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Polaronic theories for charge transport in disordered organic solids, particularly molecularly doped
polymers, have been plagued by issues of internal consistency related to the magnitude of physical pa-
rameters. We present a natural resolution of the problem by showing that, in the presence of correlated dis-
order, polaronic carriers with binding energies D � 50 500 meV and transfer integrals J � 1 20 meV
are completely consistent with the magnitudes of field and temperature dependent mobilities observed.
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Considerable debate continues regarding the nature
of charge carriers in molecularly doped polymers [1–4]
(MDP’s) and other organic solids of current technological
interest [5–8]. Experiments clearly show strong thermal
activation of the field dependent mobility m, that could
arise equally well from a carrier’s interaction with
phonons (polaron binding), or from static properties of
the material (energetic and spatial disorder). The latter
was the primary motivation underlying the Gaussian dis-
order model (GDM) of Bässler et al., in which activated
mobilities arise from carriers hopping through a Gaussian
density of transport states of energetic width s � 0.1 eV,
via Miller-Abrahams hopping rates [1]. Multiphonon
processes typical of polaron transport are absent in such a
model. Schein and co-workers, by contrast, suggested that
carriers are polaronic and that crucial to the understanding
of experiments was an adiabatic to nonadiabatic small
polaron crossover [2]. Others combined these viewpoints
with carriers assumed to be polarons moving in a disor-
dered medium [3,4].

Whether charge carriers are polaronic or bare is also of
obvious importance to ordered organics (crystals), where
careful quantitative analysis [5] for naphthalene [6] has
shown that the assumption of bare carriers leads to incon-
sistencies that are avoided when strong carrier interactions
with phonons, particularly librations, are included. Such
an analysis leads to the conclusion that carriers in naptha-
lene are polaronic in all crystallographic directions [5].
Very recent work in other ultrapure organic solids has pro-
vided strong additional experimental evidence for the ne-
cessity of polaronic concepts in the explanation of charge
carrier motion in organic materials [7].

In MDP’s internal consistency seems to point in the op-
posite direction: polaron-based models appear to require
unacceptable values of polaron binding energies or trans-
fer integrals in these materials. It has been shown, e.g.,
by Schein and others [2,3], that to explain observed mo-
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bilities (m � 1026 1023 cm2�V s) using polaron binding
energies D big enough to account for measured activa-
tion energies Ea � D�2 � 0.5 eV, it is necessary to take
nearest-neighbor transfer integrals J � 1 eV, if energetic
disorder is assumed absent. Such values are unacceptable
since they are even larger than the bandwidths for organic
crystals [9]. Problems of interpretation also arise if en-
ergetic disorder is assumed to be the source of observed
activation energies. Then, with hops requiring a typical en-
ergy jump V � 0.1 eV, nonadiabatic small polaron hop-
ping rates [10]
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become strongly suppressed by an “inversion” factor
exp�2V2�8DkT � which reflects the difficulty of coinci-
dent events [10] when jVj ¿ D. This suppression of
the hopping rate again makes it difficult to explain the
mobility without assuming an unreasonably large J. As
emphasized almost a decade ago by two of the present
authors [2,3], one is thus confronted by an unpleasant
paradox: If carriers in ordered systems (crystals such as
naphthalene) are polaronic in keeping with common ex-
pectations, they could hardly be expected to become bare
in disordered systems. If they are polaronic in disordered
systems, they could hardly be expected to have huge bare
transfer integrals J uncharacteristic of organic solids.

The purpose of this Letter is to show that this appar-
ent paradox has a natural resolution in light of the re-
cent experimental and theoretical characterization of the
correlated, dipolar nature of the disorder through which
carriers move in MDP’s. It has been established, e.g.,
that the interaction between carriers residing on dopant
molecules and molecular electric dipoles of the (electroni-
cally inactive) medium gives rise to a random potential
energy landscape [11] with long range (i.e., algebraic)
spatial correlations �U�0�U�r�� � s2a�r, where s is the
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width of the energetic distribution arising from this mecha-
nism, and a � r�2 a minimal molecular radius. The lack
of an intrinsic length scale associated with such correla-
tions has been recognized [12–15] as the key ingredient
needed to explain the Poole-Frenkel (PF) field dependence
m � exp�

p
gE � of charge carrier mobilities in these ma-

terials [12–15]. As we have previously discussed in detail
[15], with r21 energetic correlations, the spatial width of
large site energy fluctuations scales algebraically with their
depth. Rate-limiting activation energies arise not from in-
dividual hopping events, but from the escape from ener-
getic valleys comprising many sites. It is the hierarchical
flattening of these larger scale energetic structures that is
responsible for the PF behavior. We show here using the
techniques of Refs. [13] and [14] that mobilities of MDP’s
are entirely compatible with small polaron motion in a ran-
dom energy landscape provided it has the algebraic spatial
correlations of the charge-dipole type. First, we derive
analytic results for 1D polaron motion through a 3D dipo-
lar medium. We then present a series of numerical cal-
culations for a fully 3D system. Numerical calculations
confirm essential features of the 1D analysis, and more im-
portantly, allow realistic bounds to be placed on polaron
binding energies compatible with experimental observa-
tions and known properties of organic solids.

Following Ref. [13], we begin with an exact relation
[13,16]

m �
r�EP`

n�1 e2b�n21�eErCn
, Cn � �eb�un2u1�R21

n,n11� ,

(2)

for the mobility of a particle moving along a 1D nearest-
neighbor transport path among dopant molecules separated
by mean intersite spacing r through a 3D disordered dipo-
lar medium. In (2), eEr is the energy drop induced by
the field E between neighboring sites, un is the energy of
the nth site, Rn,m is the rate from site m to n, and b21 �
kT . In contrast to earlier calculations [13] which assumed
Rn,n11 to have a simple exponential dependence on the en-
ergy difference Vn � un11 2 un 2 eEr, we use here a
more realistic hopping rate expression [10,17,18] allowing
for multiphonon (polaron) processes.

Two specific features allow us to proceed. The first is
the well-known Fourier transform expression [19] which
naturally arises for hopping rates derived from linear re-
sponse theory:

Rn,n11 � e2bVn�2W̃�Vn� , (3)

where W̃ �Vn� �
R`

2` W�t�eitVn contains model-specific
information about electron-phonon coupling. Since the
electron-phonon interactions are associated with short-
range distortions of the lattice, while energetic disorder
in a dipolar material arises from the long-range interac-
tion between charge carriers and random dipoles in the
medium, we make the natural (and simplifying) assump-
tion that electron-phonon interactions are uncorrelated
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with the energetic disorder. The second ingredient is a
prescription [20] for writing the integral of a correlation
function such as W �t�eitVn as the reciprocal of the inte-
gral of another correlation function. Of relevance to the
general theory of the calculation of transport coefficients
[20,21], this prescription is used here in the simplified
form 1�W̃�Vn� �

R`
2` f�t�eitVn employed in Ref. [22].

This allows us to express Cn in (2) as
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Z `
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With a correlated Gaussian energy landscape having the
dipolar correlations [11] �U�0�U�r�� � s2a�r relevant to
the materials at hand, the three-point correlation function
in (4) can be computed using the techniques of Refs. [13]:ø
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In formal transport theory [20,21] f�t�, sometimes called a
force-force correlation function, is calculated directly from
microscopic interactions. Here, for small polaron rates,
if (1) is assumed in (3), f�t� is seen immediately to be
given by

f�t� �

s
DkT

2p2J4h
exp�2t2�4h� , (7)

where h � 2�8DkT�21. The integral resulting from sub-
stitution of (5) and (7) into (2) and (4) then gives
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Thus, aside from a modified binding energy D̃ � D 2
1
2 bs2�1 2 a�r�, the effects of inversion are entirely con-
tained in the factors

Gn � exp

" 1
4 �b2s2bn 2 beEr�2

2bD̃

#
. (9)

Except for Gn, the sum in Eq. (8) is identical to those
in earlier expressions which predict the PF field depen-
dence [13].

In the earlier analyses, the corresponding summand was
observed to be a sharply peaked function of n, and the sum
well represented by a small number of terms lying near the
peak. In the present situation, when D is sufficiently large,
Gn is slowly varying. Moreover, in this limit the factor Gn

does not affect the location (in n) of the dominant terms
of the sum. The resulting mobility then exhibits the same
asymptotic PF form derived in Ref. [13], i.e.,

m � m0e2bD̃�2 exp�2b2s2� exp�2bs
p

beEa � , (10)

but with a modified activation due to the polaron binding
energy. Thus, for large D, the 1D model predicts the
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characteristic PF field dependence, but with a mobility
reduced by the activated factor exp�2bD̃�2�. For small
D, the individual factors Gn become exponentially large,
and cause significant deviations from PF behavior.

Are the conclusions of the 1D analytical calculation ap-
plicable to 3D materials? To test, we performed numeri-
cal calculations similar to those of Ref. [14], as follows:
First, point dipoles with random orientations are placed on
a periodic cubic lattice of 503 sites, and the potential en-
ergy at each site due to the dipole distribution calculated.
Hopping rates Rn,m between lattice sites are computed
using Eq. (1) with Jn,m � J�rn,m� � J0 exp�2a�rn,m 2

r��, with a21 � 1 Å, and with the field directed along one
axis. Using a relaxation algorithm that explicitly includes
hopping rates from each site to its 26 nearest neighbors,
we then obtain the steady-state site probabilities pn, from
which the mean velocity �y �

P
n,m �rn,mRn,mpm, and mo-

bility are calculated.
In Fig. 1, calculated mobilities for physically reason-

able parameters, s � 80 meV, J � 1 meV, D �
150 meV, and r � 10 Å, show that polaron transport
is compatible with PF mobilities for temperatures in the
range T � 225 325 K and fields in the range E � 104

106 V�cm. Straight lines in Fig. 1 are least-square fits to
data in the range

p
E � 300 900 �V�cm�1�2 typically

probed in experiments. In Fig. 2 we present parameters
characterizing those linear fits, specifically, the PF factors
g � ≠ ln�m��≠

p
E, which give the slope of each fit in

Fig. 1, and the extrapolated zero field mobility mext�0�
associated with the intercepts. From (10) and the recent
3D numerical work of Ref. [14], these quantities are
predicted to scale with temperature as g ~ �s�kT�3�2 and
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FIG. 1. Field dependent mobility for polaron transport in a
dipolar solid with indicated parameters.
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ln�mext�0� exp�D�2kT�� ~ �s�kT �2, respectively. The
data clearly support the predicted scaling laws. By fitting
the data to an obvious generalization of the form proposed
by Novikov et al. in Ref. [14]

m � m0e2bD�2e2A1b2s2

eA2�b3�2s3�22A3�
p

eEa�s, (11)

we obtain m0 � 3.6 3 1023 cm2�V s, A1 � 0.31, A2 �
0.78, and A3 � 1.75 for the 3D polaron mobility for these
parameters.

The 1D calculation suggests that deviations from the PF
law occur for small D, when rates become “inverted.” This
is confirmed in Fig. 3, where m is calculated with parame-
ters of Fig. 1, but with D reduced to 10 meV. Here, the
field range of PF behavior is small, and the mobility drops
after reaching a maximum near 5 3 105 V�cm. That this
results from inversion follows from the open circles in
Figs. 1 and 3 where m is calculated at T � 325 K without
the inversion factor in (1). Inversion has been studied in
systems with no correlations [4,23]; its effects on systems
with correlated disorder have not.

Thus, observed PF behavior is consistent with small po-
larons and realistic values of J, provided the binding en-
ergy is sufficiently large to avoid the inversion effects of
Fig. 3. Since m decreases exponentially with D, a large
D again requires an unphysical J. When D becomes too
large, values of J required for mobilities in the right range
again become unphysical. To obtain the same room tem-
perature m in Fig. 1 with D increased to 500 meV, J must
increase from 1 to 20 meV, at the high end expected for
polyaromatic hydrocarbon crystals [9]. Figure 3 shows
that a D of 10 meV is too small except, possibly, for a
few systems at high fields and low dopant concentrations,
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FIG. 3. Field dependent mobility for polaron transport in a
dipolar solid with indicated parameters.

where mobilities that decrease with field are observed [23].
For the level of energetic disorder (s � 80 meV) used
here we conclude that, for D � 50 500 meV, PF-like mo-
bilities of observed magnitude are consistent with small
polaron motion in a correlated dipolar landscape.
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