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Abstract. Resonance phenomena related to Bessel function roots appearing in several
diverse areas of physics, namely, electron transport in solids, atom excitation under the
influence of light, spin evolution under applied magnetic fields, device design in Josephson
junction arrays, motion in optical lattices, dynamics of Bose condensates, nuclear magnetic
resonance as a probe of confined spaces and laser damage in materials, are discussed in the
context of a unified picture.
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1. Introduction

The practice of physics is sometimes described as having
as its prime element the art of simplification: weeding out
the irrelevant and focusing on the essentials. Resonance
phenomena are of special interest to the physicist because
they manifest the essence of this situation: attention is
naturally drawn to characteristic values of parameters for
which qualitatively new features emerge in observations.
This article describes a family of such resonance phenomena
unified by the appearance of striking similarities among
certain rather unrelated systems. The phenomena may
be loosely described by the term dynamic localization.
The variety of unrelated areas exhibiting these phenomena
covers electron transport in solids, atom excitation under the
influence of light, spin evolution under orthogonal magnetic
fields, device design in Josephson junction arrays, optical
lattices, Bose condensates, nuclear magnetic resonance and
laser damage in materials. A recent ingenious experimental
observation made in one of these areas (optical lattices)
by Raizen and collaborators [1] has resulted in a clean
verification of a quantum transport prediction made a decade
ago [2–4] in an entirely different area (electron transport in
crystals), and has led to a general resurgence of theoretical
interest in dynamic localization. However, investigations of
the resonance phenomena in these various unrelated areas
have been usually made with little interaction between the
communities of scientists who have undertaken them. We
have two purposes in this paper: to provide an overview of
the resonance phenomena from the limited but useful vantage
point of research techniques familiar to us, and to establish or
elucidate links that would allow one to transfer insights and
techniques from one area to another, and thereby enhance

the possibility of deeper understanding or efficient control in
each area.

The first of the areas mentioned has to do with electrons,
whose quantum motion in solids is dramatically influenced
by the application of a time-dependent electric field: electron
motion can be hindered by the field leading to localization
under specific and controllable conditions [2, 5–9]. In
the second, interference effects during light absorption can
affect the transfer of excitation so profoundly that plateaus
can appear [10–12] in the time dependence, followed by
sudden spurts of transfer even though the applied field is
sinusoidal, the localization within an atomic state during
the plateau and the suddenness of transfer during the spurts
both being interesting effects. In the field of magnetic
macromolecules in giant-spin materials and cold atomic
systems, orthogonal applied magnetic fields can lead to
almost identical resonance phenomena and to the possibility
of interesting quantum control [13–16]. Device design in
Josephson junctions [17], and application of an ac modulation
via optical lattice techniques [1] to the gravitational field
acting on Bose condensates [18], provide further instances
of related resonances. In the distant area of nuclear
magnetic resonance used as a probe for confined spaces
such as capillaries in the human body or pores in rock
(NMR microscopy), the combination of the diffusive motion
of the protons and their quantum reaction to applied so-
called ‘gradient’ magnetic fields results in the appearance
of the Torrey–Bloch equations [19, 20], which are formally
indentical to the evolution equations in the other areas
mentioned. Finally, the emergence of closely connected
considerations in the technologically important area of laser
damage in materials [21, 22] is also worth comment.
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2. Dynamic localization in electron transport in
crystals

The simplicity of the underlying concepts has resulted in
these resonance phenomena being redisovered many times
by investigators working independently of one another, often
in widely separated time periods. We begin† the description
with the finding made approximately 15 years ago by Dunlap
and Kenkre, who observed that, when a time-periodic electric
field was applied to a lattice, an initially localized electronic
wavepacket would remain localized if the ratio between the
strength of the electric field and its frequency took on certain
discrete values [2–4]. For the specific case of a sinusoidally
varying field, this ratio was found to be the root of the
Bessel function of order zero. This phenomenon of dynamic
localization has been studied independently, or extended to
wider domains, by a number of authors including Krieger and
Iafrate [8], Konotop et al [23], Cai et al [9] and Holthaus [5].
Important contributions have been made to the subject of
Bloch oscillations, which occur for constant fields, by a
number of other workers [6, 7] as well. We are interested
here, however, only in the case of time-dependent fields.

The simplest way of explaining the resonance
phenomenon is to consider a quantum particle (e.g. an
electron) of charge q in a crystal under the action of an applied
electric field of magnitude E and time dependence f (t) and
obeying the Hamiltonian

H = h̄V

∞∑
m=−∞

(|m〉〈m + 1| + |m + 1〉〈m|)

+ h̄qEf (t)a
∞∑

m=−∞
m|m〉〈m|. (1)

The evolution described is in the basis of Wannier states
|m〉 localized on lattice sites m separated by the lattice
constant a, the position operator having been assumed to
be diagonal in the Wannier basis (single-band assumption),
with V as the (nearest-neighbour) matrix element between
the states. The analysis of Dunlap and Kenkre provides
exact results for arbitrary time dependence of the field [2],
specifies the explicit connection of the new phenomenon to
Bloch oscillations by exploring the system in momentum
space [3], treats the effects of scattering of the particle due
to lattice imperfections by using the stochastic Liouville
equation [4] and generalizes the treatment to arbitrary band
shape (non-nearest-neighbour matrix elements Vmn) and
arbitrary number of dimensions [2].

The basic evolution equation for the expansion
coefficients cm(t) of the electron state in the Wannier basis
which results from (1) is

i
dcm
dt

= Emf (t)cm + V (cm+1 + cm−1), (2)

where (and henceforth) h̄ has been set to unity for simplicity,
and E = qEa. While the method of characteristics
may be used in a straightforward fashion to solve this
evolution explicitly, an interesting alternative is the following

† We have chosen this pheonomenon to start our description only because
of our own familiarity with the area rather than on the basis of any priority
suggestions.

succession of transformations. We define η(t) ≡ ∫ t
0 ds f (s)

and remove the first term on the right-hand side of (2) by
looking at the evolution of Cm(t) ≡ cm(t)e−imEη(t):

i
dCm
dt

= V [eiEη(t)Cm+1 + e−iEη(t)Cm−1], (3)

and continue through a discrete Fourier transform Ck ≡∑
m Cmeikm to obtain an equation for Ck , whose explicit

solution is instantly obtained as

Ck(t) = Ck(0)e−i2V
∫ t

0 ds cos[k+Eη(s)]. (4)

The lattice considered can be in arbitrary number of
dimensions (m and k are then vectors) and its spatial extent
may be either infinite, or finite in a ring topology, so that
translational invariance is maintained. Inversion of (4) to
obtain the time dependence in the direct lattice is effortless.
Thus, for an infinite one-dimensional system, one obtains
the amplitude propagator in terms of Bessel functions [2]. It
is then straightforward to write, for initial occupation of site
m = 0, the probability Pm(t)≡ |cm(t)|2 and the mean square
displacement 〈m2〉 ≡ ∑

m m
2Pm(t):

Pm(t) = J 2
m

(
2V
√
u2(t) + v2(t)

)
, (5)

〈m2〉 = 2V 2[u2(t) + v2(t)], (6)

where the key quantities are

u(t) =
∫ t

0
ds cos[Eη(s)], v(t) =

∫ t

0
ds sin[Eη(s)].

(7)
The phenomenon of (dynamic) localization of the

electron is immediately evident from the nature of (7). For a
sinusoidal applied field, i.e. for f (t) = cosωt ,

u2(t) + v2(t) = t2[J 2
0 (E/ω) + f1(t)J0(E/ω) + f2(t)], (8)

where both the functions f1 and f2 decay at long times. The
Bessel root condition for localization is now evident and
means that the electron is dynamically localized whenever
E/ω is equal to a root of J0. It is important to note that
the origin of the Bessel functions in (5) is the intersite
connections on the one-dimensional lattice whereas the origin
of the Bessel function in (8) is the sinusoidal dependence of
the applied electric field.

Anisotropy in the electron mobility in a three-
dimensional lattice is another of the dynamic localization
effects. It is clear that the response to a dc field in a given
direction can be modified profoundly by applying an ac field
in that direction. Manipulation of the anisotropy properties
of the mobility is thus possible through the application of
external fields. For instance, in a cubic lattice with motion
which is nearest neighbour and mutually independent in the
three orthogonal directions, the effective matrix element in
each direction r is found [2] to be

V eff
r = VrJ0(Er/ω), (9)

where Er is the product of the charge, the field component
and the lattice constant along the rth direction.

A simple approach for addressing realistic effects by
including scattering consists [4] of the use of the simplest
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of stochastic Liouville equations which include dephasing of
the density matrix [24]:

i
dρm,n

dt
= Ef (t)(m− n)ρm,n + V (ρm,n+1 + ρm,n−1

− ρm+1,n − ρm−1,n)− iα(1 − δm,n)ρm,n. (10)

Here ρm,n ≡ c∗m(t)cn(t) is the density matrix element
of the electron and α describes the scattering (dephasing)
rate. The effective diffusion constant, defined as D ≡
limt→∞[〈m2〉(t)− 〈m2〉(0)](a2/2t), is seen to be

D = D0

∑
m

J 2
m(E/ω)α2/(α2 + (mω)2), (11)

where D0 = 2V 2a2/α is equal to the diffusion constant
in the absence of the applied electric field. Of note is the
non-monotonic behaviour of the diffusion constant, i.e. the
oscillations obtained on varying E/ω. For further analysis
such as extensions for arbitrary band shapes [2], dynamics in
reciprocal space showing connection to Bloch oscillations [3]
and interband effects [25] we refer the reader to the respective
references.

3. Excitation trapping in two-level atoms and
memory formalism

In quantum optics, there has been considerable work on the
two-level atom subjected to a time-dependent field [26]. A
curious resonance phenomenon in this system was reported
by Agarwal and Harshawardhan (AH) [10], who showed
that there could be plateaus and sudden spurts of transfer in
excitation transfer between atomic states. They also appeared
to suggest that this phenomenon, which we will call the
AH structure, was related to the root of the zeroth-order
Bessel function. Consider a two-level atom subjected to
optical excitation via an electromagnetic field of sinusoidal
dependence. In notation consonant with that employed above
for electron transport in crystals, we have the Hamiltonian as

H = E
2

cos�t(|1〉〈2| − |1〉〈2|) + V (|1〉〈2| + |2〉〈1|), (12)

where E is proportional to the strength of the electric field,
ω is the frequency of the field and V is the dipole matrix
element connecting the two atomic states.

Raghavan et al [11] investigated the connection between
the AH structure [10] and dynamic localization [2–4] by
extending numerically the latter results to finite chains (of
which the two-site system representative of the atom is
an example). Several interesting results emerge from that
analysis. One is the expected reflection at the walls formed by
the chain ends: it yields recurrences in the evolution. Another
is that dynamic localization, while perfect for an infinite
lattice, becomes imperfect for the finite lattice even when the
Bessel root condition is obeyed exactly: on resonance, the
mean square displacement oscillates at short times, signalling
localization, but grows slowly at longer times, indicating
escape from the localized region. A third is a criterion for
determining the sensitivity of the localization phenomenon
to the system parameters (particularly the finite size): the
requirement for dynamic localization to be discernible turns
out to be the smallness of the ratio V/NE , where N is the

number of sites in the finite chain. The findings appeared to
suggest almost total lack of sensitivity of the AH structure to
the Bessel root condition as was shown graphically [12].

In order to investigate this sensitivity issue, and more
generally to understand the origin of the clean separation
of the AH structure into the plateau and sudden transfer, as
well as the connection, if any, between the AH structure and
dynamic localization, a memory formalism was developed
recently [12]. The quantum optics system of [10] or
the condensed matter system of [2–4], when the crystal
considered is very small (consisting of two sites only!), obeys
the Liouville–von Neumann equation for the density matrix
ρ, which may be rewritten as an evolution equation for the
elements p, q, r of the so-called ‘Bloch vector’:

d

dt

(
p

q

r

)
+

( 0 −2V 0
2V 0 −Ef (t)
0 Ef (t) 0

)(
p

q

r

)
= 0. (13)

Here, p(t) = ρ11 − ρ22, q(t) = i(ρ12 − ρ22) and r(t) =
ρ12 + ρ21. Kenkre showed [12] that the use of Zwanzig
projection operators [27] leads without approximation to the
integro-differential equation

dp (t)

dt
+ 2

∫ t

0
dsW(t, s)p(s) = 0, (14)

whenever the density matrix is initially diagonal in the
representation of the states |1〉 and |2〉, as would happen, for
instance, if the system were to occupy only one of the two
states initially†. It is important that the memory function
W(t, s) is known explicitly (and simply) in terms of the
driving fields:

W(t, s) = 2V 2 cos

(
E
∫ t

s

dt ′f (t ′)
)

= 2V 2 cos{E[η(t)− η(s)]}. (15)

Note that the memory is not of the faltung type because the
Hamiltonian is time dependent, and is given equivalently by

W(t, s) = 2V 2[φc(t)φc(s) + φs(t)φs(s)]

φc(t) = cos

[
E
∫ t

0
ds f (s)

]

φs(t) = sin

[
E
∫ t

0
ds f (s)

]
.

(16)

For f (t) = cosωt , the characteristic functions φc(t) and
φs(t) are

φc(t) = cos[(E/ω) sinωt]

φs(t) = sin[(E/ω) sinωt].
(17)

If the parameter E/ω is large w.r.t. 1, φc(t) and φs(t)
oscillate rapidly. Because of these rapid oscillations, one
may consider taking p(s) out of the integral in (14) for short
times (short w.r.t. the period of the field but long w.r.t. the time
of oscillation of the memory) and solving fully the resulting
differential equation for p(t):

p(t) = e−2
∫ t

0 dt ′
∫ t ′

0 dsW(t ′,s) = e−2V 2[h2
c (t)+h

2
s (t)]. (18)

† For more general initial conditions, a term is appended to the right-hand
side of (14).
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The characteristic functions hc(t) and hs(t) appearing in the
exponent, given by

hc(t) =
∫ t

0
ds cos[(E/ω) sinωs]

hs(t) =
∫ t

0
ds sin[(E/ω) sinωs],

(19)

are identical to u(t) and v(t) of (7). A very rough
approximation to the solution for times long w.r.t. the field
period may be obtained by replacing the memory by its
average W over a period. One then obtains

p(t) = cos
(√

2Wt
)

= cos[2V J0(E/ω)t]. (20)

In obtaining the second equality, use has been made of the fact
that the averages of φc and φs are J0(E/ω) and 0 respectively,
which follows from the well known expansion

eiz sin θ =
∞∑

n=−∞
Jn(z)e

inθ . (21)

The short-time approximation (18) recovers the spurts
and the plateaus of the exact solution simply from
corresponding characteristics of the integrals hc and hs . The
long-time approximation (20) follows the overall evolution,
neglecting the short-time structure. Band collapse at the
Bessel root condition is recovered effortlessly since the
effective bandwidth V J0(E/ω) vanishes when the condition
is satisfied†.

Immediate analytic insight into the connection of AH
and dynamic localization as well as into the separation of
the plateaus and the transfer spurts can thus be obtained
by an examination of the behaviour of the characteristic
functions φ and h without solving any evolution equation.
For large values of E/ω, φc(t) oscillates most rapidly around
ωt = nπ where n = 0, 1, 2, . . . and least rapidly around
ωt = (2n + 1)(π/2). Since sinωt behaves linearly w.r.t.
ωt around the former locations and quadratically around the
latter locations,φc(t) evolves with a characteristic time which
varies as 1/E in the rapid regions to 1/

√Eω/2 in the slow
regions. Clearly discernible windows appear in the slow
regions and that is where the sudden transfer occurs. The
timescale separation is clean only when E � ω. Otherwise
no AH structure appears.

The function hc(t), equivalently u(t) in (7), oscillates
rapidly elsewhere but itself undergoes transfers in the slow
windows. The long-time approximation hc(t) ≈ tJ0(E/ω)
corresponds to dynamic localization. We thus see at once that
the two questions of interest are answered as follows. While
the quiescent plateaus and sudden spurts (the AH structure)
have little to do with the Bessel root condition, the AH
structure and dynamic localization are interrelated in that the
two represent extreme time limits. Indeed, both structures are

† It is important to remark here that the long-time replacement of the
memory by its average invoked to pass from (14) to (20) neglects the
accumulated effect of short-time transfer and leads to total band collapse,
which is actually not correct for the two-state system (but correct for the
infinite chain as in the analysis of [2]). However, the approximate result
gives an idea of the tendency of the evolution and gives the correct qualitative
description of bandwidth collapse in the infinite system.

controlled by the ratio E/ω. The AH structure appears when
the ratio is large, with consequent timescale separation in the
φ and h functions, whereas dynamic localization arises when
the ratio is equal to Bessel roots, with consequent collapse
of the bandwidth. Incidentally, in the limit that E/ω is small,
the cosine of the cosine remains near the value 1 and rapid
oscillations over the timescale of the field period do not occur.
Thus, it is not merely sufficient for E and ω to be widely
different in value for the AH structure to be visible.

Identification of disparate timescales within a physical
process often enhances our physical understanding of the
process. The memory formalism of [12] leads to the
identification of four such timescales if E � ω. The first is
the period of the applied field (1/ω), the second is controlled
by the magnitude of the applied field (1/E), the third is
essentially the geometrical mean of these two (1/

√Eω)
and the fourth is the bandwidth renormalized by the Bessel
function (V J0(E/ω)). Internal oscillations in the probability
transfer occur on the first timescale, transfer spurts occur on
the second, repetition of the spurts occurs on the third and an
overall transfer occurs on the fourth timescale.

The memory formalism clarifies the connection between
the AH structure in two-level atoms and dynamical
localization in electron transport in two ways. It shows, in
particular, that the former does not, while the latter does,
involve the Bessel root resonance. Moreover, it makes
it explicit that E/ω possesses crucial control over both
phenomena, in one case simply by its magnitude relative to
1, and in the other through a precise coincidence with Bessel
roots.

4. Dynamic localization in spin systems

The great deal of recent interest in the quantum
tunnelling of magnetization in giant spin systems [13]
and magnetic-field driven cold atoms [14] has arisen
partly because quantum effects are easily observed in the
magnetization of a macroscopic sample. Experimental [28–
31] as well as theoretical [32, 33] work in this area
has focused on the tunnelling between magnetization
states in magnetic macromolecules [28–31] at very low
temperatures. Resonance effects of the dynamic localization
kind appear [15] in such systems because, for a collection
of non-interacting spins coherently driven by crossed time-
dependent magnetic fields, the evolution equation bears
strong similarities to (2) with m, the quantum number for
the z-projection of the spin, playing the role of the lattice
site.

The Hamiltonian is

H = &0f (t)Îz +&xg(t)Îx +&yh(t)Îy, (22)

where the operators Îi are the standard angular momentum
(spin) operators for a system of total spin j , and &0 =
gµBBz,&x = gµBBx and &y = gµBBy . Here g is Lande’s
factor, and µB is Bohr’s magneton. It leads to

i
dcm
dt

= &0f (t)mcm(t) +
1

2
(&xh(t)

−i&yg(t))
√
(j +m)(j −m + 1)cm−1(t) + 1

2 (&xh(t)

+i&yg(t))
√
(j −m)(j +m + 1)cm+1(t) (23)
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for the coefficients of expansion cm(t) for an arbritary state
expressed as |ψ(t)〉 = ∑m=j

m=−j cm(t)|j,m〉. The time
dependences of the x-, y-, z-directional fields are denoted
by g(t), h(t) and f (t) respectively.

The number of m-values in (23) is finite, and corre-
sponds, in commonly encountered magnetic macromolecules
such as Mn12ac and Fe8, to a total spin j of the order of 10.
As long as one is interested in the dynamics around the levels
that are ‘distant from the ends’ of the spin-ladder, and in short
enough times, it is possible to approximate the m-dependent
square-root terms in (23) as constants:

√
j ±m ≈ √

j . Nu-
merical solutions of (23) under initial population of a state
(or sublevel) m such that |m| � j and j � 1 bear this ap-
proximation out rather well [15], provided strengths of the
transverse fields are small compared with the longitudinal
field, i.e.�j,&1j � &0. We therefore analyse a much sim-
pler form of (23):

i
dcm
dt

= &0f (t)mcm +
�

2
g(t)(cm+1 + cm−1)

+
i&1

2
h(t)(cm+1 − cm−1), (24)

where &xj = �,&yj = &1.
We observe that (23) is nothing but the finite-

chain equivalent of (2) with a time-dependent, complex
nearest-neighbour matrix element. Resonance effects are
immediately expected along the lines of dynamic localization
and are indeed found numerically directly from the original
equation (23). An analytic understanding may be given from
the approximated equation (24) very simply.

For transverse field strengths weak compared with the
longitudinal field strength, it is reasonable to take the
extension of the spin-ladder to be infinite. Following
the procedure of [2], the probability and mean square
displacement expressions are found to be

|cm(t)|2 = J 2
m[{(�2 +&2

1)(u(t)
2 + v(t)2)}1/2] (25)

〈m2〉(t) = 1
2 [(�2 +&2

1)(u(t)
2 + v(t)2)], (26)

with

u(t) =
∫ t

0
dt ′ h(t ′) cos

[
&0

∫ t ′

0
ds f (s)

]
,

v(t) =
∫ t

0
dt ′ h(t ′) sin

[
&0

∫ t ′

0
ds f (s)

]
.

(27)

Equations (25)–(27) should be compared with their
counterparts which arise in the dynamic localization of driven
electrons (5)–(8) and to which they approach for the case of
constant transverse fields.

If we take the time dependence of the magnetic field in
the z direction to be

f (t) = cosω0t (28)

and the time dependence of the fields in the transverse (x
and y) directions is taken to be g(t) = h(t) = sinω0t or
g(t) = h(t) = cos 2ω0t , we find that the probability of the
initially occupied level executes oscillations such that the
average value remains close to unity when the ratio of the
longitudinal magnetic field energy to the longitudinal field
frequency (&0/ω0) satisfies a resonance condition which

involves the root of Bessel functions. In the first case, in
which the transverse time dependence is sinω0t , the root is
of the Bessel function of order unity, whereas in the second
case, in which the transverse time dependence is cos 2ω0t ,
the root is of the Bessel function of order two.

It can be shown analytically from the approximated
equation, and supported numerically from the exact equation,
that, for a variety of transverse driving fields, the following
resonance conditions for localization apply when the
longitudinal field dependence is given by (28)

g(t) = h(t) = cos(2nω0t) :

J2n

(
&0

ω0

)
= 0 n = 0, 1, 2, . . .

(29)

g(t) = h(t) = sin((2n + 1)ω0t) :

J2n+1

(
&0

ω0

)
= 0 n = 0, 1, 2, . . . .

(30)

Detailed control is thus possible by a manipulation
of the time dependence of the three independent magnetic
fields. The relationship of the frequencies and phases of the
transverse fields to those of the longitudinal field dictates
what order of Bessel functions is involved in the resonance
condition.

It is interesting to observe that the translationally
invariant equation (24), while an approximation for the
magnetic systems we have considered, is an exact starting
point for the analysis of the original dynamic localization
effect [1,2,5] if the inter-site transfer integrals (bandwidths)
are time-dependent and complex. Such a situation is difficult
to arrange in the context of charges moving in a crystal
under the action of an electric field. However, it appears
possible, and, indeed, easily manageable, in optical lattices.
The treatment we have presented above in the form of an
analytic procedure, augmented to include interband effects,
could be, thus, applicable directly for optical lattices. It is
our hope that such experiments will be undertaken. Other
experimental manifestations of the resonance phenomenon
in spin systems would be apparent in observations of the
spin correlation function and the scattering function of probe
particles such as neutrons. While a detailed analysis of
such suggested experiments will be given elsewhere, we
mention in passing that the zero-frequency component of the
van Hove scattering function for these systems turns out to
be inversely proportional to the square root of J2n(

&0
ω0
) and

J2n+1(
&0
ω0
) respectively for the two cases where the transverse

fields are g(t) = h(t) = cos(2nω0t) and g(t) = h(t) =
sin(2n+1)ω0t . It is clear that the singularity that the scattering
function develops at zero frequency is representative of
dynamic localization.

Zak [34] has derived expressions for the quasi-energies
and found time-dependent solutions for a driven Bloch
electron in a time-periodic electric field. These solutions
generalize, to some extent, the solutions derived by Dunlap
and Kenkre [2]. Recent work [35] has shown that it is possible
to derive the most general condition for dynamic localization
by combining the work of Raghavan et al [15] and Zak [34].
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5. NMR microscopy: probing confined spaces via
the Torrey–Bloch equation

The diffusion of particles possessing a nuclear spin, such
as protons in water, moving in confined geometries such
as capillaries or rock pores, presents a fascinating target for
NMR microscopy. Investigations use pulsed-gradient spin-
echo NMR as reviewed by Callaghan [19]. Two magnetic
fields are applied to the sample: a homogeneous static
magnetic field B0, and a time-dependent gradient magnetic
field, the gradient being g and the time dependence f (t). The
equation of evolution for the density matrix ρ describing the
spin and spatial variables of a single diffusing particle is

i
dρ (t)

dt
= [Hr + Iz(ω0 − f (t)γgx), ρ(t)], (31)

where Hr is the Hamiltonian for spatial coordinates in the
absence of spin, ω0 = −γB0 and γ is the gyromagnetic
ratio. A conversion to the interaction picture, followed by
an evaluation of the expectation value of the magnetization
density, leads to the Torrey–Bloch equations [36] for the
magnetization density:

∂M(x, t)

∂t
= −igf (t)xM(x, t) +D

∂2M(x, t)

∂x2
, (32)

where D is the diffusion constant. We have displayed the
evolution in one dimension only for simplicity; analysis in
higher dimensions is straightforward.

Remarkably, (32) is almost identical to the dynamic
localization equation (2). An obvious difference is that
the former involves continuum space and diffusive motion
whereas the latter deals with quantum motion on a discrete
lattice. The fact that this difference is of little importance
from a mathematical point of view was used by Kenkre
et al [20] to obtain exact solutions for M(x, t) for arbitrary
initial conditions. In the NMR context (but not in the
dynamic localization case) M(t), the integral of M(x, t)
over all space, is important to calculate because it represents
the total magnetization: it is, normally, the observed
signal. This happy coincidence, which allows one to
obtain observable quantities in NMR microscopy without
performing a Fourier inversion, has no significant counterpart
in dynamic localization of moving electrons:

∑
m cm(t), the

sum of the amplitudes, has little value unless interest lies
specifically in the occupation amplitude of the k = 0 Bloch
state.

The explicit solution of (32) for arbitrary initial
conditions may be written down as follows [20]. The
initial magnetizationM(x, 0) is Fourier transformed to obtain
Mk(0) = ∫

M(x, 0)eikx dx. We denote by Mgη(t)(0) the
value of Mk(0) obtained by replacing k by gη(t), where
η(t) = ∫ 0

t
ds f (t). The magnetization at arbitrary times is

then
M(t) = [Mgη(t)(0)]e−Dg2

∫ t
0 ds [η(t)−η(s)]2

. (33)

Given that NMR microscopy and dynamic localization
of electrons in crystals are rather unrelated to each other in the
underlying physics, it is interesting to compare and contrast
the two. What are the similarities? In both cases, every point
in space has associated with it a rotating vector. In NMR

microscopy, the vector is the spin which precesses around the
static homogeneous fieldB0 at a frequency proportional to the
time-dependent (and space-dependent) gradient field. For the
electron in the crystal, it is the quantum mechanical amplitude
vector rotating at a frequency proportional to the site energy
whose gradient is proportional to the time-dependent electric
field. With the exception of the presence or absence of
a factor of i, evolution equations are essentially identical,
although the evolving quantity is the expectation value of the
magnetization (in a certain sense a largely classical entity)
in the NMR case, and the quantum mechanical amplitude in
the electron case. What are the differences? The continuum
versus discrete lattice difference has no significance. Indeed,
a theory of NMR microscopy on a discrete lattice of possible
interest to optically detected magnetic resonance experiments
of Harris, Zewail and collaborators [37, 38] has already
been given on the basis of the above considerations [20].
There are two important differences. (i) The measurable
in NMR microscopy is controlled by the phase difference
of the relevant rotating vectors at different locations while
in dynamical localization of electrons it is determined by
the magnitude difference of the rotating vectors. (ii) The
motion is coherent in the dynamic localization case unless
scattering predominates but incoherent in the NMR case
unless ballistic motion is included along with the diffusive
component. Under normal conditions, sharp resonances are
not observable easily in the NMR case but are in the case
of the electron moving quantum mechanically in the crystal.
Comparison of the NMR treatment with the analysis of giant-
spin magnetic materials systems (see, e.g., (23)) given above
reveals the important difference that motion is in real space
in the former but only in the space of the magnetic quantum
number m in the latter.

Work is under way on including ballistic motion in
NMR microscopy and porting resonance insights obtained
in the dynamic localization context to the NMR domain to
facilitate design of the time dependence of pulses to probe
confinement.

6. Related phenomena in other fields

We make brief mention in this section of some other fields in
which identical or related resonance effects appear. Dunlap
and collaborators have obtained very similar equations
of evolution in Josephson junction arrays, analysed the
possibility of designing frequency to voltage converters [17],
and have investigated [25] the dynamics of Bose condensates
falling under the action of the gravitational field and
simultaneously subjected to a time-dependent field obtained
by optical lattice modulation. That work, as well as
related studies by Niu and collaborators, promise an exciting
marriage of dynamic localization concepts and the new field
of Bose condensation.

Intriguing overlaps exist between dynamic localization
systems and interacting electron–phonon systems described
by the discrete nonlinear Schrödinger equation (DNLSE).
The so-called nonlinear dimer described by the DNLSE [39,
40] may be looked upon as the two-state system undergoing
dynamic localization but with an intrinsic ‘externally applied
field’. This field is the displacement of a harmonic oscillator
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interacting so strongly with the two-state system that it is
slaved by the evolution of the two-state system. The quantity
Ef (t) is then proportional to the probability difference p(t)
rather than externally determined. The evolution matrix 3
in (13) is now nonlinear:

3 =
( 0 −2V 0

2V 0 −χp
0 χp 0

)
. (34)

The nonlinearity leads to the physical pendulum equation for
the time integral of p(t), and to Jacobian elliptic solutions
for p(t), explicitly showing self-trapping [12, 39, 40].

This nonlinear dimer involving polaronic transfer on
the one hand, and the dynamic localization dimer under
sinusoidal driving fields treated earlier on the other, can be
viewed as extreme limits of a third system: the simplest
interacting electron–phonon system in the approximation
wherein phonons are treated classically but the electron is
treated quantum mechanically. Known as the semiclassical
dimer, this system evolves under the action of a matrix
3 dependent on E(t) as in (13), rather than its nonlinear
counterpart (34), in which p(t) appears explicitly, but with
E(t) given by

d2E(t)
dt2

+ ω2E(t) = ω2χp(t). (35)

The limit in which E(t) is independent of p(t) (which would
occur if χ were to vanish) describes the dynamic localization
problem. The limit in which E(t) is slaved by p(t), i.e. the
situation in which the second time derivative in (35) can be
neglected as the result of a time disparity argument [39, 40],
leads to the discrete nonlinear Schrödinger equation and the
phenomenon of self-trapping.

Resonance effects are less obviously present in the
above two cases. However, there exists yet another physical
system which unifies the dynamic localization system and
the nonlinear dimer through the equation

d

dt

(
p

q

r

)
+

( 0 −2V 0
2V 0 −Ef (t)−χp
0 Ef (t)+χp 0

)(
p

q

r

)
= 0.

(36)
It represents a system in which the strong electron–phonon
interaction and the slaving assumption have already produced
a nonlinear dimer to which an independent sinusoidal field is
applied externally. This field can indeed produce resonance
effects controlled by the Bessel root condition. A study of this
system constitutes the generalization of dynamic localization
to the nonlinear domain of the DK analysis and has been
carried out by Bishop and collaborators [9] numerically for
arbitrarily large systems. Questions sometimes raised as to
why the numerical investigation of this system shows the
Bessel root condition to continue to apply unmodified in spite
of the nonlinearity have been answered [12] recently for the
dimer system.

Finally, we remark on connections of the considerations
described in this paper to laser damage in materials. Strong
nonlinearities and feedback effects arise when materials are
bombarded by intense laser radiation. Linear response theory
is inapplicable, the absorption coefficient is itself dependent

on light intensity and electron avalanches can occur, leading
to explosive acquisition of energy. An understanding of
the underlying physical processes requires an explanation
of at least two processes: the complex nonlinear absorption
process whereby electrons are transferred from the valence
to the conduction band, and their subsequent evolution
as they move within the conduction band, participating
in multiple phenomena such as impact ionization and
recombination. Both require a nonperturbative analysis
and both have interesting overlaps with issues that arise in
dynamic localization. To illustrate, we mention Volkov states
as an example of the first of these overlaps and the nature of
long-range master equations for electron transitions as an
example of the second.

It is well known [21] in the laser damage literature that
the exact solutions for the Schrödinger equation for a free
electron in the presence of a classical electric field of arbitrary
strength or time dependence are given by incorporating
the so-called Volkov phase in the plane wave solutions
ei(xp−tp2/2m)/h̄. It is easy to see that this incorporation of
the Volkov phase is nothing else but the replacement of k
by k + Eη(s) that we observe in the dynamical localization
solution in (4). Indeed, (4) results in precisely the Volkov
form for the wavefunction if we allow for the simple fact that
the free electron band is parabolic rather than of cosine form
as is characteristic of the tight-binding chain considered in (4)
for dynamic localization!

The second example of overlap arises from the rates
used in the master equations obtained nonperturbatively
for the scattering of electrons in the conduction band
by Epifanov et al [22]. The process considered is the
transition of an electron as a result of the electron–phonon
interaction, but in the presence of a strong time-varying
(classical) electromagnetic field. Even if the electron–
phonon interaction is weak enough to involve a single phonon
in the elemental event, the process is generally of a multi-
photon nature. For sinusoidal time variation of the electric
field, the rates involve Bessel functions of an argument
proportional to E/ω. The order of the multiphoton process
(the number of photons involved in the process) appears
as the index of the Bessel function. As the light intensity
is increased, or the frequency decreased, this argument
increases. The first order process can thus be weaker than the
second order process (J1 > J0) for appropriate conditions.
This can have curious effects in the evolution.

It is to be hoped that the recognition of such overlaps
will help one to solve the difficult problems that exist in laser
damage by borrowing from known concepts and techniques
in the other areas mentioned.

7. Concluding remarks

We have described a variety of physical systems† which
exhibit resonance phenomena in most cases interrelated
through the existence of Bessel root conditions. Bessel

† Additional studies relevant to the discussion but not mentioned above
include the work of Haroche et al [41] in atomic physics, the theoretical
semiclassical analysis of Pegg and Series [42] and experimental work by
Chapman [43], and investigations of two-level atoms driven by a rf field by
Yabuzaki et al [44].
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functions arise in many contexts. Cylindrical symmetry in
Laplace’s equation, recursion relations for the wavefunction
coefficients in a site-localized basis and the appearance of
trigonometric functions in the exponent are three common
sources. Of these, the last two are relevant to the resonance
phenomena discussed here. The Bessel root condition arises,
however, from only the third of these sources, and requires
that the externally applied field be trigonometric (sinusoidal).
Other time variations may be expected to give rise to
conditions involving the roots of other special functions.

Quantum control [45] is a subject of great recent
interest. The availability of simple analytic expressions
provided in this overview suggests that such control could be
achieved by designing the time dependence of the appropriate
driving fields. Manipulation of the electromagnetic fields
forming the optical lattice or condensate traps in order to
achieve desired time dependence of the driving field [1], and
independent variation of the time dependence of mutually
orthogonal applied fields in magnetic macromolecules appear
to be particularly good experimental candidates for such
quantum control.
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