, from bottom to top, to values of the wave vector Uobs_m E24+E2 (37)
k=0,7/4,7/2,37/4, and m, respectively. The plot justifies the ap- ¢
proximation discussed in the text whereby the quantity plotted isAt low temperaturesKgT<2V), we have
replaced by the initial value/(k) at short times and by the band
averagex, at long times. EE,

Uobs— VU

"Bl 9
independent value(k) from O to a constant times &4, and ¢

by the time-independent valug, from that value to infinity.  which should be compared to the quasi-Newtonian result

This leads, in the tight-binding case, to [Eqg. (13)].
Vohe=V Og—a j e dka(k)A(k)e2V/ksT)coska, IV. FOKKER-PLANCK ANALYSIS AND A UNIFICATION
27l o(2VIkgT) ) - m1a OF THE QUASI-NEWTONIAN AND KINETIC
(34) EQUATION RESULTS
If we tgke the demarcation time'to be t'he 'reasonable and | order to bridge the quasi-Newtonian approach of Sec.
convenient value 2/£a, the quantity.A(k) is given by Il, which clearly corresponds to zero temperature, with the
s B quantum kinetic equation approach of Sec. Ill, we now
1—e ma(k)/E e 2magl€ . .. .
A(K) = n , (35) present a Fokker-Planck an_aly3|s. Finite-temperature envi-
E%+ a?(k) g2+a(2) ronment effects on the quasi-Newtonian evolution of Sec. Il

are included in the spirit of the Langevin approach by adding

and reduces for small fields f&*+ a*(k)]~* and for large  to Eq. (5) a Brownian motion term involving a white noise
fields to[£2+ ag]*l, respectively. These limits correspond random force,
to a(k,s)~ a(k) and a(k,s)~ « respectively.

We have explored a variety of assumed relaxation times dk v | [dey
(equivalently scattering mechanismen the basis of Eq. dt ﬁ
(34). In all the simple cases considered, we find an Ohmic
tendency at small fields and an eventual negative differentiabhere(R(t)R(t")) is proportional tos(t—t’), anduv is ex-
mobility at large fields, the essential behavior being given bypressed explicitly as (&) (de,/dk).
the simple constant relaxation time case of our result dis- Since Eq.(39) is a nonlinear Langevin equation, a con-

_GE
= = +R(D), (39)

dk

played in Fig. 8b), and rewritten here as venient calculational procedure is to convert it to a Fokker-
Planck (or Smoluchowski equation through standard
EE. \(11(2V/kgT) prescriptions;?
Vobs=Vo| oo || To(2VikeT) ) (36)
E2+E2) \10(2V/kgT)
of(kit) v o9 |(/dex RQE Jf(k,t)
The characteristic field value which marks the tumover of 5= 5 3¢ | | g ~ 5~ f(k,)+keT—2—|,

the two field regimes is equal th/qra, and is denoted by (40)

the symbolE. as in the quasi-Newtonian treatment of Sec.

1.6 By 7 here we mean the relaxation timex}/ and to solve the latter in the steady state. A formally identical
The steady-state velocity predicted by this simplifiedevolution equation was analyzed by Kasd Kenkré® in

(constant relaxation timeSLE/Boltzmann treatment emerges their investigation of a classical problem of microwave heat-

as the product of three factors: the peak band velogjfy ing in ceramic material§t This formal similarity was ex-
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ploited recently by Parris, Kysand Kenkré? to show that 1.0 - . - - . -
the steady-state solution of E@LO) is L _
k+2mla 0.8 -
f(k)snmf(k,t):s—lf dpei(ep=e1) —BRAE(P—K/y, o L KTV

t—o0 k g T
4y o6 §;§5 .
where 8= 1/kgT, from which the steady-state velocity is ob- 3 B 20 T
tained as L o4 | |
_Jw e L0 GE 2m(1—e ) 5 T S
Vobs= | ( )%W_7_ BaiB 0.2

(42) D 7
The crucial quantity in Eqg41) and (42) is 0.0 0 ' ' ' 1| ' I ' )

2mla 2mla field strength E/E
B=f dke”"‘ﬁqE’Vf dpefep+k2p) . (43) g ¢
0

0 FIG. 5. Steady-state velocity as a function of field strength, as

For the sinusoidal band of the tight-binding system, it can bedredicted by the Fokker-Planck treatment of Sec. IV for different

reexpressed as a single integral, temperatures as indicated. Comparison with Fig. 3 shows that the
top curve reproduces the quasi-Newtonian result exactly. Bottom
24 (2mla curves tend identically to the shape of the quantum kinetic equation

a Jo dke "kBAEIY| ((4BV sinkal2),  (44)  result for infinite temperature.

of the modified Bessel functiony(z) and can also be rewrit- temperature limit of Eq(45) reduces to the quasi-Newtonian
ten using Bessel identitiés.The latter reduces Eq42) to  expressionEq. (13)], the sharp transition with the discon-

the following compact forrft: tinuous slope characteristic of the latter result being thus an

exact consequence of the Fokker-Planck expres§im
gE 1 asinh(#h BqE/ya) (45)].
Vobs™ 7"~ BAI i1 paerva 2BV in paerval 2BV) We first focus on the high-temperature case. Because
(45) =vglvyy—0, integral(44) becomes
Here the ordersy=*ifiBqE/ya of the modified Bessel 20 [2mla
functionl ,(z) are strictly imaginary, proportional to the field B= Y dke #ka| (2zsinka/2), 47
0

E, and inversely proportional to the temperature and the scat-
tering strengthy. Recalling the definitions of.., the drift
velocity attained in our zero-temperature quasi-Newtonia
model for small fields, and,,, the thermal velocity intro-

and can be evaluated by expanding the Bessel function in
rbowers of its argument:

duced in Sec. lll, appearing, respectively, in E_C{EO) and 20 (2mla

(37), we see that the orders of the Bessel functions can also B~— e 2k3(1+ 2% sirtka/2)dk

be written in the simple formv= *i(v../vy,). The argument a Jo

of the Bessel functions, i.e., the rati=2V/kgT of the N

. o 2m(1—e 27%) 1 7

bandwidth to the thermal energy, is simply related to the Ol Sl O i _ (49)

order of the Bessel functions through the expression zza? 27227+1
A% Vo Ve In this smallz limit, from (42) we thus obtain for the sinu-
= kB_T= Vin - AL (46)  soidal band,

Figure 5 shows a plot of the field-dependent velocity for Vo { vs EE,
several values of the temperature including extreme tempera- Uobs™ (49

a 2 240202 2um E21E2
ture limits. The surprising similarity of the low-temperature {omlvg th E7+Eo

limit of the Fokker-Planck analysis to the Drude-like predic-\yhere we introduce a temperature-dependent characteristic
tion of Sec. ll[see Fig. 8], including the cuspy transition, fig|q
and the similarity of the high temperature limit to the predic-
tions of the SLE treatmenfsee Fig. )], motivate an
asymptotic analysis of the Fokker-Planck reqiy. (45)].

As we show below, the exact Fokker-Planck solutj@y.  With this definition, we note that the high-temperature limit
(45)] indeed reduces in the high-temperature limit to the[Eq. (49)] of the Fokker-Planck expressid¢kqg. (45)] is for-
functional form[Eq. (36)] found in the SLE treatment, with mally identical to the SLE resultEq. (37)]. However, the

a suitable redefinition ofEy. Furthermore, the zero- location of the peak in the-E curve displays a dependence

EOZ ECUth/UO' (50)
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on temperature which is different in the Fokker-Planckdence of the SLE/Boltzmann result, and shows that the char-
analysis sinceE,, the characteristic field in this case, in- acteristic field values in extreme temperature limits are
creases with temperature. given, respectively, by

To understand the low temperature behavior of &)
requires more care, since the result has a discontinuous de- E=T0 e _E (ks_T) (56)
rivative atE=E, (see Fig. 5. We therefore separately treat ¢ q O clav)
the high-field{>1 and low-field{<1 cases. In both cases
the ratioz=v, /vy, diverges. For low fields {<1), andz
large, the integrand in Eq47) is sharply peaked at a value
of k in the interior of the integration region. In the neighbor-
hood of this peak, ag—, the value and argument of the
Bessel function become large. Use of the asymptotic expa

sion | y(x) ~e*/y2mx gives

" A careful analysis of the low-temperature limit shows that

the location of the peak of the— E curve on the field axis

first decreases as the temperature is increased, and then in-

creases. Eventually, the peak location is linear in the tem-

rP_erature as is clear in the definitionB§. This means that, at

sufficiently large temperatures, the extent of the Ohmic re-

gime keeps increasing as the temperature is increased, ac-

cording to the Fokker-Planck description. In the simple SLE

. (5D description with a single relaxation time, the extent is inde-

0 Jamzsinka/2 pendent of temperature. The general kinetic equation de-
) scription, given for instance by E¢34), predicts a tempera-

The peak of the integrand occurs at the valkeky  tyre variation of the extent of the Ohmic regime but only

=2a”*cos'{, provided {<1. A saddle-point integration petween values proportional to the band average of the re-
performed about this peak value leads to the asymptotic rqaxation ratee(k), and its thermal average.

sults valid forz>1:

1 [(2@la  exp —kaz/+2zsinkal2)
—f dk
2ma

V. CONCLUDING REMARKS AND ALTERNATE

Bt ex 2z(y1-¢*—cos *{)] 52 SOURCES OF SATURATION
5 = .
2mzd 1-¢ The main results presented in this paper, in addition to its
Substitution of this result into Eq42) then leads to primary focus discussed below, are the sh@yspy transi-
tion in the field dependence of the velocity in the quasi-
2maz Newtonian model in Sec. Il, the method of solution of the
Uobs™Vod~ h (1—e 2™ 1-¢* Boltzmann equation without making the linear approxima-

tion in the field given in Sec. lll, and the asymptotic analysis
x exp{— 227 (1— %) —cos 1], (53  from the Fokker-Planck equation provided in Sec. IV.

The primary focus of the paper is the investigation of the
whose limit for {<1 asz— is indeed just the first term effects of finite bandwidths and nonparabolicity on field de-
vol as in the first part of Eq(38). pendence of the velocity. The interpretation of the data was

We now obtain the limiting behavior of E¢45) at low  based on the belief that the nonparabolicity of bands is re-
temperatures and large fieldg>1). From the previous sponsible for the low-temperature behavior. We showed in
analysis, as{ approaches 1 from below, the peak of the Sec. | that formula1), which formed the basis of this inter-
integrand in Eq.(51) moves to the left, sincek,e,x  pretation, is quite inappropriate since it does not correspond
=2a lcos !z Itis easy to verify that for ali>1, the peak to any saturatioR?
of the integrand is no longer in the interior of the integration  Although formula(1) as a basis for saturation is incorrect,
region, but ak=0. Thus, for{>1 andzlarge, we return to the idea of investigating the effects of nonparabolicity of
Eq. (47), expand sika/2 about k=0, and approximate bands in organic crystals, suggested by the authors of Ref. 1,
lo(2zsinkal2)~1y(zka). For largez, the exponential factor and others, is indeed significant. In order to test whether
in Eq. (47) kills off any contributions from largé. On ex-  nonlinearity effects arising from the nonparabolic nature of
tending the upper limit of the integration to infinity, we find bands include saturation, in this paper we have carried out a

number of investigations: on the basis of quasi-Newtonian

% 1 considerations, of quantum kinetic equations, and of the
B~ 2] e *Mo(zh=—-=—=, (54  Fokker-Planck equation. We have shown that each of these
2ma”Jo 2mzaN{*-1 physically reasonable approaches fails to predict any satura-

which vields, forz—o and¢>1, tion, on the sole basisf the nonparabolicity of bands. Fur-
thermore, all approaches considered agree in their prediction
Vops=Uo({— V1), (55) of Ohmic behavior followed by a peak and a decrease in the

velocity with increasing field as do other earlier reported

which is identical to the large field part of the quasi- investigations>?°We have restricted our analysis to band-
Newtonian resulfEq. (13)]. based theories, and not touched upon saturation in hopping
Unlike the kinetic equation approach, the Fokker-Planckiransport or any polaronic issues in the present paper. We
approach treats the effect of temperature in a nontrivial manemphasize that we have not given a proof that saturation
ner. In addition, it cleanly connects the cuspy transition ofcannot occur from simple theoretical considerations. Indeed,
the quasi-Newtonian analysis with the smooth field depenwe will show below how certain features other than band
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nonparabolicity, in combination with that feature or other- ' ' T T T ]
wise, could be responsible for field saturation of the velocity. I R
Our purpose here has been to point out that the observed2 - -7 .
saturation requires further investigation, that no analysis so = ////
far lends support to the saturation providing a test of coher- g 105 [ -7 |
ence(bandlike behavior and that values of bandwidths, so £ C -7 ]
crucially important to the understanding of other transport & C P ]
features in the polyacenes, should not be deduced from thesep. - Pl ]
saturation values of the velocity until the origin of saturation 8 7 i
is understood. © L7 I
The primary characteristic field value that appears in the £ L .
various expressions we have providedEjs, which is given ©
by yvo/q, or equivalently byi/qra. The first of these ex- 4 . . Ly
pressions shows that the field value at which nonlinear ef- 10 10% 105

fects of the type investigated in this paper can arise is pro-
portional to the carrier bandwidth. The Ohmic regime clearly
extends to_much larger fields in inorganic materi_als in whi(_:h FIG. 6. Apparent saturation of velocity with increasing field.
the bandwidths are of the order of eV's. In typical organicpgyeq is the single relaxation rate version of the kinetic equation
materials the bandwidths are relatively smaffemaking it result in Sec. 11l i.e., Eq37), with afield-dependergcattering rate
possible that the non-Ohmic regime is observable beforgy wwo different sets of parameter values in the two respective
fields achieve breakdown values. Using a typical vatue curves. Solid and dashed lines correspond to the low- and high-
=10 sin the second expression given above, we see thaémperature cases respectively. See the text for details.
E. can be less than £0v/cm if a is of the order of 5 A
characteristic of organic materials. In inorganic materialsincreasing field. Note that, in the former case, our solutions
where the lattice constant is much smaller, it is less |ike|yinvo|ving the hyperbo"c tangent will a|WayS preva“, there
that this non-Ohmic regime is observed before a breakdowReing no crossover to the trigonometric tangents. For the
of the material occurs. simple kinetic equation results we have obtained, this idea
We now suggest two other possible sources of saturatiomeans that the velocity would be given by Eg6) with the
and comment on them at a heuristic level. One is based 0fy5racteristic field value,= \/W determined by
the assumption that the scattering ratén Eq. (5 is field  he constant®, andD,. Figure 6 shows a plot of our SLE
dependentand the other that it ik dependentThe Drude-  gyhressiorEq. (36)]. Field and velocity values are in arbi-
like considerations of Sec. Il can be shown to give saturatioary ynits. Under the heuristic assumption that, in the arbi-
if  is field dependent, the dependence being given by oy units employed, the quantiti&,, andD, have values
of 7 and 4 for the(solid) saturating curvelower tempera-

y="70V1+(E/E})? (57) ture), and 40 and 1 for the{dashga nonsaturating F3:urve
@igher temperatupeit is possible to produce a striking re-
semblance to the observations reported in Fig. 2 of Bcho

field strength (arbitrary units)

which means that the scattering rate increases with, and
proportional to, the field for large fieldé.In the context of

1
our quasi-Newtonian analysis, this means that a critical fielf? gléturation can be obtained in an even more interestin
signaling the crossover from the Ohmic regime to the 9

negaie-diferentamobity regine need not be everTATNELT e scaleng e e assumed epencent.
reached. The field ratid=E/E. appearing in Eq(13) is P ’

; the zone fronk=0 under the action of the field as in E&),
now given by S .
the scattering increases so strongly that the carrier cannot
traverse the zone beyond a certain point, no matter what the

_ E/Es (58) field strength. Such a singular scattering mechanism could
V1+(E/E;)? arise from a resonance of the carrier with another part of the

system such as a molecular vibration. To motivate these con-
where E; appears in the definition of(E) above andEs  siderations, note that Ed5), which describes the crystal
=yovo/d. In the absence of field-dependent scatteriflg, momentum evolution, can also be written as an evolution
would grow without limit with the field. Given the depen- equation for the velocity. Dividing Eq5) by the effective
dence described by E(G7) it saturates, instead, to the value massm* = (1/4)(dv,/dk) given in Eq.(4), and puttingy
{s=E1/Es=dE;1/yovo. The relative magnitudes of the two =0, we see that, in the absence of scattering, the time de-
quantitiesE; andEg which arise from the specific scattering rivative of the velocity is simplygE/m*. If the scattering is
mechanism in the system will determine whether thenow taken to contribute a term v/ 7 to the evolution ofy,
negative-differential-mobility regime isverreached. IfE;  we obtain the plausible velocity equation
<Eg, that regime will never be reached, and saturation will
persist for all field magnitudes as the field continues to in-
crease. Otherwise, one will see a gradual flattening of the

dv v 9gE qEa —
velocity of the field followed by an eventual decrease with dt = 7 m* h

vo—vz, (59
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with a nonlinear driving term, the specific nonlinear expres-also develop nonlinearity which would exactly cancel the
sion in the extreme right-hand side arising from the tight-driving term nonlinearity.
binding relation. It is immediately clear that this equation ~What scattering term in Eq5) corresponds to E¢59),
predicts saturation. The steady-state velocity obeys which guarantees saturation? It is easy to show, by back
transforming, that the/(k) required is proportional to ske,
gEr qEra ———; E which means an_infinite scatte_ring rate_ka% m/2a. We thus
V=" "= vo—vm=v0\/_2—_2, (60)  see that to obtain the saturation predicted by &§), the
m Ec+E scattering ratey in Eq. (5) must become singular in the band.
where E,=#/qra. The behavior is Ohmic at small fields Actually it is enough fory to become extremely large at
(E<E.) with mobility uo=v,/E.=2Vqr(a/t)2 The ve- SOmMe pointk,; in the zone(not necessarlly atrlz_a) f_or this 3
locity saturates for large fieldsE&E,) to the maximum effect to occur. We are in the process of investigating specific
value v,=2Valfi that the carrier velocity can have in the mec_hanlsms that could be responsible for such singular be-
band. A simple way of understanding this result is that theaVior- _ _ _ o
productm* v, which is proportional to taka, increases with Whether such ideas hold water in _the light .Of quantitative
field without limit while the velocityv, which is proportional requirements, as well as what precise physical ingredients

to sinka, saturates dta= 7/2 in the middle of the Brillouin could give rise to the mechanisms we have suggested heu-

zone, where the effective mass becomes infinite. Not only déistically above are issues that are beyond the scope of the

these considerations predict saturation, but the apparent |09§ese|nt mve;tlgatlon.tFlgur e 6, %r the 'argl])uments based on
of saturation observed at higher temperatures in pentace gnguiar scattering rates given above, 1S by no means pre-

could correspond to the temperature dependence ofore sented here as an explanation of the observations, but only to

scaterg occuing at higher emperatus,coplough  SUC, & SAUIOTAY note agalns, drawing nasy conclsions
Huang-Rhygpolaronig reduction of bandwidth. : P

It might appear that nonparabolic nature of bands is th§ors feel confident that the beautifully clear experiments of

sole ingredient responsible for this saturation mechanism th ef. 1 Iea\_/e ho doubt that the velocity Satufate_s at low tem-
we have provided. This is not true. In light of effective-massperatures in pentacene and that the saturation is destroyed at

theory!® Eq. (5) is known to be a legitimate starting point to higher temperatures. They feel equally confident that the cur-

introduce forces on the carrier as additive inputs. A dampin Eg; d?ixkpz)elatr)]:r?g\z Q?Latg: q s:rt]urEatl(ol? i!sn té?;ﬂ]s u?}fuggggfnce
force proportional to a constant scattering raténtroduced and that the reason for the gbserved sgturajtion rerﬁains
in this mannefsee Eq(5)] does notead to saturation, as the

analysis in Sec. Il has already shown. The velocity evolutioAargely a puzzle. It is hoped that it will be soon possible to

equation(59), which shows saturation, has been obtained b)ﬁglr:j\fzg tgs dzlé?goeks-ggnzr:,(\;inhta;/sa?ear?ne hrzrt(Zsoir]nggeabcierT?- of
first turning off scattering in Eq5), then transforming it into P P 9

a velocity equation, and then reintroducing Scatt(;}rmgprehenswe explanation of the saturation phenomena.

through a constant. If we had directly attempted to trans-  We acknowledge the support of the National Science
form Eqg. (5) with its constanty, the resulting velocity equa- Foundation under Grant Nos. DMR0097210 and
tion would not show saturation as the dissipative term wouldMR0097204, and thank Luca Giuggioli for discussions.
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