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Exact solutions for the probabilities of occupation of the states of a harmonic oscillator undergoing simultaneous
(vibrational) relaxation and (radiative) decay are obtained for initial Boltzmann distributions and it is shown that they

maintain their Boltzmann form throughout the process.

Although there has been considerable recent inte-
rest [1—5] in the experimental study of the vibratio-
nal relaxation of excited molecules with the help of
their time-dependent emission spectra, exact calcula-
tions for reasonable models are not available. An oft-
used analysis [e.g. 6], wherein emission is assumed to
occur after the entire relaxation process has ended,
is valid only for situations in which relaxation times
are much smaller than times characterizing emission,
and can clearly provide no information about the rela-
xation process. The other extreme, involving zero re-
laxation has also been considered in the literature [7].
The importance of intermediate situations has been
emphasized e.g., by Dexter and collaborators [7, 8].
For such situations an analysis of the coupled relaxa-
tion and decay is necessary and in this note we report
some exact results of such an analysis.

Vibrational relaxation in the absence of emissive
decay has often been studied in terms of an equation
proposed by Montroll and Shuler (MS) [9]. Based on
the Landau and Teller prescription [10] for the rate
calculation, it describes the evolution of the system
among a semi-infinite manifold of equally spaced energy
states via nearest-neighbor transition rates. The charac-
teristics of the harmonic oscillator (which the equation
purports to describe) are reflected in (i) the equal
spacing of the energy levels, and (ii) the linear depen-
dence of the transition rates of the larger of the two
energies in question. The nearest-neighbor character
of the rates may be said to arise from an interaction
linear in the displacement of the oscillator.
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While solutions of the MS equation are well-known
in the literature, consequences of appending an energy-
dependent decay rate to the equation are not. We
therefore consider the latter situation and write our
modified form of the MS equation

n

W= —OlnPn+ k{(n+1)Pn+1
(1)

+ne FP,_|—[ntn+1)e Pf|P,}.

Here P,, is the probability of occupation of the nth
state, k characterizes the relaxation rate, § = hw/kB T,
w and 7T are the oscillator frequency and temperature
respectively, and the “bias factors” e~# ensure the
thermalization of the decayless system. The form of
the decay rate a,,, describing a loss of the “‘excitation”,
must be specified before attempting a solution of (1).
The choice of an energy-independent o, leads to a trivial
solution of (1) as it merely multiplies the MS solutions
by an exponential factor. A non-trivial choice is

an=b+cn=b+(;—w)e,,, )

where €, is the energy of the nth state, and & and ¢ are
constants. We have shown elsewhere [11] that eq. (2)
results from the well known expression [6] for a,, and
is correct to second order in a perturbation series for
o, in powers of the Huang—Rhys factor.

Eq. (1) with a,, described by (2) may be solved by
defining

GGz 0= ZO 2"P, (f)eb? 3)
n=
which yields
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%—f =ke B {[z22—z(ef+1+7) +ef] %—2—+ -G
where v = (¢/k)ef. The solution of eq. (4) using )
the method of characteristics [12] is straightforward
and the coefficient of the nth power of z in the ex-
pression thus obtained for G(z, £), yields P, (f) when
multiplied by e (see eq. (3)). The general solution
of eq. (4) which we have obtained [11] naturally in-
volves G (z,0) explicitly and it is through the latter
that the initial configuration of the oscillator is fed
into the problem. Initial Boltzmann distributions

at temperatures different from the environmental
temperature are of considerable interest. For such a
case, described by

P, (0)=e "0 (1—e"Po), %)
with By = hw/kg Ty, T being the initial temperature,
eq. (3) gives
G(z,0) = (1—e~Fo)/(1—ze~Po) . (6)
" Substitution of (6) in the general solution of (4) can
be shown to yield
Gz, )= YOI/(1-24(0) , (N
where A(7) and Y(¢) are independent of z. It follows
immediately that the probabilities P, (¢) are given by
P(t) = e Y(2) [A(D)]"= e 21 V(1) e P, (8)

where B(¢) is defined as In [1/4(#)].

Equation (8) contains the striking result that apart
from the decay described by e "27Y(¢), the P, (¢)’s
always maintain a Boltzmann distribution with a time-
dependent temperature T(¢) = fico/kg B(). Of impor-
tance is the fact that n occurs in P, (¢) only as a factor
multiplying B(¢) in the exponent. The time dependent
temperature T(¢) has the form

M —e_TN')
M—e"7N )’

k
(7] 1=3=1n ( ©)

where

7=t {Zke“ﬁ[(eﬂ—-ilj—y)z‘*’)’:lyz} , | (10)

and M',N', M, N are constants whose values depend
on k, B, By and C. It can be shown from egs. (9) and
(10) that T(0) = T but T(c°) # T. The latter result is
of soine relevance to the Stepanov problem {13,14].
We have thus shown that for decay rates linear in
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the energy, initial Boltzman distributions maintain
the Boltzmann form throughout the simultaneous
processes of relaxation and decay. Such a behavior
appears to have been assumed in the literature but
has, to our knowledge, never been proved for a de-
caying system.

We have also obtained the explicit solution of eq.
(1) with (2) for the localized initial condition P,(0)=
8y - From the superposition of these the solution for
any initial condition, (such as the Poisson, relevant to
electronic excitation from a zero-temperature ground
state) can be easily obtained. The general formalism
can also be applied to a quantitative analysis of expe-
rimental situations [1—5] and these and other results
will be reported elsewhere [11]. We also wish to men-
tion that our present analysis, as well as that of Mon-
troll and Shuler [9], explores the exact (not approxi-
mate) consequences of a master (not Schrodinger)
equation, and thus belongs to a different category from
other well known calculations {15, 16].

We acknowledge helpful conversations with Prof.
D.L. Dexter and Prof. R.S. Knox.
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