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Spatial memories and correlation functions in the theory
of stress distribution in granular materials

V. M. Kenkre

Abstract The problem of calculating stress distributions
in granular materials is addressed via a formalism involv-
ing spatial memories. The stochastic origin of the mem-
ories is explained and the connection of the memories to
correlation functions in the granular system are clarified in
several ways: via stochastic considerations, through effec-
tive medium arguments, and by generalization of existing
constitutive relations. It is indicated how to unify exist-
ing theories in the literature with the help of the memory
formalis;m and how to apply the theory to compaction in
dies to explain observed oscillations in the stress.

Keywords Granular materials, stress, memory kernel,
correlation functions

1
Introduction

Stress distribution in static piles.of granular material is,
without doubt, a major area of current research in gran-
ular materials. The importance of the field stems from
the desirability of understanding and control of stress dis-
tribution in various specific industrial contexts such as
in pharamaceutical, agricultural and manufacturing oper-
ations. Peculiarities of granular matter {1-6] common to
other phenomena such as avalanches, patterns in flow, and
segregation, are notorious for the difficulties they present.
Stress distribution investigations have their own addition-
al severe difficulties that the theorist as well as the exper-
imentalist must face. Thus, almost nothing is known
definitively about the so~ca,lled constitutive relations
among the stresses. And, while it is relatively easy to mea-
sure stress at the surfa,ces of a compact, values of stress in
the interior must often be deduced from density distribu-
tions or other indirect observations.
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The present article provides a brief summary of a
method we have developed recently [7--9] for the theoret-
ical description of stress distribution, and indicates some
important physical aspects of the method not published
earlier. The method is based on spatially nenlocal equa-~
tions for stress, said to involve ‘memory functions’. It
has two important ingredients. One is what is sometimes
called the ¢t — 2z transformation: the singling out of one
spatial direction in the granular material and treating it
for the purpose of description as if it were time. Stress
distribution in an n-dimensional system is then. viewed
as stress ‘propagation’ in an (n - 1)-dimensional system.
For instance, the study of the spatial variation of stress in
a three-dimensional die becomes equivalent to the study
of the ‘time evolution’ of disturbances in a two-dimen-
sional membrane. Geometrical changes in the shape along
the chosen direction are reinterpreted as temporal chang-
‘és in the extent of the region under consideration. The
t — z transformation has appeared in investigations earlier
than ours, notably in the work of Bouchaud, Cates and
collaborators [10]. Its advantage is that it simplifies the
mathematical treatment considerably and provides physi-
cal intuition based on knowledge of initial value problems
in other fields. Its disadvantage is that approximation pro-
cedures, which are normally used along with the transfor-
mation, place restrictive limitations on the applicability
of the analysis.

The other ingredient of our analysis, which is particu-
lar to our approach, is a spatially non-local formalism [7-9]
based on integrodifferential equations of the Volterra type
incorporating memory functions which characterize spa-
tial correlations in the granular material. The memory for-
malism was suggested by extensive work in the rather dis-
tant area of exciton transport in molecular aggregates [11].

Once one has selected the z direction (to be thought of
as time) as the direction of gravity and/or of the applied
stress, one proceeds to seek a closed evelution equation
for the scalar field o,, which represents the zz- -COMIpo-
nent of the stress tensor. The characteristic ingredient of
our approach is the use of an evolution equation which is
non-local in z:
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'The function ¢ which connects the denvatwes of the stress

at various depths z is the memory function. Along with
the multiplying factor D, it is indicative of the spatial
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correlations of the granular material which arise from the
granularity (variations in shape and size of the grains) and
other properties such as friction. Generally, the memory
functions can depend on z and y as well, but we suppress
that dependence here to focus on the essential features
of a memory description. The idea of utilizing a memory
function approach arose originally from the need to ad-
dress curious features such as oscillations in the values of
observed stress down the center line in compacts [12-18].
The next section shows explicitly that memory functions
are not mere phenomenclogical constructs but arise natu-
rally from physical considerations.

2
Physical origin of the memory functions

‘There are several different ways one can understand the
origin of memory functions in the description of stress dis-
tribution. We present three of them below.

2.1
Stochastic origin and connection to depth-dependent
correlation functions

"Consider, for simplicity, a two-dimensional granular com-
pact(z along the vertical and z along the horizontal) con-
sisting of weightless circular discs of a given radius ar-
ranged in perfect order. Let a vertical force be applied
to the top of one of the discs lying on the top layer of
the compact. Newtonian laws of statics dictate that the
consequent force distribution, equivalently stress distribu-
tion, is down two lines in the compact, representative of
the so-called light cones [7,10). Viewed through the ¢ — z
transformation, the representative point in the one-dimen-
sional space of z travels ballistically with constant speed
which we will call c. Here, “travel’ obviously represents
changes in the z-coordinate of the representative point
with changes in its depth z.

If the array is now considered to be realistic and there-
fore not perfectly periodic, we come upon irregularities
stemming from changes in shape and size of the discs
and/or presence of friction. The speed ¢ now changes from
location to location. The path of the representative point
is jagged: c is a stochastic variable. Restricting attention
to its z-variation only, we can write an equation of the kind
one encounters in the description of Brownian motion:

d_:.v: = ¢(z).

PR (2)

An ensemble of representative points started at the top
would evolve along the various paths, the distribution of
the ensemble density being descriptive of the distribution
of stress. Defining a Liouville density for the process, and
averaging over all realizations of the stochastic process, it
is possible to obtain evolution equations for the averaged
* probability density, equivalently for the average value of
the stress o,,(x,z), according to the stochastic charac-
teristics of the process ¢(z}. The particular irregularities

arising from the shape and size changes in the discs, or

from their roughness, are reflected in ¢(z) and thereby in
the evolution of the stress.

The irregularities in the granular compact change the
direction and magnitede of ¢{z) as one goes down the
depth coordinate, sometimes by small amounts and some-
times by large amounts. For simplicity, let us consider that
¢(z) jumps between only two values, ¢ and —¢, with an
exponential cerrelation characterized by depth {, and that
the noise is a random telegraph. What this means is thag
the stochastic process is dichotomous, and that the num-
ber of jumps of ¢(z) between the two (equal and opposite)
values follows a Poissonian distribution. It is possible to
show then [17] that the Liouville density, equivalently the -
stress, obeys
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The parameter o = 2/l describes the reciprocal of the
depth scale over which the exponential correlation of the
random process decays. If o vanishes, which means that
¢(#) continues with its original value forever, the equation
obeyed by 7,(z, z) is 2 wave equation with wave speed c,
and corresponds to constant memory. On the other hand,
if the correlation of ¢’s decays infinitely rapidly, specifical-
ly such that @ — 00, ¢ = o0, ¢*/a = D, the memory ¢ (z)
equals a delta-function 6 (z), and the evolution for stress
is a diffusion equation.

The above stochastic argument, while highly simpli-
fied, provides the essential understanding of the origin of
the memory functions and of their connection to corre-
lation functions in the granular system. The roughness of
the granular particles, and the variation in their shape and
size, produce a decay in the correlation of ¢(2), and this
correlation directly gives rise to the memory equation, the
functional dependence of the correlation function and the
memory function being identical in the simplified dichot-
omous case. Generally, as shown by Kus [18], a stochastic
process involving a sum of many random telegraphs may
be approximately represented by a memory function in
the stress equation which is the sum of a large number of
exponentials.

We mention in passing that it is also possible to pro-
vide a stochastic foundation along the above lines to
the diffusion equation with z-dependent diffusion constant
used by Liu ef al. [19] in mean field treatments of stress. If
e(2) is not a random telegraph but a stationary Gaussian
process, with zero mean and a correlation function A:

{e(2)ee)) = Az = 2}, (4)

the stress distribution can be shown to be governed
[17] by -

(5)

"The z-dependent diffusion constant D(z) is given in terms
of the integral of the correlation function as

D) = ]0 " a2 )

If the correlation function decays extremely rapidly
signifying that the stochastic process corresponds to a per-
fect random walk, the stress evolution equation is a simple
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diffusion equation {with constant diffusion coefficient). By
providing an explicit derivation of the full diffusion equa-
tion of Liu et al. [19], this stochastic argument makes a
contribution towards the clarification of the validity of
that eguation.

2.2
Effective medium considerations and memories
from disorder

Scme investigators find it natural to consider the stress
distribution problem as entirely diffusive in the sense that
the depth correlation of the ¢’s decays extremely rapidly.
This is often false in specific experiments as we have shown
elsewhere [8]. Nevertheless, we will now show how mem-
ories can arise from granularity and disorder even when
one begins with a simple diffusion equation.

Granularity demands that one replace = by a discrete
index m and randemness of shapes and sizes of the parti-
cles demands that the rates in the evolution equation be
random functions. We start from a diffusive (but discrete)
description represented, e.g., by

dom (2)
dz

= FPymtrim [Jm-z-_l (2) — om (2)] _
+Fm,m-1 [O'm—l (Z) —Tm (Z)] (7)

where ,,, is the value of 5,,, and m is the discrete index
representing the horizontal = (or y) coordinate. Generally
m is a vector index, the evolution equation being appropii-
ately modified, but we consider one horizontal dimension
for simplicity. The randomness of the rates leads, via stan-
dard effective medium arguments, to a memory function
that thus arises from disorder in the connections F:

dc’m (Z) / dz'F (z — 2') [oms1 (&)

+ om-1(2') = 20m ()] (8)

Disorder in F"s is replaced by memories in z, and F(z) is
obtained from the random distribution p(F) of the rates.
Equation (8) is evidently equivalent to the diffusion equa-
tion in the continuum limit, F(z)} being proportional to
Do{z). Effective medium arguments lead to the follow-
ing prescription for converting the randomness in F’s into

mermories.
—¢ (F (a)) .

The function ¢ has a known dependence on € and F,
and vanishes for small ¢, yielding

f“#mn: 11
0 f - FO F ’
a simple and well known mean field result which states
that the mean field rate is the reciprocal of the average of
the reciprocal of the disordered rates. Memory functions
which arise from such effective medium considerations are
characterized by a sum of two parts with differing time
constants and to stress distributions different from those
predicted by a diffusion or telegrapher’s equation f20]-
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25

2.3
Formal arguments via generalization of constitutive
relatians

Finally, we show how mermory functions arise from mathe-
matically natural generalizations of constitutive relations
assumed in earlier theories of stress distributions. Typical-
ly, stress balance equations appearing from Cauchy rela-
tions (Newtonian statics) are three in number but involve
six independent quantities [7,10] and therefore must be
supplemented by additional relations known as constitu-
tive or closure relations. Whether made explicit or implicit
in the analysis, they are ad hoc in nature. The closure as-
sumption of Janssen [21} and Thompson [22], particularly
as expressed by Bouchaud et al. [10], postulates propor-
tionality between the diagonal elements of the stress ten-
s0r {Gzz, Oyy, and 0;;), as well as the vanishing of the
shear components in the zy plane: o5y = 0y = 0. This
relation is actually not used directly but only in the form
of spatial derivatives [10]:
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Let us extend this existing constitutive relation by gen-
eralizing it to incorporate the contributions of o, and
7y.. We represent these contributions through the addi-
tion of first-order terms in the sense of a Taylor’s series
expansion:
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Combination of this extended form of the constitutive
relation with other relations such as the Cauchy equations

leads [7] to
z " 8 zf
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This at once yields the memory equation (1) with
memory ¢(z) = we™**. While they might have some
formal (mathematical) appeal, assumed constitutive re-
lations such as those in refs. ([10,21,22]), or their general-
izations such as those presented here [7], have little or no
physical content. Real justification of the memories is to
befound in the stochastic or effective medium arguments
given earlier in this section.

3
Relation of the memory equation to other evolution
equations

In this section we point out how the present formalism
unifies different approaches existing in the literature, spe-
cifically the wave approach and the diffusive approach,
and show how the memory equation is related to equa-
tions with z-dependent diffusion constants, which form
the point of departure of the analysis of ref. [19].
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3.1
Unification of wave and diffusive approaches
to stress distribution :

A powerful feature of the memory approach is its ability
to unify diverse existing approaches by showing them to
emerge as particular cases for special forms of the memory,
as well as its added potential to describe the entire inter-
mediate regime. This is at once evident from the fact that
the simple diffusive approach (with constant )}, which we
may call the simplified Liu approach [19], represented by

90, (557972)
3z

and the wave approach of Bouchaud et al. [10], represented
by

BZUZZ_ (z,9,2)

Oz2

are extreme limits of (1) for the respective cases when the
memory is a delta-function, ¢(z) = §(2), and when the
memory is a constant, ¢ {z) = ¢*/D. The former limit is
& — 00, ¢ — 00, ¢*/a = D, whereas the latter limit is o =
0. Furthermore, when neither parameter limit is operative,
wavelike behavior is apparent for depths smaller than 1 [,
while diffusive behavior predominates for depths larger
than 1/a. The parameter ¢ is, of course, directly related
to the slope of the so-called light cones, and ¢ measures
the decay of the correlation function. As remarked earli-
er, the perfect memory situation represents the fact that
the stress applied on one particle is transmitted along the
lines of contact between particles without loss of infor-
mation about the original strength and direction of the
applied force, while the delta-function memory situation
describes Markoffian behavior, i.e., complete loss of infor-
mation at every step.

The diffusive limit of the evolution has been used in
the past for developing mean field treatments [19] and ad-
dressing the magnitude distribution of the stresses rather
than their spatial variation. The wave limit has been dis-
cussed primarily via ray tracing arguments [10] in what
may be termed the geometrical limit of the wave equation,
Our own approach has been quite different. We have ob-
tained actual solutions of these equations for the propaga-
tors (Greens functions) through explicit initial value and
boundary value treatments and, with their help, attempt-
ed to address the spatial distribution of stress in granular
systems. Our especial emphasis has been to present an
intermediate starting point which combines the physics
inherent in the extreme limits of wave-like and diffusive
behavior and is capable of describing the entire range in
between. Therefore, we focus attention on memory func-
tions which are neither constant nor have infinitely fast de-
cay. We reserve for a future discussion rich features which
arise from algebraic memories, and consider here the sim-
ple intermediate situation which corresponds, as shown

= DV?%s,, {z,y,2), (14)
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* above, to random telegraph noise, ie., to a form for the

memory which is exponential ¢(z) = cexp(—az). With
respective limits for small and large & as the wave and
the diffusive cases, this intermediate memory gives the te-
legrapher’s equation, which, suppressing y, has the form

8o, (x,2) - a@azz (z,2) 2 8205, (,2)
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"The easy unification of the extreme limits provided by
our memory approach may be appreciated either directly
as explained above, or through explicit solutions such as
those of (16). Consider stress propagation in an unbound-
ed medium and take the applied stress o,.(z,0) at the
‘surface’ z = 0 to be a delta function §(z). With the no-
tation that I' vanishes identically for ¢z < z, and equals,
for cz > x,

7= (@) (o Govem==)
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the I's being modified Bessel functions, the solution of

(16) is given by

§{z + cz) + 8 (x — c2)
2

In the limit o = 0, . .

022 (T, 2) = (1/2) [6 (T + cz) + 6 (z — cz)] (19

as in ref. {10] and we recover the phenomenon of ‘light
cones’. Qur solution shows that, in addition, there is a non-
vanishing stress distribution within the light cones. This
stress is given by our term 7. In the limit which reduces
our theory to the opposite extreme of Liu et al. [19], the

+ T} . {18)

light cones spread out to coincide with the surface z = 0,

and the entire region experiences stress. A stress distri-
bution f(z) applied at the top surface causes, throughout
the medium,

. oo e—(z—x'}zﬂl[)z , ,
o) = [ (20)

3.2

Relation of the memory equation to equations

with z-dependent diffusion coefficients

Interesting comments can be made on the relationship be-
tween the memory equation (1) and an equation with: 2-

-dependent diffusion coefficient such as (5} which forms

the point of departure of ref. [19]. We have seen that
such an equation arises naturally for Gaussian process-
es when the stochastic process which characterizes clz) is
Gaussian with a correlation function A(z), and that the
z-dependence of D(2) is obtained by integrating twice the
z-dependence of A(z). :

If o%(z) is the Fourier transform of the stress, and

o*(e) is the Laplace transform of o*(z), i.e.,

—_— oo
ok(e) = f o*(2) exp(—ez)dz
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(] —0a
(21)
the memory equation results in
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whereas the z-dependent diffusion equation results in

‘;% = exp {—H /0 g /0 o (z”)]

The two results can be made identical to each other
if the Gaussian correlation function and the memory are
both proportional to Dirac delta functions §{z). Further-
more, if the memory and the normalized Gaussian corre-
lation are equal to each other, such that

(23)
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the ‘mean square displacement of the stress’, defined as

(%) = f_o:o dz £°0,,(z,2) = — [ﬁi{z—)] k=0
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is identical in the two cases, no matter what the z-depen-.

dence of the correlation function! An explicit example may
be given for the exponential memory: ¢(z) = aexp{-z).
One gets, in both cases,

(@) = -2;—2 [z _ Loempimaz) P’Xp(’“az)] .

[24

The equality of the mean square displacement might
tempt one to conclude that the two cases are identical.
Such a conclusion would be quite incorrect. Higher mo-
ments are not identical, and the full solution of the stress
can exhibit oscillatory behavior from the memory equation
but never from the z-dependent diffusion equation for a
case such as the one with exponential memory. Indeed,
if an exponential correlation is assumed for the Gaugs-
ian process, and a memory equation which results in the
same solution for the stress is demanded by equivalence,
the memory is found to develop a k-dependence in Fou-
rier space. Time and space components of the memory
are then inseparable in the memory equation even if they
are separable for the D{z} equation. It is straightforward
to write an equivalence between two generalized memory
and D(z) equations in which space and time components
are combined. Despite this formal similarity, one is led to
conclude that oscillatory behavior such as one observed in
compacts [12-16] is more natural to memory equations.

(26)

4
Boundary value problem for compaction in dies

The original motivation for our investigations [7,8] was
provided by reported observations of curious features such
_as spatial oscillations in stress down the center line in com-
pacts. ‘These features are apparent in recent experimental
results [12] as well as in data that have been available in
the literature for many years [13-16]. Experimental infor-
mation about the distribution of stress in a powder com-
pact has been difficult to obtain unambiguously. Observa-
tions have employed, in some cases, direct measurement of
the stress with the use of sensors or strain gauges [15,25|
within, or at the edge of, a compact to measure the forces
that evolve during pressing. Other cases have involved in-
direct deduction of the stress distribution from the density
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distribution within the compact. The first approach suf-
fers from a lack of accuracy and the second from the need
for specific assumptions of a local stress-density relation
at every point in the compact [22-24]. Nevertheless, it is
quite clear that characteristic unexplained features such
as the non-monotonic variation of the stress with depth
along the centerline of the compact emerge regularly (but
not universally), and that a theoretical description of these
features is not trivial. Indeed, Aydin et al. [12] have re-
ferred to the failure of existing theories to account for the
oscillatory behavior. The reader is referred to ref. [8] for a
detailed description of the experimental background.
Spatial oscillations of stress in compacts was the pri-
mary problem which motivated the memory approach. We
address this issue by developing a boundary value analy-
sis of (1) in the compact. Details of the theory may be
found in [7] and applications to experiment in [8]. Un-
der the assumption that the extent in the z-direction is
large, (16) can be solved through the application of the

‘method of separation of variables. Oscillatory variation

of stress arising from the wave element in cases in which
¢/e is not negligible becomes obvious from the solutions.
For space reasons, we refer the reader elsewhere [8] for
thie-details of the application of our theory to compaction
in dies. With given distributions of stress along the top
surface and the side walls, explicit solutions are found for
the stress in the interior, and are compared successfully
to experiment. Oscillations down the center line emerge
naturally but not always, the factor governing their ap-
pearance being the ratio c/e. Closed contours signifying
true wavelike behavior appear in some cases but not in
others, also depending on the value of ¢/a. The analysis
gives a’ satisfactory explanation of existing observations.
Furthermore, it provides prescriptions based on a study
of practical matters such as the effect of Iubrication of the
walls and of changing the profile of the applied stress at
the top of the compact [8]. The wave ingredient of memory
equations is found to be essential to explain some of the
data (as in uranium dioxide) where oscillations are clear-
ly visible. Furthermore, even for cases which exhibit no
such oscillations (as in magnesium carbonate and alumi-
na}, a careful analysis based on our predictions lead to the
conclusion that the diffusive limit is inadequate for most
observations {12,15,16].

5
Conclusions

The formalism of memory functions for the description of
stress distribution described in the present paper repre-
sents a small advance in a difficult area of research. It hs
some virtues and a number of shortcomings in its present
stage. The latter include the assumption that the present
does not infiuence the past (in the sense of the t — z trans-
formation} which means that stresses at smaller depths
are considered as not influenced by stresses at larger ones.
This assumption is not always valid as the stochastic paths
representing the variable ¢(z) can in some cases turn up-
wards in a granular system. Indeed, stress distribution
cannot be looked upon universally as an initial value prob-
lem. Related to this problem is the evident restriction that
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the stress analysis presented above for dies be used only
in long pipes or media without a bottom. Termination
in the z direction as in a compact introduces ‘boundary
conditions in time’ which appear difficult to treat from
evolution equations. In the true time evolution situation,
we predict behavior at a later time, given spatial bound-
ary conditions for all time and an initial condition. The
incorporation of a ‘“final’ condition, i.e., a boundary condi-
tion at large values of time seems difficult to implement.
Another notable absence from the formalism is the incor-
poration of features peculiar to the granular system such
as isostaticity [26], mentioned elsewhere in this volume.
Indeed, our approach does not even touch upon complex-
ities specific to granular matter such as the dependence
of stresses on history {27,28]. The spirit in which the in-
_vestigations reported in this paper have been undertaken
is that the subject is forbiddingly difficult, but interest-
ing and fundamental, and that even small advances are
important to attempt in this fascinating area of research.

Achievements of the formalism include unification of
diverse approaches such as those applicable in the extreme
diffusive and wave limits, treatment of the entire range in
between, explanation of observed features such as oscilla-
tions in stress distribution and the potential to address
observations such as the burial problem 9]

It s perhaps useful to emphasize that memory fune-
tions are not mere phenomenclogical constructs but may
be computed from given stochastic properties of the gran-
ular system arising from the varying shapes and sizes of
the grains and from the grain-grain interaction. Informa-
tion about these stochastic properties themselves may be
obtained in principle from a combination of scattering
experiments, and of computer simulations such as those
reported by Endicott, and by Vidales et al. [29]. Oher
directions of related work include extensions [30] to in-
clude nonlinearities of the kind relevant, to reaction diffu-
sion systems.
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