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Evolution equations for the average energy of a harmonic oscillator in interaction with a bath are derived and
solved for two cases: (a) when the probability evolution obeys a master equation with a true decay
representing a sink-process like radiative emission occurring simultaneously with vibrational relaxation, and
(b) when the Markoffian approximation in the Heisenberg-equation analysis of relaxation is not made,

allowing for short-time effects.

I. INTRODUCTION

Recent theoretical investigations of the vibra-
tional relaxation of molecules, with or without
other accompanying processes, have proceeded
from master equations,' ™ Heisenberg equations,®
or other starting points,® and have often modeled
the relaxing molecule as a harmonic oscillator.
We have developed a general master-equation
framework*® capable of analyzing the simultaneous
processes of radiative emission (or radiative
absorption, or transfer) and relaxation, which
is similar to some work of Freed and Heller,?
and we have reported some of its consequences
in the context of initial Boltzmann distributions.*?
Here we derive evolution equations for the aver-
age energy, or alternatively the mean occupation
number, of the harmonic oscillator, which dis-
play the effects of true sinks on the master-equa-
tion results (Sec. II) and of non-Markoffian terms
on the Heisenberg-equation expressions (Sec. III).

Although the mean occupation number is a much
more simplified entity relative to the complete
state, it contains major physical information in
the simple system of a harmonic oscillator, since,
for instance, it is essentially identical to the
average energy of the system. It has therefore
received a good deal of attention in earlier analy-
ses,!'5 and it will be the sole quantity of interest
in this paper.

The evolution of the mean occupation number
is known! when the probabilities of occupation
of the oscillator states are taken to obey a closed
master equation with nearest-neighbor rates: the
Montroll-Shuler equation.! It is also known® from
the Heisenberg equations of motion that may be
derived for the ladder operators of the oscillator
under standard approximations and assumptions
concerning the interaction with the bath. The two
results are identical: the mean occupation num-
ber has a simple exponential decay from its initial
to its thermalized value. This is a remarkable
result since, for instance, the probabilily evolu-
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tion from the master equation is extremely com-
plicated and generally involves hypergeometric
functions.

In this paper we study the effects of two separate
generalizations of earlier analyses. In Sec. II
we derive equations for the mean occupation num-
ber when a process involving a sink for the oscil-
lator probability occurs simultaneously with the
vibrational relaxation. The evolution is seen to
lose its simplicity on account of the sink and to
have an interesting structure. In Sec. III we re-
turn to the sink-less system but explore the con-
sequences of relaxing the Markoffian approxima-
tion in the context of the Heisenberg-equation
analysis® of Nitzan and Jortner, and Nitzan and
Silbey. The work described in Sec. II is relevant
to those situations wherein the time scales of
vibrational relaxation and an accompanying sink
process, such as radiative or nonradiative decay
or excitation transfer, are not disparately dif-
ferent. The work reported in Sec. IV is in the
spirit of an earlier analysis” by one of the authors
in the context of Glauber’s ferromagnet model®
and its relevance depends on the nature of the
interaction of the molecule with the bath.® Re-
cently reported® relaxation times appear, how-
ever, to be long enough to allow the possibility
of observing non-Markoffian effects.

II. EVOLUTION FROM MASTER EQUATION WITH
TRUE DECAY

Montroll and Shuler! proposed and solved the
following master equation:

Lidz;m-=k[(m +1)P,,, +me™"P, _,
~{m+(m+1)e""P,], ¢

where P,(t) is the probability that the mth level
of the oscillator is occupied attime ¢, B=Fiw/kyT,
w and T are the oscillator frequency and
temperature, respectively, and % is dependent
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on the nature of the bath and its interaction with
the oscillator. Vibration relaxation described

thus does not entail a true decay of the probability:

there being no sink (or source) in the system,
it is globally conserved. In order to study re-
laxation in the presence of emission, transfer,
or a similar process involving a true decay of
the probability, the following extension®'* of the

Montroll-Shuler equation naturally suggests itself:

-%%mwa P, =k[m+1)P,., +me 2P, _
—{m+m+1)e 'B}P (2)

The solutions of Eq. (2) are trivial generaliza-
tions of those of Eq. (1) if a,, is m independent;
and they are both important'® and can be obtained
explicitly®** if o, is linearly dependent on m.
Here we take

n=0+cm, 3)

with b and ¢ as constants. Equations (2) and (3)
yield

1 8G(z,t)
5eF 5 =(z2-1)G(z, t)
+{zz—z(eﬂ+1+6)+es}£(z—ﬁ
9z
(4)
for the Green’s function
Gz, t)= Z z™P, (t)e%, (5)
m=0

with G:eﬁc/k. The mean occupation number
(n(t)) and the total probability Q(¢) are related
to the Green’s function through

(n(t) = }: nP,(t) e{ Lim 9_6_(5_{1}
=e "G (1, 1), (62)

Qt)= ZP t)= e'“\{le Gz, t)}

Z—>1
=e % G(1, t). (6b)
Defining

. 9%G(z, t)
” = ’
G"(1,t)= I:ir{l o

and taking the limit z—1 of Eq. (4) before and
after differentiation with respect to z, we obtain

dGc(1,t)

i +¢G'(1,t)=0 (7a)
1 dG'(1,t) 8 , ”
ke—_g——dt +(€P=1+8)G'(1,t)+6G"(1, t)

=G(1,¢). ()

Equations (7) are particular cases of a general
hierarchy of equations that can be derived*® for
the moments of the probability by repeated dif-
ferentiation of the Green’s function. It is seen
that the members of the hierarchy are intercon-
nected and the equation for a given moment is,
therefore, not closed, the evolution depending
on a higher and a lower moment. From Egs. (6)
and (7) we have

aQ

T —+bQ +c(n(t)) =0, (8a)

d<")

+H{b+k(l—e B} (n)y+c(n®) =ke™?Q, (8b)

where use has been made of the relation

G"(1,1)=(n*) =(n), 9)
with

2y =3 wP,(t)
n=90

Equations (8) possess an interesting structure:
The total probability € decays through the con-
stant rate b and feeds the mean occupation number
(n) through ¢, the coefficient of the linear term
in @,. Similarly (n) feeds the higher moment
(n*) through ¢, gains from the lower moment
through the “upward” rate ke~ 8 and decays
through { b+ &(1 - e~®)} which is the sum of b and
the difference between the “downward” and “up-
ward” rates of relaxation. These equations are
reminiscent of the BBGKY hierarchy for reduced dis-
tribution functions and, in fact, constitute an ex-
ample of mode-mode coupling.

Equations (8) do not allow explicit solutions for
(n(t)) unless Q(¢) and (n*(¢)) are known a priovi.
It is possible, however, to close the equations
for some particular initial probability distribu-
tions. Thus, for the case P,(0)=6, ,, on defining
(n), and @, as the moment and the total probability
for this distribution (initially localized on m),
Eq. (8b), rewritten as

L b+ k(1= e () pr () p=he™Q,,
(80")

is reduced to the closed equation

<" En {bscrk(l—e B (n), =Lke ® +B ()} Q,,

)

where
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B,(t)=D(t){(M - N)(M' - N')}

X[ mA(NM' = MN' Y + m{ N3(M’ = N'? + N"*(M = N2 + 2N'(M = N)(MN' = NM")} +2N"2(1 - N©2] . (10a)

D(t)=(T* =T )exp[ke ™ ®(I™ - 1)¢t]. (10b)
Here we have used the result®'*®

G(z,t)=D(t)(M = z2N)™(M' = zN')~(m*1) (11)
and the symbols in Egs. (10), (11) are given by

M=e®N =eP(1-e7T), (12a)
M =T*-e™"I'", (12b)
N=T"-e™ T, (12¢)
I =3@?+1+8)+{3EP+1+52-eB}¥2  (12d)
" =3E®+1+8)={iE®+1+8)% —eB}¥2  (12e)
T=(" =T ke Pt. (12f)
Simpler equations may be obtained from Eq.
(9) for certain initial distributions by using
(n) =Z (n), P,(0), (13a)
Q =Z Q, P,(0). (13b)

As an example we treat an initial Boltzmann dis-
tribution

P,(0)=¢""Po(1 —e ~Po), (14)
at a nonenvironment temperature
To=hw/kgBy#fiw/kgB=T.

On multiplying Eq. (9) by (1 -¢~%0)e ™% summing
over m and utilizing the identity

N -Bomy D@ 8%{(1—eBori)-1}
’;m e Bomg - T =N (=B s

where p=In[(M - N)/(M’' —=N')], we obtain

(15)

gfi_;tz)+{b+c+k(1—e'6)}(”> =ke-BQ‘zc%ﬁ'

(16)

Although nonlinear, this equation, along with Eq.
(8a), describes the closed evolution of the pair

Q@ and (). Furthermore the two equations can

be used to ohtain an integro-differential equation
for (n) alone. The solution of this equation, which
may also be arrived at ciirectly“b from the Green’s
function pertinent to an initial Boltzmann distri-
bution, is

@) =Y()e P®{1-e B®} -2 (17a)

B(t)zm<r+(1-e'Bor‘)—e“Tr'u —e'B°F+)>y

(1-e~Bor=)—e~"(1 —e ~BoI'")
(17pb)
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Y(t)=(1-e Bo){r*(1-e=Bor")
—e "I~ (1=ePorh} -t {r* -7
coml-tlbebe -t (e

We have proved earlier*? that an initial Boltzmann
distribution maintains its Boltzmann form through-
out the decay process and that %#w/kgB(t) can be
viewed as a time-dependent temperature. This

is seen from the form of Eq. (17a). The evolution
equation for the dimensionless inverse temperature
B(t) may be obtained from Eq. (17b), or otherwise,
as

1 dp(t
e % ==0+4e%2[sinh3p(¢)]

x[sinh3{B(¢)-8}]. (18)

As we pointed out earlier,*? T(0) equals the tem-
perature characterizing the initial distribution,

‘but T(=) is less than the environment temperature.

This interesting result which is relevant to the
Stepanov problem,'! is also reflected in the evo-
lution of the quantity x(£)=(e®*’ 1)1, which
we have plotted in Fig. 1. This quantity gives
the moment {x(¢)) when multiplied by a normal-
izing factor and the decay term Y(¢), equals the
moment in the absence of the sink, and may thus
be called the quasimoment. The equation obeyed

_x=ERoly

x () —

0.4 : ' '

FIG. 1. Quasimoment x(¢) = (e — 1)~ ! in the pre-
sence and absence of the sink process plotted as a func-
tion of time ¢ in units of ke”#(I'* — I'"). Parameter
values are arbitrary: ¢=0.2, %w/kgT;=8,=0.75, and
7iw/kgT =B=1.0.
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by this quasimoment follows from Egs. (17);

kel' d>{<j(tt) =[1+(1=e®)x(t)] =oxOLL +x(2).

(19)

The effect of the sink process on the evolution
of the average energy of the relaxing oscillator
(molecule) may be studied from Egs. (8) and (16)-
(19). A level-independent sink term (¢ =0) im-
poses a simple exponential time dependence on the
total probability Q(¢) [see Eq. (8a)] and the effect
on the average energy is also straightforward
[see Eq. (8b)]. A level-dependent sink-term
“opens” the equation for Q(¢), connects {(n(t)) to
(n2(t)) and complicates the evolution. Closing
the evolution in the manner of Eq. (9) does not
result in significant simplification because the
terms B,(t), although known, are quite complex.
Specific initial conditions do simplify the evolution
as in the initial Boltzmann case: Eq. (16). We
note that the nonlinear term in this equation, as
well as in Eq. (19) is proportional to ¢, which
characterizes the level dependence of the sink
term. The effect of the sink is particularly trans-
parent in Egs. (16) and (19). Figure 1 compares
the solutions of (19) with and without the sink
term, for arbitrary values of the parameters.

IIIl. EVOLUTION FROM HEISENBERG EQUATIONS AND
CUMULANT TECHNIQUES

Nitzan and Jortner® studied vibrational relax-
ation by developing Heisenberg equations of mo-
tion for the ladder operators a and a' which lower
or raise the oscillator state. With harmonic
oscillators representing the bath and using the
rotating-wave and the random-phase approxima-
tions, they obtained

a(t)=u(t)a+y v,(t)B,, (20)
where B, is a bath operator and «(¢) and v,(¢)
are c-number functions given by

(€)= e+iw+A(e) ™t (21)

7,(€) =—iG (€ +iw,) " i(€). (22)

w,’s are frequencies (or combinations of them)
of the bath oscillators, G, is an interaction matrix
element and the function 7(¢{), given by

n(t)=_1G,l2e vt (23)

plays the role of a “memory function.”'? Here €
is the Laplace variable and tildes denote Laplace
transforms. A further approximation'® on the
evolution of the number operator a*a, obtained

as a consequence of Eq. (20), then gives for the
evolution of the mean occupation number

(8 = n(ONu(OI® + (o)) [1 = u()?].  (24)
The analysis in Ref. 5 obtains
u(t)=e~iwry)t (25)

for substitution in Eq. (24) and thus essentially
makes the “Markoffian” approximation in Eq.
(21) whereby the Laplace transform 7(€) is re-
placed by its value 7j(— iw) =7 at € =—iw. While
this may be an excellent approximation for a given
system, it depends on its validity on width prop-
erties of the density of states and of the inter-
action G,. Our interest here lies in studying the
consequences of relaxing that approximation.
Since #(0) =1 it is clear that u(¢) is given in gen-
eral by

du(t)

—zit——+iwu(t)+ '[t dt'n(t =t u(t’)=0, (26)

and the deviation of the solution of Eq. (26) from
Eq. (25) corresponds to the difference between

the last term in Eq. (26) and [ [ dt'n(¢')e’“* Ju(?).
This deviation would be absent if n(¢)=y06(¢), and
this would correspond to | G,|%0,, the product

of | G,|? and the density of states p,, being in-
dependent of w,. Generally the form of this func-
tion determines 7(¢) through the Fourier trans-
form

n(t)= [dw p) G PeTit, (23)

which is Eq. (23) rewritten in the integral form
with p, = p(w’), G, = G(w'), etc. Here p(w’) will
be a smooth function only in the continuum limit
and the integral spans the frequency range of the
bath oscillators. '
For the particular model consisting of a (dis-
placed) Lorentzian dependence of |G, ’p, on w,

|G, Pp,= (r2%/ M3+ (0 — w, )] (27
Eq. (23), gives™
n(t)___y)\e-(lﬂ'w)t , (28)

which, on substitution in Eq. (26), yields

u(t)= e~ M2 Y2 E) (N sinh & + 2£ coshét) , (29a)
E=3 (X432, (29b)

Equations (29) and (24) then give
() = (=) + [R(0)) = ()] (1/4] £?)
X e |(xsinh&l+2Ecosh&t) [P, (30)

This time dependence of the moment () is more
general than that in Ref. 5 and reduces to it: (i)
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in the limit A -, and also (ii) as ¢ - at finite
)\’s. Equations (30) and (24) have been plottted in
Fig. 2 with arbitrary parameter values. Our Eq.
(30) contains short-time information not present
in Eq. (24), and its form depends as shown on the
specific frequency dependence of the interaction
matrix elements, and the density of states. This
information is, however, obviously unimportant
if X is very large for a given system since in that
case solutions of Eq. (30) coincide with those of
Eq. (24) after very short times.
Equation (24) when rewritten as

&) - Bwyec (31)
where B and C are y and y{n(x)), respectively,
has the same form as Eq. (23) of Nitzan and Sil-
bey®? except that in the latter B and C are gen-
erally ¢-dependent quantities. This time depen-
dence also originates inthe frequency dependence
of |G,[?p, and can be computed explicitly for our
model. Thus, the expressions®®

B()= [ " aw ol 2L =M g
C(t)= Lwdw' p(wl) I G(w') |2 eBw'l_ : Sin[i;:):-—ww)t]
(32b)
reduce, for the above model, to
B()=v(1-¢™), (33a)
C(t)=yln(=)(1 - e™), (33b)

where certain contributions which can be made
negligible in some limits of the parameter values
have been omitted for simplicity.’® The solution
of Eq. (31), with B and C given by Egs. (33), rep-
resents the short-time description of relaxation
as described not by non-Markoffian equations [as
in Eq. (30)] but by the cumulant expansion tech-
nique'® used in Ref. 5(b). The resultant moment
expression

n(t)) = () +[n(0) - (n(=))]
x e " exp[(v/A)(1 - e)] (34)

involves the Gumbel distribution and it is dis-
played in Fig. 2.

IV. CONCLUSION

We have studied the evolution of the average
energy of a molecule in interaction with a bath
under two sepavate generalizations of existing
theory: (i) In Sec. II the master equation (1) was
extended [Eq. (2)] to include the effect of a true
sink (or source) corresponding to a simultaneously

<n(+)>/<n(0)> _—

t—

FIG. 2. Mean occupation number (z(t)) as given by
the Markoffian result [Eq. (24) and our generalizations,
Egs. (30) and (34)]. Parameter values are arbitrary:
A=1, y=0.2, and %w/kgT =2.0. The dashed line is
() / ®(0)) .

occurring process like emission or transfer and
leading to nonconservation of the total probability.
Equations for the average energy were derived
and shown to contain “mode-mode coupling”terms
in general. It was shown that simpler closed
equations could result for particular initial dis-
tributions and the case of initial Boltzmann dis-
tributions at temperatures different from the en-
vironment temperature was studied. Figure 1
compares this analysis with the results of the
ordinary master equation (1). (ii) In Sec. III
short-time details in the evolution of the average
energy were studied in two ways: through non-
local equations in time in the spirit of Ref. 7 and
through local equations with time-dependent co-
efficients, in the spirit of Ref. 5(b). Figure 2
provides a comparison of both results with the
simple exponential evolution''®* of the average
energy.

Note added in proof. It has recently come to
our attention that some calculations involving a
true decay term appended to the Montroll-Shuler
equation have appeared earlier in P. M. Matthews,
I. I. Shapiro, and D. L. Falkoff, Phys. Rev. 120,
1 (1960). .
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