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Saturation of charge carrier velocity with increasing electric fields: Theoretical investigations
for pure organic crystals
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Should one expect injected charge carrier velocities to saturate as the applied electric field is increased
simply because of the nonparabolicity of bands? Does the apparent saturation observed in recent experiments
in hydrocarbon crystals signify, as supposed in some current interpretations of the data, that the carrier motion
is coherent or bandlike and that the disappearance of the saturation at higher temperatures is indicative of a
crossover from coherent to incoherent motion? These questions are addressed with the help of general theo-
retical investigations involving Drude-like considerations, quantum kinetic equations, and a Fokker-Planck
analysis.
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I. INTRODUCTION: NEED FOR CLARIFICATION

Recent transport experiments on injected charges in u
pure organic solids have revealed high mobilities with te
perature dependences more typically associated with i
ganic crystalline semiconductors.1 Two striking features of
these observations are worthy of note. The first has to
with the temperature behavior of the mobility, and be
close kinship to the so-called band-hopping transition pr
lem which arose a couple of decades ago as the result o
experiments2,3 on pure crystals of naphthalene.4 The second
has to do with the observed saturation of carrier veloci
with increased applied fields which occurs at low tempe
tures. The focus of the present paper is this second fea
This observed velocity saturation was recently interpreted1 as
demonstrating coherent, bandlike motion of the carrier wh
it is present, and incoherent hopping when it is absent—
interpretation recently used by its proponents for the qua
tative extraction of bandwidths. Because the latter are
essential input into studies of the nature of charge carri
the character of their motion, and related fundamental iss
that have been the target of investigations into coherenc
excitation and carrier transport in organic materials
decades,5–7 a theoretical investigation into the phenomen
of velocity saturation at this time is of particular importanc

An examination of the field dependence of carrier veloc
in pentacene, as reported in Fig. 2 of Ref. 1, shows satura
at a lower temperature but no saturation as temperatur
increased. The qualitative appearance of those obse
curves is identical to that displayed in Fig. 6 in Sec. V of t
present paper. We begin our discussion with such plots,
ask whether it is true that such data inevitably lead to
conclusion, currently popular in some circles, that the diff
ent behavior displayed by the two curves is indicative o
crossover from coherent to incoherent motion. Three se
rate mechanisms were discussed in the experimental lit
ture as possible sources for the nonlinear dependence o
drift velocity with field. The first is based on Shockley’s h
electron theory;8 the second on a heuristic argument invo
0163-1829/2002/65~20!/205104~11!/$20.00 65 2051
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ing the emission of optical phonons, also due to Shockle8

and the third on a related argument apparently due to W
and Karl,3 whose focus was the nonparabolicity of band
i.e., the wave-vector dependence of the effective mass.

The first mechanism1 appears to do a reasonable job
explaining the nonlinear increase of the velocity at fie
below about 105 V/cm, but predicts velocities that asymp
totically continue to grow as the square root of the field,8,9 in
contrast to the saturation which appears in the lo
temperature data for pentacene1 as well as in early observa
tions for naphthalene.3 In the second mechanism, the carri
repeatedly gains momentum as the result of the field
loses it through the emission of an optical phonon of ene
\V, returning the carrier to the initial state atk50. For a
parabolic band this leads to a saturation velocityv
5\V/2m* , wherem* is the carrier effective mass. How
ever, the velocity calculated from it leads, according to Re
3 and 1, to unreasonably large bandwidths.

It is the third mechanism, based on the nonparabo
shape of bands, which is deserving of close inspection, s
it was invoked by the authors of Refs. 3 and 1 to expla
saturation, and used by them to interpret data and ext
bandwidths. Bandwidths in organic crystals being genera
smaller than their counterparts in inorganic materials, it
important to consider the nonparabolic nature of bands in
polyacenes. The argument invoked in Refs. 3 and 1 is ba
on a physical picture in which, starting with the initial valu
k50, the wave vector of the carrier grows linearly for
fixed collision timet, before a scattering event returns it
the initial value. An average of the particle velocity is tak
over the time interval between collisions to yield, for a tigh
binding band, the drift velocity

v5
Wa

2\ F12cos~qEat/\!

qEat/\ G , ~1!

whereW is the bandwidth,E the electric field,q the carrier
charge, anda the lattice constant. It was asserted in Ref.
©2002 The American Physical Society04-1
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V. M. KENKRE AND P. E. PARRIS PHYSICAL REVIEW B65 205104
and repeated in Ref. 1, that this leads to a saturation velo
approximately given by

v'~0.724!
Wa

2\
. ~2!

This relation between the saturation velocity and the ba
width is then used by Scho¨n et al. and Warta and Karl for a
quantitative interpretation of data taken for a large numbe
polyacenes.1,3

One of the motivations for the present paper arises fr
the easily verified fact that Eq.~2! cannotarise from Eq.~1!
because the latter doesnot predict any saturation of the ve
locity. It does predict an Ohmic velocity at low fields (qEa
,\/t) and a peak whenqEa'2.3\/t. Rather than a satu
ration, Eq.~1! actually predicts a decrease in the velocity f
high fields. The velocity indicated in Eq.~2! refers to no
saturation, but only to the peak value in expression~1!. This
should be clear from Fig. 1, where we have plotted Eq.~1! in
terms of the maximum velocityv052Va/\ that the carrier
can have in the band, and the characteristic electric fieldEc
5\/qta. No mechanism considered so far seems, thus
predict the velocity saturation clearly observed in the lo
temperature data.

We therefore ask under what conditions simple mod
based on the obvious dependence of the effective mas
velocity ~i.e., on the nonparabolic nature of the bands! could
show such a velocity saturation at high fields. In Sec. II,
treat a simple quasi-Newtonian model which captures
essential features of the nonparabolic dispersion, and
that it also predicts no saturation, but an Ohmic rise, f
lowed by a peak, and an eventual decrease of velocity w
increasing field. We also find a sharp transition, with a str
ing cusp separating the low-field Ohmic from the high-fie
non-Ohmic regime. In order to go beyond the simplifi
single-particle ideas characteristic of this model, in Sec.

FIG. 1. Explicit demonstration that the expression frequen
used for interpreting velocity saturation@Eq. ~1!#, exhibits no satu-
ration. Plotted is the drift velocity scaled tov05Wa/2\ as a func-
tion of the fieldEc5\/qta. The circular symbol identifies the pea
value of the velocity, incorrectly taken in Ref. 3 to be the saturat
value.
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we consider a simple quantum kinetic equation treatm
based on the stochastic Liouville equation obeyed by
carrier density matrix, or equivalently on the Boltzman
equation. That approach is also found to predict an Oh
increase followed by a decrease, but no saturation. We
present, in Sec. IV, a treatment based on a Fokker-Pla
description of the dynamics, which not only interpolat
cleanly between the extreme temperature limits, but provi
a clear and quantitative bridge from the quasi-Newtonian
the kinetic equation approach. Once again, however, no s
ration is observed. In our final remarks in Sec. V, we co
ment in passing on two other possible sources of satura
which are different from coherence considerations, and c
clude that observed saturation may have little to do w
coherence, in contrast to current interpretations.

Most of our considerations apply for general band shap
but in the interest of specificity in many cases we will u
formulas applicable to the one-dimensional tight-bindi
situation in which the band energy«k is given by 2V(1
2coska), where\k is the quasimomentum,V is the nearest-
neighbor overlap integral and, as noted earlier,a is the lattice
constant. These formulas include the velocity and effecti
mass expressions

vk5
1

\

d«k

dk
5

2Va

\
sinka5v0 sinka, ~3!

1

m*
5

1

\2

d2«k

dk2
5

v0a

\
coska5

a

\
Av0

22v2. ~4!

II. EVOLUTION OF THE CRYSTAL MOMENTUM AND A
ZERO-TEMPERATURE TRANSITION

Effective-mass theory10 states that, provided its necessa
conditions such as the slow spatial and temporal variation
external fields are satisfied, forces exerted on the carrie
agencies other than the periodic potential in the crystal
be represented as additive terms in the evolution equation
the carrier crystal momentum\k. The appropriate starting
point to develop a quasi-Newtonian approach to our prob
is therefore the crystal momentum evolution equation a
mented by the addition of a damping force proportional
the velocity in the band,

\
dk

dt
1gvk5qE ~5!

through a constant of proportionalityg, which we take to be
independent ofk for the sake of simplicity, and withvk given
by Eq. ~3! in a tight-binding situation. To quadratures, th
evolution of the crystal momentum~in the tight-binding
case! obeys

S qE

\ D t1const5E dk

12S Ec

E D sinka

. ~6!

Different kinds of behavior result according to whether t
applied fieldE is greater or smaller than the critical valu

y

n

4-2
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SATURATION OF CHARGE CARRIER VELOCITY WITH . . . PHYSICAL REVIEW B65 205104
Ec5gv0 /q. For small fields, the denominator in the integr
in Eq. ~6! can diverge, but not for fields exceeding the cri
cal value. What this means is that, for small fieldsE
,Ec), k and the corresponding velocityvk approach a con-
stant value, but not for large fields (E.Ec). In the latter
case, the carrier exits the Brillouin zone at one end to ree
it at the other and asymmetric Bloch oscillations occu11

This is the well-known phenomenon of an ac current be
produced by a dc field. Because of the damping term, h
ever, the average velocity is not zero—the carrier actu
spends more time in the half of the Brillouin zone along t
direction parallel to the field. This difference in the tim
spent in each half ultimately decreases with increasing fi
with the consequence that the average velocity ultima
decreases with increasing field. Thus the prediction of
quasi-Newtonian model straightforwardly leads, for lar
fields, to the widely known phenomenon of negative diff
ential mobility.

The above qualitative statements can be verified explic
from an analytical evaluation of the integral in Eq.~6!. Iden-
tifying, for notational convenience, the quantitygv0a/\ by
1/t wheret is a ‘‘relaxation time,’’ and introducing the ratio
z5E/Ec , the solution fork(t) is

tan
ak~ t !

2
5S 1

z D F12A12z2 tanhS t

t

A12z2

2z
1constD G ,

~7!

which can also be written as

tan
ak~ t !

2
5S 1

z D F11Az221 tanS t

t

Az221

2z
1constD G .

~8!

These two results are useful for small fields (E,Ec) and
large fields (E.Ec), respectively. For all field values smalle
than or equal toEc , the hyperbolic tangent saturates to 1 f
large times and the crystal momentum approaches the
stant value

\k`5
2\

a
arctanS 12A12z2

z D , ~9!

which lies between 0 andp/2. For this caseE,Ec , the
velocity of the carrier approaches the constant valuev` .
Substitution of the value ofk` in the expressionv`

5v0 sink`a shows that the steady-state velocityv` is always
proportional to the electric field:

v`5v0z. ~10!

That the behavior isperfectlyOhmic for all fields below Ec
is also directly clear from Eq.~5!, which shows that, ifdk/dt
vanishes at long times~this happens forE,Ec but not if E
.Ec), vk is equal toqE/a which is v0z.

If the field is larger than the critical value, i.e.,E.Ec , the
dynamics differs sharply. The carrier exits the Brillouin zo
at one end, reenters from the other, and periodically pa
through the zone in a time period
20510
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T05E
0

2p/a dk

z2sinka
5

\

gv0

2p

Az221
, ~11!

obtained by integrating Eq.~6! over appropriate limits. Thus
if the field is sufficiently large, there is no approach ofk or of
the velocityvk to a constant value. The oscillations are cle
from the fact that Eq.~8!, which governs the carrier motion
for large field, has the trigonometric tangent on its right-ha
side. This is in contrast to Eq.~7! appropriate to the smal
field case, which contains the hyperbolic tangent, and t
reaches a constant value for large times. While there is t
no constantv` for large fields, there is a nonzero average

vav5
1

T0
E

0

T0
vk~ t !dt

5
1

T0
E

0

2p/a vk~ t !

~dk/dt!
dk

5
\

gT0
E

0

2p/a sinkadk

z2sinka

5v0~z2Az221! ~12!

of the oscillating velocity over the period of timeT0.
The time dependence of the velocity as predicted by E

~7! and ~8! is displayed in Fig. 2~a! for E,Ec and in Fig.
2~b! for E.Ec . The steady-state velocity that a dc detec
would measure isv` in the low-field case andvav in the
high-field case. We call this observable velocityvobs, and
plot its ratio

vobs/v05z for z<1,

vobs/v05z2Az221 for z>1 ~13!

to the maximum band velocityv0 in Fig. 3~a! as a function
of the dimensionless electric fieldz5E/Ec . The transition at
E5Ec from linear ~Ohmic! behavior to nonlinear behavio
displaying a negative differential mobility is worthy of note
Beyond the critical field, the slope of the velocity with re
spect to the field is negative and infinite at the transition, a
decreases in value as the field increases. The velocity te
to vanish as the field is increased without limit. No saturat
is visible. The existence of the cusp atE5Ec where the
differential mobility ~slope! is negative infinite, and the tran
sition from a constant slope on the low side to one w
decreasing magnitude on the high side of the transition
remarkable, but entirely physical, consequences of
simple analytical model.

III. QUANTUM KINETIC EQUATION ANALYSIS

How do the predictions of a quasi-Newtonian~Drude-
like! model such as the one treated above differ from th
of one based on quantum kinetic equations normally use
transport theory? We address this question in the present
tion. The so-called stochastic Liouville equation~SLE! for
the density matrixr of the carrier, employed extensively i
exciton transport in molecular crystals,7 may be written in
4-3
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real space~representation of Wannier statesm, n, etc.! as

i\
drm,n

dt
5@V,r#m,n1~qEa!~m2n!rm,n2 i\a0~12dm,n!

3@rm,n2rm,n
e #, ~14!

where the scattering is represented by the single relaxa
rate a0 at which the off-diagonal elements of the dens
matrix relax to their equilibrium valuesrm,n

e in the absence
of the field. By Fourier transforming the SLE tok space, the
distribution function

f ~k!5^kuruk&5
a

2p (
m,n

rm,neika(m2n), ~15!

obtained from the diagonal part ofr in reciprocal space, can
be shown to obey

] f ~k,t !

]t
52S qE

\ D ] f ~k,t !

]k
2a0@ f ~k,t !2 f th~k!#, ~16!

where f th(k) is the thermal distribution.
A well-known shortcoming of Eq.~16! lies in its assump-

tion of a single relaxation time 1/a0. A more accurate de
scription is provided by the Boltzmann equation with ar
trarily k-dependent relaxation times 1/ak :

FIG. 2. Instantaneous velocity as a function of time for a p
ticle starting withk50, at various field strengthsz5E/Ec as indi-
cated, for ~a! z,1 and ~b! z.1, as predicted by the quas
Newtonian theory of Sec. II.
20510
on

] f ~k,t !

]t
1E] f ~k,t !

]k
1a~k!@ f ~k,t !2 f th~k!#50. ~17!

Here E5qE/\. Whereas textbook procedures10 for solving
an equation such as Eq.~17! replace the second term by
2E] f th(k)/]k under the linear approximation, we will kee
the full nonlinearity in the field and develop a method
solving Eq.~17! without approximation.

Casting Eq.~17! in terms of the linear operatorL5a
1E]/]k, the solution is written down at once,

f ~k,t !5G~k,t ! f ~k,0!1E
0

t

dsG~k,s!a~k! f th~k!, ~18!

where the Green function is given by the exponential ope
tor

G~k,t !5e2Lt5e2[at1Et(]/]k)] . ~19!

In order to understand the action of the Green function,
consider the identity

ec(A1B)5ecAe*0
cdxe2xABexA

, ~20!

where c ~or x) is a c number andA and B are generally
noncommuting operators. Such an identity is easily prove12

-

FIG. 3. Steady-state velocityvobs/v0 as a function of the
electric-field strengthE/Ec , as predicted by~a! the quasi-
Newtonian theory of Sec. II and~b! the single relaxation time Bolt-
zmann equation from Sec. III.
4-4
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by noting that the derivative of the left-hand side with r
spect toc is equal to that of the right-hand side for allc, and
that the identity holds for one specific value ofc, viz., c
50. If c51, and the operatorsB and A are respectively,
multiplication by the scalar (k-dependent! function2at and
the differentiation operation2Et]/]k, application of Eq.
~20! gives

e2t(a1E]/]k)5e2Et(]/]k)e2*0
1dxexEt(]/]k)ate2xEt(]/]k)

. ~21!

Expansion of the integrand, and the recognition t
@]/]k,a#5]a/]k, lead to

exEt(]/]k)ae2xEt(]/]k)5a~k1xEt ! ~22!

which may also be understood immediately13 from Eq. ~21!.
We now see that, for any functionV(k),

e2*0
1 dxexEt

]
]kate2xEt

]
]kV~k!5e2t*0

1 dxa(k1xEt)V~k!. ~23!

Explicit evaluation of the Green function operation is no
possible,

G~k,t !V~k!5e2LtV~k!5e2(at1Et
]
]k)V~k!

5e2ā(k2Et,t)tV~k2Et ! ~24!

for any functionV(k), where

ā~k,t !5
1

«tEk

k1Et

a~y!dy ~25!

is the average of the reciprocal relaxation timea(k) over a
region ink space of extentEt centered aroundk1Et/2.

The general solution of the Boltzmann equation~17! is
thus obtained as

f ~k,t !5e2ā(k2Et,t)t f ~k2Et,0!1E
0

t

dse2ā(k2Es,s)s

3a~k2Es! f th~k2Es!. ~26!

It leads to the average time-dependent velocity

^v&5E
2p/a

p/a

dke2ā(k,t)tv~k1Et ! f ~k,0!

1E
0

t

dsE
2p/a

p/a

dke2ā(k,s)sa~k! f th~k!v~k1Es!.

~27!

This exact evolution equation can be used for several dif
ent purposes. One is to develop a general response forma
for all times.14 Our present interest being in the steady st
only, we neglect the first term which decays at long tim
For the steady-state velocity, we obtain

vobs5E
0

`

dsE
2p/a

p/a

dke2ā(k,s)sa~k! f th~k!v~k1Es!.

~28!
20510
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Equation~28! is an exact consequence of the Boltzma
equation in the relaxation time form for arbitraril
k-dependent relaxation times. It can be used to explore
nonlinear dependence of velocity on the field in comp
systems. The constant relaxation time casea(k)5a05ā
gives

vobs5E
0

`

dsE
2p/a

p/a

dke2a0sa0f th~k!v~k1Es!. ~29!

Explicit evaluation is trivial in the tight-binding limit where
v(k) is taken asv0 sinka, and

f th~k!5a@2pI 0~2V/kBT!#21 exp~2V coska/kBT!
~30!

wherekB is Boltzmann’s constant,T the temperature,I 0 the
modified Bessel function, andV the nearest-neighbor transfe
integral which is proportional to the bandwidth. One eva
ates the factor*0

`dse2a0s sinEs as the Laplace transform o
the sine function, uses the symmetry off th(k) and the anti-
symmetry of sinka in the band, and obtains

vobs5v0

Ea0

E 21a0
2

I 1~2V/kBT!

I 0~2V/kBT!
, ~31!

in agreement with a result given by Dunlap and Kenkre15 in
their treatment of dynamic localization. We plot this result
Fig. 3~b!. Unlike in Fig. 3~a!, no sharp transition is visible
but we see a similar Ohmic rise for low fields and negat
differential mobility for high fields.

General result~28! may be used along with specific rea
izations ofa(k) through an evaluation of the double quadr
ture. We also provide an approximation procedure which
useful for practical calculations. It interpolates between li
its in which the averageā in Eq. ~25! may be replaced by the
value of a at k, on the one hand, and by the average ofa
over the band on the other hand. The motivation for
approximation can be understood by considering a partic
form of the relaxation rate, e.g.,

a~k!5a02a1 coska, ~32!

which leads from Eq.~25! to

ā~k,s!5
1

«sEk

k1Es

a~y!dy

5a02a1 cos~ka1Eas/2!Fsin~Eas/2!

Eas/2 G . ~33!

Figure 4 shows this exact time dependence ofā(k,s). We
see, both from Fig. 4 and from Eq.~33!, that, on the one
hand, for small (qEa/\)s, when the sinc function is equal t
1, the approximationā(k,s)5a(k) holds, and that, on the
other hand, for large (qEa/\)s, when the sinc function is
equal to 0, the approximationā(k,s)5a0 holds. The cross-
over occurs in a time of the order of 1/Ea. This suggests that
for arbitrary k dependence ofa(k), the time integration in
Eq. ~28! be performed by replacingā(k,s) by the time-
4-5
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V. M. KENKRE AND P. E. PARRIS PHYSICAL REVIEW B65 205104
independent valuea(k) from 0 to a constant times 1/Ea, and
by the time-independent valuea0 from that value to infinity.
This leads, in the tight-binding case, to

vobs5v0

Ea

2pI 0~2V/kBT!
E

2p/a

p/a

dka~k!A~k!e(2V/kBT)coska.

~34!

If we take the demarcation time to be the reasonable
convenient value 2p/Ea, the quantityA(k) is given by

A~k!5
12e22pa(k)/E

E 21a2~k!
1

e22pa0 /E

E 21a0
2

, ~35!

and reduces for small fields to@E 21a2(k)#21 and for large
fields to @E 21a0

2#21, respectively. These limits correspon

to ā(k,s)'a(k) and ā(k,s)'a0 respectively.
We have explored a variety of assumed relaxation tim

~equivalently scattering mechanisms! on the basis of Eq.
~34!. In all the simple cases considered, we find an Ohm
tendency at small fields and an eventual negative differen
mobility at large fields, the essential behavior being given
the simple constant relaxation time case of our result
played in Fig. 3~b!, and rewritten here as

vobs5v0S EEc

E21Ec
2D S I 1~2V/kBT!

I 0~2V/kBT! D . ~36!

The characteristic field value which marks the turnover
the two field regimes is equal to\/qta, and is denoted by
the symbolEc as in the quasi-Newtonian treatment of Se
II.16 By t here we mean the relaxation time 1/a0.

The steady-state velocity predicted by this simplifi
~constant relaxation time! SLE/Boltzmann treatment emerge
as the product of three factors: the peak band velocityv0

FIG. 4. Decay ofa(k,t) as a function of the dimensionless tim
T5Eat/2, as given by Eq.~33!, with a15a0. The different curves
shown correspond, from bottom to top, to values of the wave ve
k50,p/4,p/2,3p/4, andp, respectively. The plot justifies the ap
proximation discussed in the text whereby the quantity plotted
replaced by the initial valuea(k) at short times and by the ban
averagea0 at long times.
20510
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52Va/\, a factor describing the nonlinear field dependen
which rises or falls with the field according to the value
the field relative toEc , and a factor describing the temper
ture dependence of the velocity which is decided by the ra
of the bandwidth to the thermal energy. The last factor sho
that while temperature effects appear in the quantum kin
equation analysis, they are treated there in a rather simpl
manner: unlesst is taken to have a prescribed temperatu
dependence,17 the field dependence and the temperature
pendence appear in separate multiplicative factors in
simplified treatment.18 For high temperatures (kBT@2V), I 0
tends to 1 whileI 1 tends toV/kBT, and the maximum ve-
locity becomes inversely proportional to the temperature
we introduce a thermal velocityv th5akBT/\ obtained by
dividing the lattice constant by the thermal time\/kBT, the
high-temperature limit can be written as

vobs5
v0

2

2v th

EEc

E21Ec
2

. ~37!

At low temperatures (kBT!2V), we have

vobs5v0

EEc

E21Ec
2

~38!

which should be compared to the quasi-Newtonian re
@Eq. ~13!#.

IV. FOKKER-PLANCK ANALYSIS AND A UNIFICATION
OF THE QUASI-NEWTONIAN AND KINETIC

EQUATION RESULTS

In order to bridge the quasi-Newtonian approach of S
II, which clearly corresponds to zero temperature, with
quantum kinetic equation approach of Sec. III, we no
present a Fokker-Planck analysis. Finite-temperature e
ronment effects on the quasi-Newtonian evolution of Sec
are included in the spirit of the Langevin approach by add
to Eq. ~5! a Brownian motion term involving a white nois
random force,

dk

dt
1S g

\2D S d«k

dk D5
qE

\
1R~ t !, ~39!

where^R(t)R(t8)& is proportional tod(t2t8), andvk is ex-
pressed explicitly as (1/\)(d«k /dk).

Since Eq.~39! is a nonlinear Langevin equation, a con
venient calculational procedure is to convert it to a Fokk
Planck ~or Smoluchowski! equation through standar
prescriptions,19

] f ~k,t !

]t
5

g

\2

]

]k F S d«k

dk
2

\qE

g D f ~k,t !1kBT
] f ~k,t !

]k G ,
~40!

and to solve the latter in the steady state. A formally identi
evolution equation was analyzed by Kus´ and Kenkre20 in
their investigation of a classical problem of microwave he
ing in ceramic materials.21 This formal similarity was ex-

or

is
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ploited recently by Parris, Kus´, and Kenkre22 to show that
the steady-state solution of Eq.~40! is

f ~k![ lim
t→`

f ~k,t !5B21E
k

k12p/a

dpeb(«p2«k)2b\qE(p2k)/g,

~41!

whereb51/kBT, from which the steady-state velocity is ob
tained as

vobs5E
2p

p

dk f~k!
1

\

d«k

dk
5

qE

g
2

2p~12e22p\bqE/ga!

ba\B
.

~42!

The crucial quantity in Eqs.~41! and ~42! is

B5E
0

2p/a

dke2\kbqE/gE
0

2p/a

dpeb(«p1k2«p). ~43!

For the sinusoidal band of the tight-binding system, it can
reexpressed as a single integral,

B5
2p

a E
0

2p/a

dke2\kbqE/gI 0~4bV sinka/2!, ~44!

of the modified Bessel functionI 0(z) and can also be rewrit
ten using Bessel identities.23 The latter reduces Eq.~42! to
the following compact form22:

vobs5
qE

g
2

1

p

a sinh~p\bqE/ga!

b\I 2 i\bqE/ga~2bV!I i\bqE/ga~2bV!
.

~45!

Here the ordersn56 i\bqE/ga of the modified Besse
function I n(z) are strictly imaginary, proportional to the fiel
E, and inversely proportional to the temperature and the s
tering strengthg. Recalling the definitions ofv` , the drift
velocity attained in our zero-temperature quasi-Newton
model for small fields, andv th , the thermal velocity intro-
duced in Sec. III, appearing, respectively, in Eqs.~10! and
~37!, we see that the orders of the Bessel functions can
be written in the simple formn56 i (v` /v th). The argument
of the Bessel functions, i.e., the ratioz52V/kBT of the
bandwidth to the thermal energy, is simply related to
order of the Bessel functions through the expression

z[
2V

kBT
5S v0

v th
D5S v`

v th
D z. ~46!

Figure 5 shows a plot of the field-dependent velocity
several values of the temperature including extreme temp
ture limits. The surprising similarity of the low-temperatu
limit of the Fokker-Planck analysis to the Drude-like pred
tion of Sec. II@see Fig. 3~a!#, including the cuspy transition
and the similarity of the high temperature limit to the pred
tions of the SLE treatment@see Fig. 3~b!#, motivate an
asymptotic analysis of the Fokker-Planck result@Eq. ~45!#.
As we show below, the exact Fokker-Planck solution@Eq.
~45!# indeed reduces in the high-temperature limit to t
functional form@Eq. ~36!# found in the SLE treatment, with
a suitable redefinition ofE0. Furthermore, the zero
20510
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temperature limit of Eq.~45! reduces to the quasi-Newtonia
expression@Eq. ~13!#, the sharp transition with the discon
tinuous slope characteristic of the latter result being thus
exact consequence of the Fokker-Planck expression@Eq.
~45!#.

We first focus on the high-temperature case. Becausz
5v0 /v th→0, integral~44! becomes

B5
2p

a E
0

2p/a

dke2zzkaI 0~2z sinka/2!, ~47!

and can be evaluated by expanding the Bessel functio
powers of its argument:

B;
2p

a E
0

2p/a

e2zzka~11z2 sin2ka/2!dk

;
2p~12e22pzz!

zza2 S 11
1

2

z2

z2z211
D . ~48!

In this small-z limit, from ~42! we thus obtain for the sinu
soidal band,

vobs5
v0

2

z

z21v th
2 /v0

2
5

v0
2

2v th

EE0

E21E0
2

, ~49!

where we introduce a temperature-dependent characte
field

E05Ecv th /v0 . ~50!

With this definition, we note that the high-temperature lim
@Eq. ~49!# of the Fokker-Planck expression@Eq. ~45!# is for-
mally identical to the SLE result@Eq. ~37!#. However, the
location of the peak in thev-E curve displays a dependenc

FIG. 5. Steady-state velocity as a function of field strength,
predicted by the Fokker-Planck treatment of Sec. IV for differe
temperatures as indicated. Comparison with Fig. 3 shows that
top curve reproduces the quasi-Newtonian result exactly. Bot
curves tend identically to the shape of the quantum kinetic equa
result for infinite temperature.
4-7
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on temperature which is different in the Fokker-Plan
analysis sinceE0, the characteristic field in this case, in
creases with temperature.

To understand the low temperature behavior of Eq.~45!
requires more care, since the result has a discontinuous
rivative atE5Ec ~see Fig. 5!. We therefore separately trea
the high-fieldz.1 and low-fieldz,1 cases. In both case
the ratio z5v0 /v th diverges. For low fields (z,1), andz
large, the integrand in Eq.~47! is sharply peaked at a valu
of k in the interior of the integration region. In the neighbo
hood of this peak, asz→`, the value and argument of th
Bessel function become large. Use of the asymptotic exp
sion I 0(x);ex/A2px gives

B;
1

2paE0

2p/a

dk
exp~2kazz12z sinka/2!

A4pz sinka/2
. ~51!

The peak of the integrand occurs at the valuek5k0
52a21 cos21z, provided z,1. A saddle-point integration
performed about this peak value leads to the asymptotic
sults valid forz@1:

B;
1

2pza2

exp@2z~A12z22cos21z!#

A12z2
. ~52!

Substitution of this result into Eq.~42! then leads to

vobs;v0z2
2paz

b\
~12e22pzz!A12z2

3exp$22z@A~12z2!2cos21z#%, ~53!

whose limit for z,1 asz→` is indeed just the first term
v0z as in the first part of Eq.~38!.

We now obtain the limiting behavior of Eq.~45! at low
temperatures and large fields (z.1). From the previous
analysis, asz approaches 1 from below, the peak of t
integrand in Eq. ~51! moves to the left, sincekpeak
52a21 cos21z. It is easy to verify that for allz.1, the peak
of the integrand is no longer in the interior of the integrati
region, but atk50. Thus, forz.1 andz large, we return to
Eq. ~47!, expand sinka/2 about k50, and approximate
I 0(2z sinka/2);I 0(zka). For largez, the exponential factor
in Eq. ~47! kills off any contributions from largek. On ex-
tending the upper limit of the integration to infinity, we fin

B;
1

2pa2E0

`

e2zzkI 0~zk!5
1

2pza2Az221
, ~54!

which yields, forz→` andz.1,

vobs5v0~z2Az221!, ~55!

which is identical to the large field part of the quas
Newtonian result@Eq. ~13!#.

Unlike the kinetic equation approach, the Fokker-Plan
approach treats the effect of temperature in a nontrivial m
ner. In addition, it cleanly connects the cuspy transition
the quasi-Newtonian analysis with the smooth field dep
20510
e-

n-

e-

k
n-
f
-

dence of the SLE/Boltzmann result, and shows that the c
acteristic field values in extreme temperature limits a
given, respectively, by

Ec5
gv0

q
, E05EcS kBT

2V D . ~56!

A careful analysis of the low-temperature limit shows th
the location of the peak of thev2E curve on the field axis
first decreases as the temperature is increased, and the
creases. Eventually, the peak location is linear in the te
perature as is clear in the definition ofE0. This means that, a
sufficiently large temperatures, the extent of the Ohmic
gime keeps increasing as the temperature is increased
cording to the Fokker-Planck description. In the simple S
description with a single relaxation time, the extent is ind
pendent of temperature. The general kinetic equation
scription, given for instance by Eq.~34!, predicts a tempera
ture variation of the extent of the Ohmic regime but on
between values proportional to the band average of the
laxation ratea(k), and its thermal average.

V. CONCLUDING REMARKS AND ALTERNATE
SOURCES OF SATURATION

The main results presented in this paper, in addition to
primary focus discussed below, are the sharp~cuspy! transi-
tion in the field dependence of the velocity in the qua
Newtonian model in Sec. II, the method of solution of t
Boltzmann equation without making the linear approxim
tion in the field given in Sec. III, and the asymptotic analy
from the Fokker-Planck equation provided in Sec. IV.

The primary focus of the paper is the investigation of t
effects of finite bandwidths and nonparabolicity on field d
pendence of the velocity. The interpretation of the data w
based on the belief that the nonparabolicity of bands is
sponsible for the low-temperature behavior. We showed
Sec. I that formula~1!, which formed the basis of this inter
pretation, is quite inappropriate since it does not corresp
to any saturation.24

Although formula~1! as a basis for saturation is incorrec
the idea of investigating the effects of nonparabolicity
bands in organic crystals, suggested by the authors of Re
and others, is indeed significant. In order to test whet
nonlinearity effects arising from the nonparabolic nature
bands include saturation, in this paper we have carried o
number of investigations: on the basis of quasi-Newton
considerations, of quantum kinetic equations, and of
Fokker-Planck equation. We have shown that each of th
physically reasonable approaches fails to predict any sat
tion, on the sole basisof the nonparabolicity of bands. Fur
thermore, all approaches considered agree in their predic
of Ohmic behavior followed by a peak and a decrease in
velocity with increasing field as do other earlier report
investigations.15,25 We have restricted our analysis to ban
based theories, and not touched upon saturation in hop
transport or any polaronic issues in the present paper.
emphasize that we have not given a proof that satura
cannot occur from simple theoretical considerations. Inde
we will show below how certain features other than ba
4-8
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nonparabolicity, in combination with that feature or othe
wise, could be responsible for field saturation of the veloc
Our purpose here has been to point out that the obse
saturation requires further investigation, that no analysis
far lends support to the saturation providing a test of coh
ence~bandlike behavior!, and that values of bandwidths, s
crucially important to the understanding of other transp
features in the polyacenes, should not be deduced from t
saturation values of the velocity until the origin of saturati
is understood.

The primary characteristic field value that appears in
various expressions we have provided isEc , which is given
by gv0 /q, or equivalently by\/qta. The first of these ex-
pressions shows that the field value at which nonlinear
fects of the type investigated in this paper can arise is p
portional to the carrier bandwidth. The Ohmic regime clea
extends to much larger fields in inorganic materials in wh
the bandwidths are of the order of eV’s. In typical organ
materials the bandwidths are relatively smaller,26 making it
possible that the non-Ohmic regime is observable be
fields achieve breakdown values. Using a typical valuet
510214 s in the second expression given above, we see
Ec can be less than 106 V/cm if a is of the order of 5 Å
characteristic of organic materials. In inorganic materia
where the lattice constant is much smaller, it is less lik
that this non-Ohmic regime is observed before a breakdo
of the material occurs.

We now suggest two other possible sources of saturat
and comment on them at a heuristic level. One is based
the assumption that the scattering rateg in Eq. ~5! is field
dependent, and the other that it isk dependent. The Drude-
like considerations of Sec. II can be shown to give satura
if g is field dependent, the dependence being given by

g5g0A11~E/E1!2 ~57!

which means that the scattering rate increases with, an
proportional to, the field for large fields.27 In the context of
our quasi-Newtonian analysis, this means that a critical fi
signaling the crossover from the Ohmic regime to t
negative-differential-mobility regime need not be ev
reached. The field ratioz5E/Ec appearing in Eq.~13! is
now given by

z5
E/Es

A11~E/E1!2
~58!

where E1 appears in the definition ofg(E) above andEs
5g0v0 /q. In the absence of field-dependent scatteringz
would grow without limit with the field. Given the depen
dence described by Eq.~57! it saturates, instead, to the valu
zs5E1 /Es5qE1 /g0v0. The relative magnitudes of the tw
quantitiesE1 andEs which arise from the specific scatterin
mechanism in the system will determine whether
negative-differential-mobility regime isever reached. IfE1
,Es , that regime will never be reached, and saturation w
persist for all field magnitudes as the field continues to
crease. Otherwise, one will see a gradual flattening of
velocity of the field followed by an eventual decrease w
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increasing field. Note that, in the former case, our solutio
involving the hyperbolic tangent will always prevail, the
being no crossover to the trigonometric tangents. For
simple kinetic equation results we have obtained, this id
means that the velocity would be given by Eq.~36! with the
characteristic field value,E05AD1

21(D2E)2, determined by
the constantsD1 andD2. Figure 6 shows a plot of our SLE
expression@Eq. ~36!#. Field and velocity values are in arb
trary units. Under the heuristic assumption that, in the a
trary units employed, the quantitiesD1, andD2 have values
of 7 and 4 for the~solid! saturating curve~lower tempera-
ture!, and 40 and 1 for the~dashed! nonsaturating curve
~higher temperature!, it is possible to produce a striking re
semblance to the observations reported in Fig. 2 of Sc¨n
et al.1

Saturation can be obtained in an even more interes
manner if the scattering rate is assumed to bek dependent.
Thek dependence must be such that, as the carrier move
the zone fromk50 under the action of the field as in Eq.~5!,
the scattering increases so strongly that the carrier ca
traverse the zone beyond a certain point, no matter what
field strength. Such a singular scattering mechanism co
arise from a resonance of the carrier with another part of
system such as a molecular vibration. To motivate these c
siderations, note that Eq.~5!, which describes the crysta
momentum evolution, can also be written as an evolut
equation for the velocity. Dividing Eq.~5! by the effective
massm* 5(1/\)(dvk /dk) given in Eq. ~4!, and puttingg
50, we see that, in the absence of scattering, the time
rivative of the velocity is simplyqE/m* . If the scattering is
now taken to contribute a term2v/t to the evolution ofv,
we obtain the plausible velocity equation

dv
dt

1
v
t

5
qE

m*
5

qEa

\
Av0

22v2, ~59!

FIG. 6. Apparent saturation of velocity with increasing fiel
Plotted is the single relaxation rate version of the kinetic equa
result in Sec. III, i.e., Eq.~37!, with afield-dependentscattering rate
for two different sets of parameter values in the two respec
curves. Solid and dashed lines correspond to the low- and h
temperature cases respectively. See the text for details.
4-9
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V. M. KENKRE AND P. E. PARRIS PHYSICAL REVIEW B65 205104
with a nonlinear driving term, the specific nonlinear expre
sion in the extreme right-hand side arising from the tig
binding relation. It is immediately clear that this equati
predicts saturation. The steady-state velocity obeys

v`5
qEt

m*
5

qEta

\
Av0

22v`
2 5v0

E

AEc
21E2

, ~60!

where Ec5\/qta. The behavior is Ohmic at small field
(E!Ec) with mobility m05v0 /Ec52Vqt(a/\)2. The ve-
locity saturates for large fields (E@Ec) to the maximum
value v052Va/\ that the carrier velocity can have in th
band. A simple way of understanding this result is that
productm* v, which is proportional to tanka, increases with
field without limit while the velocityv, which is proportional
to sinka, saturates atka5p/2 in the middle of the Brillouin
zone, where the effective mass becomes infinite. Not only
these considerations predict saturation, but the apparent
of saturation observed at higher temperatures in penta
could correspond to the temperature dependence oft, more
scattering occurring at higher temperatures, or ofv0 through
Huang-Rhys~polaronic! reduction of bandwidth.

It might appear that nonparabolic nature of bands is
sole ingredient responsible for this saturation mechanism
we have provided. This is not true. In light of effective-ma
theory,10 Eq. ~5! is known to be a legitimate starting point t
introduce forces on the carrier as additive inputs. A damp
force proportional to a constant scattering rateg introduced
in this manner@see Eq.~5!# does notlead to saturation, as th
analysis in Sec. II has already shown. The velocity evolut
equation~59!, which shows saturation, has been obtained
first turning off scattering in Eq.~5!, then transforming it into
a velocity equation, and then reintroducing scatter
through a constantt. If we had directly attempted to trans
form Eq. ~5! with its constantg, the resulting velocity equa
tion would not show saturation as the dissipative term wo
s.
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also develop nonlinearity which would exactly cancel t
driving term nonlinearity.

What scattering term in Eq.~5! corresponds to Eq.~59!,
which guarantees saturation? It is easy to show, by b
transforming, that theg(k) required is proportional to secka,
which means an infinite scattering rate atk5p/2a. We thus
see that to obtain the saturation predicted by Eq.~59!, the
scattering rateg in Eq. ~5! must become singular in the ban
Actually it is enough forg to become extremely large a
some pointk1 in the zone~not necessarily atp/2a) for this
effect to occur. We are in the process of investigating spec
mechanisms that could be responsible for such singular
havior.

Whether such ideas hold water in the light of quantitat
requirements, as well as what precise physical ingredie
could give rise to the mechanisms we have suggested
ristically above are issues that are beyond the scope of
present investigation. Figure 6, or the arguments based
singular scattering rates given above, is by no means
sented here as an explanation of the observations, but on
strike a cautionary note against drawing hasty conclusi
about coherence from observed saturation. The presen
thors feel confident that the beautifully clear experiments
Ref. 1 leave no doubt that the velocity saturates at low te
peratures in pentacene and that the saturation is destroy
higher temperatures. They feel equally confident that the
rent explanation of the saturation in terms of coheren
~bandlike behavior! based on Eq.~1! is totally unjustified;
and that the reason for the observed saturation rem
largely a puzzle. It is hoped that it will be soon possible
convert the suggestions we have made here on the bas
field-dependent ork-dependent scattering rates into a co
prehensive explanation of the saturation phenomena.

We acknowledge the support of the National Scien
Foundation under Grant Nos. DMR0097210 a
DMR0097204, and thank Luca Giuggioli for discussions.
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