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Dynamic localization in spin systems
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A dilute collection of spins, when driven coherently by crossed magnetic fields of arbitrary and controllable
time dependences along the three Cartesian directions, is shown to exhibit a striking phenomenon in which the
azimuthal quantum number remains unchanged for certain resonant combinations of the field intensities and
field frequencies. The formalism of dynamic localization available for the area of charge transport in crystals
is shown to provide an approximate but highly efficient analytic method for the study of this phenomenon. The
effect on scattering of probe particles is elucidated.
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Quantum tunneling of magnetization has become an
tensely studied field in various systems of physics and ch
istry, 1–7 in part because quantum effects, normally diffic
to observe in macroscopically large systems, are easily
served in the magnetization of a macroscopic sam
Experimental6–9 as well as theoretical10,11 work in this area
has focused on the tunneling between magnetization stat
magnetic macromolecules in crystals of manganese ac
(Mn12ac) ~Refs. 6 and 8! and iron (Fe8) ~Refs. 7 and 9! at
temperatures of the order of tenths of Kelvins. At these te
peratures, it is often possible to observe coherent quan
effects with minimal environment-induced dephasing and
laxation. An essential feature of these materials has b
their ‘‘giant spin’’ nature; Mn12ac and Fe8 have spin quan-
tum numbers of 10 and 8, respectively. Low-temperat
studies on dilute systems such as133Cs have been carried ou
using state-selective Rabi and Ramsey magnetic resona12

and it has been demonstrated that it is possible to pre
arbitrary superposition states of the Zeeman sublevels.13

In this paper, we study a collection of noninteracting sp
coherently driven by crossed time-dependent magnetic fi
and predict an interesting resonance phenomenon that sh
appear in these systems. The Hamiltonian is

H5D0f ~ t !Ĵz1Dxg~ t !Ĵx1Dyh~ t !Ĵy , ~1!

where D05gmBBz ,Dx5gmBBx , and Dy5gmBBy , g is
Lande’s factor, andmB is Bohr’s magneton. Here, an
throughout the paper,\ has been set to 1. The time depe
dences of thex-, y-, andz-directional fields are denoted b
g(t),h(t), and f (t), respectively. The operatorsĴi( i
5x,y,z) are the standard angular momentum~spin! opera-
tors for a system of total spinj. Denoting bym the quantum
number for thez projection of the spin, we can write

J6u j ,m&5~Jx6 iJy!u j ,m&5A~ j 7m!~ j 6m11!u j ,m61&
~2!
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and express an arbritary state as

uc~ t !&5 (
m52 j

m5 j

Cm~ t !u j ,m&. ~3!

Given Eqs.~1! and ~2!, the equation of motion for the am
plitudesCm(t) is

iĊm~ t !5D0f ~ t !mCm~ t !1
1

2
@Dxh~ t !2 iDyg~ t !#

3A~ j 1m!~ j 2m11!Cm21~ t !

1
1

2
@Dxh~ t !1 iDyg~ t !#

3A~ j 2m!~ j 1m11!Cm11~ t !. ~4!

Resonance effects.In order to represent commonly en
countered magnetic macromolecules such as Mn12ac and
Fe8, we take our system to have a total spin ofj 510 and
solve Eq.~4! numerically for initial occupation of the stat
m50. Striking resonance effects emerge and are displa
in Fig. 1, in which the occupation probability of the initiall
occupied level is plotted as a function of time. The tim
dependence of the magnetic field in thez direction is taken
throughout this paper to be

f ~ t !5cosv0t. ~5!

The time dependence of the fields in the transverse (x andy)
directions is taken to beg(t)5h(t)5sinv0t in Fig. 1~a! and
g(t)5h(t)5cos 2v0t in Fig. 1~b!. The probability of the ini-
tially occupied level executes oscillations such that the av
age value remains close to unity when the ratio of the lon
tudinal magnetic field energy to the longitudinal fie
frequency (D0 /v0) satisfies a certain resonance conditio
When the condition is not satisfied, the initially occupie
5864 ©2000 The American Physical Society
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level becomes depopulated rapidly. The behavior is hig
reminiscent of the dynamic localization reported by Dun
and Kenkre14 in the context of a charge moving in
crystal,15 as well as of trapping in two-level atoms,16 and the
work of Raghavanet al. in the context of driven transport in
finite chains.17

The resonance condition in both cases shown above
volves the root of Bessel functions. In Fig. 1~a!, in which the
transverse time dependence is sinv0t, the root is of the
Bessel function of the order 1, whereas in Fig. 1~b!, in which
the tranverse time dependence is cos 2v0t, the root is of the
Bessel function of order 2. Indeed, we find by numeri
analysis for a variety of transverse driving fields that t
following resonance conditions for localization apply wh
the longitudinal field dependence is given by Eq.~5!:

g~ t !5h~ t !5cos~2nv0t !, J2nS D0

v0
D50; n50,1,2, . . . ,

~6!

g~ t !5h~ t !5sin@~2n11!v0t#, J2n11S D0

v0
D50;

n50,1,2, . . . . ~7!

These resonance conditions appear to be intimately rel
to, and to represent generalizations of, the Bessel root
dition for dynamic localization.14 In order to check this con
nection, we consider the case of constant transverse fi
which reduces Eq.~4! to

FIG. 1. The probability of the initially occupied leveluC0(t)u2

as a function of dimensionless timev0t. The time dependence o
the transverse fields is~a! g(t)5h(t)5sinv0t, ~b! g(t)5h(t)
5cos 2v0t. In both~a! and~b!, the strengths of the transverse fiel
are taken to beBx5By50.1Bz . In ~a!, the solid and dotted lines ar
plotted usingD0529.05v0 andD0530.62v0, respectively. In~b!,
the solid and dotted lines are plotted usingD0527.42v0 and D0

528.99v0 respectively.
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iĊm~ t !5D0 cos~v0t !mCm~ t !

1
1

2
~Dx2 iDy!A~ j 1m!~ j 2m11!Cm21~ t !

1
1

2
~Dx1 iDy!A~ j 2m!~ j 1m11!Cm11~ t !.

~8!

The numerical solution of Eq.~8! enables us to plot in Fig
2~a!, the occupation probability of the initially occupie
level, and in Fig. 2~b!, a measure of the localization of th
system, the ‘‘mean-squared displacement’’ defined
^m2&(t)5(mm2uCm(t)u2. We find precisely the behavior re
ported in the dynamic localization study,14 wherein a
charged particle subjected to an oscillating electric field i
crystal can be localized when certain resonance condit
involving Bessel functions are satisfied. If we initially pop
late a state~or sublevel! m such thatumu! j and j @1, we can
write down Eq.~8! approximately as

iĊm5D0 cos~v0t !mCm1
V

2
~Cm111Cm21!

1
iD1

2
~Cm112Cm21!, ~9!

whereDxj 5V,Dy j 5D1. Of course, Eq.~9! is nothing but
the finite-chain equivalent of a charge moving in a fin
lattice with a time-dependent, complex nearest-neighbor
trix element. We find, further, that the essential physics
the system can be described well by Eq.~9! provided that the
strengths of the transverse fields are small compared to
longitudinal field, i.e.,V j ,D1 j !D0. This is borne out by our
numerical work for a wide range of parameter values of
terest.

Analytic approximation procedure.We are primarily con-
cerned with localization effects and are dealing with the
gime where the transverse field strengths are weak comp
to the longitudinal field strength. Therefore, we can assu

FIG. 2. ~a! uC0(t)u2 as a function ofv0t. ~b! The mean-square
displacement inm space as a function ofv0t. In both ~a! and ~b!,
the transverse fields are constant, their strengths are taken t
Bx5By50.1Bz , and the solid and dotted lines are plotted usi
D0530.64v0, andD0529.06v0 , respectively.
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that the initially localized system does not feel the ‘‘ends’’
the spin ladder and can take, for calculational purposes,
extension of the spin ladder to be infinite. Discrete Four
transforms are therefore useful. Following the procedure
Ref. 14, we defineCk5(m52`

m5` Cmeikm, write Eq.~9! in ‘‘re-
ciprocal space,’’

]Ck

]t
1D0f ~ t !

]Ck

]k
52 i @Vg~ t !cosk2D1h~ t !sink#Ck,

~10!

apply the method of characteristics,14,18and invert back tom
space, to obtain the amplitude in spin space:

Cm~ t !5(
r

Cr~0!expH ir DE
0

t

f ~ t8!dt8J l (r 2m)Jr 2m

3@AA~ t !21B~ t !2#, ~11!

l5
A~ t !2 iB~ t !

AA~ t !21B~ t !2
, ~12!

A~ t !5VE
0

t

dt8g~ t8!sinx~ t8,t !1D1E
0

t

dt8h~ t8!cosx~ t8,t !,

~13!

B~ t !5VE
0

t

dt8g~ t8!cosx~ t8,t !2D1E
0

t

dt8h~ t8!sinx~ t8,t !,

~14!

x~ t8,t !5D0E
t

t8
ds f~s!. ~15!

If we are interested in the initial population being in spi
sublevel 0, we haveCr(0)5d r ,0 , and obtain from Eq.~11!,

Cm~ t !5l2mJ2m@AA~ t !21B~ t !2#, ~16!

for the amplitudes, and

uCm~ t !u25Jm
2 @AA~ t !21B~ t !2# ~17!

for the probabilities. The expression for the mean-squa
displacement reads

^m2&~ t !5
1

2
@A~ t !21B~ t !2#. ~18!

For transverse field dependences such thatg(t)5h(t), we
can simplify many of the relations obtained above to obt

uCm~ t !u25Jm
2 @AA~ t !21B~ t !2#5Jm

2
„$~V21D1

2!@u~ t !2

1v~ t !2#%1/2
…, ~19!

^m2&~ t !5
1

2
$~V21D1

2!@u~ t !21v~ t !2#%, ~20!

where

u~ t !5E
0

t

dt8h~ t8!cosFD0E
0

t8
ds f~s!G ,
he
r
f

d

n

v~ t !5E
0

t

dt8h~ t8!sinFD0E
0

t8
ds f~s!G . ~21!

We thus see that the localization condition is obtained fr
the boundedness~or lack thereof! of the functionsu(t) and
v(t).

When the transverse field dependence isg(t)5h(t)
5cos(2nv0t), n50,1,2, . . . ,

u~ t !5
1

v0
E

0

v0t

dt cos 2nt cosFD0

v0
sint G

5J2nS D0

v0
D t1

1

v0
FJ0S D0

v0
D sin 2nv0t

2n
1 (

k51,kÞn

`

J2kS D0

v0
D

3S sin 2~n1k!v0t

2~n1k!
1

sin 2~n2k!v0t

2~n2k! D G , ~22!

v~ t !5
1

v0
E

0

v0t

dt cos 2nt sinFD0

v0
sintG

5
1

v0
(
k51

`

J2k21S D0

v0
D F12cos~2n12k21!v0t

2n12k21

1
12cos~2k2122n!v0t

2k2122n G . ~23!

The function u(t) is bounded only if J2n(D0 /v0)50,
whereasv(t) is always bounded. Hence the system is loc
ized dynamically wheneverJ2n(D0 /v0)50. Note, as a par-
ticular case, that when the transverse fields are constann
50 above, and the Bessel function of order 0 appears, a
the work of Dunlap and Kenkre.14

When the transverse field dependence isg(t)5h(t)
5sin(2n21)v0t,n51,2, . . . , weobtain

u~ t !5
1

v0
E

0

v0t

dt sin~2n21!t cosFD0

v0
sintG

1 (
k51

`

J2kS D0

v0
D S 12cos~2n12k21!v0t

2n12k21

1
12cos~2n22k21!v0t

2n22k21 D , ~24!

which is always bounded. Forv(t), we have

v~ t !5
1

v0
E

0

v0t

dt sin~2n21!t sinFD0

v0
sintG

5
1

v0
(

k51,kÞn

`

J2k21S D0

v0
D Fsin 2~n2k!v0t

2~n2k!

2
sin 2~n1k21!v0t

2~n1k21! G , ~25!

which is bounded only ifJ2n21(D0 /v0)50.
We thus see that the simple approximation proced

based on the replacement of the exact Eq.~4! by Eq. ~9!, in
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which the square-root terms are replaced by constants
the extension inm space is taken infinite, reproduces t
resonance conditions~7!.

It is not surprising that resonance effects of the kind
have studied above occur for driven magnetic systems. W
is of special interest is that great control over the effects
possible by a manipulation of the time dependence of
three independent magnetic fields. Of the multitude of p
sibilities, we have chosen for illustration a family of cas
wherein the transverse fields are equal to each other an
fields are sinusoidal. We have found that the relationship
the frequencies and phases of the transverse fields to tho
the longitudinal field dictates what order of Bessel functio
is involved in the resonance condition. The complicated m
trix elements characteristic of angular momentum opera
@see Eq.~4!# result, for the time and parameter ranges
interest, in behavior well approximated by simple equatio
that are translationally invariant inm space.

The translationally invariant Eq.~9!, while an approxima-
tion for the magnetic systems we have considered, is in
an exact starting point for the analysis of the original d
namic localization effect14,15,19 if the intersite transfer inte-
grals ~bandwidths! are time-dependent and complex. Such
od
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situation is difficult to arrange in the context of charges mo
ing in a crystal under the action of an electric field. Howev
it appears possible, and indeed, easily manageable, in op
lattices.19 The treatment we have presented above in the fo
of an analytic procedure is thus, applicable for optical l
tices without approximation. We hope that such experime
will be undertaken. Other experimental manifestations of
resonance phenomenon in spin systems would be appare
observations of the spin-correlation function and the scat
ing function of probe particles such as neutrons. While
detailed analysis of such suggested experiments will
given elsewhere, we mention in passing that the ze
frequency component of the van Hove scattering function
these systems turns out to be inversely proportional to
square root ofJ2n(D0 /v0), andJ2n11(D0 /v0), respectively,
for the two cases where the transverse fields areg(t)5h(t)
5cos(2n)v0t andg(t)5h(t)5sin(2n11)v0t. It is clear that
the singularity that the scattering function develops at z
frequency is representative of dynamic localization.
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