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Transitions in coherent oscillations between two trapped Bose-Einstein condensates
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By solving numerically the tunneling quantum dynamics between two trapped Bose-Einstein condensates
~BEC’s!, we find two distinct time scales. On the short time scale, we recover semiclassical predictions such as
‘‘macroscopic quantum self-trapping’’ and the ‘‘amplitude transition,’’ first studied in the polaron context, and
the ‘‘p states,’’ previously discovered in the context of BEC’s. On a much longer time scale, quantum
dynamics shows that self-trapping is destroyed in contrast to semiclassical behavior. However, this time scale
increases exponentially with the total number of condensate atoms, indicating that self-trapping and ‘‘p
states’’ would be relevant and experimentally observable in the tunneling of BEC’s.@S1050-2947~99!51409-1#

PACS number~s!: 03.75.Fi, 05.30.Jp, 32.80.Pj, 74.50.1r
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Bose-Einstein condensation in weakly interacting alka
metal gases was detected initially by several groups@1#. The
precise manipulation of these Bose-Einstein condens
~BEC’s! @2,3# has raised the possibility of tailoring these ne
BEC systems to a degree not possible with superfluid s
tems such as4He, 3He, as well as with superconductors. T
experimental demonstration of spatial coherence through
observation of interference fringes in two overlapping co
densates@4# and the measurement of the relative phase
two condensates in different hyperfine spin states@5# natu-
rally raise the question of measurement and exploitation
temporal phase coherence by means of a Josephson jun
between two condensates. Aspects of the question hav
ready been theoretically addressed in the context of BEC
the limit of noninteracting atoms@6# and for small-amplitude
Josephson oscillations@7,8#. The semiclassical mean-fiel
dynamics using the Gross-Pitaevskii equation has been s
ied and interesting phenomena such as macroscopic qua
self-trapping discussed by Milburnet al. @9# and Smerzi
et al. @10,11#, and the existence ofp states and oscillation
~dynamical states, wherein the time-averaged quantum p
difference across the junction equalsp), have been predicted
by Smerziet al. @10,11# in a weakly coupled double BEC
forming a boson Josephson junction. Similar studies h
been conducted to investigate driven two-component B
@12#. Finite-temperature effects describing damping ha
also been studied@8,13#. Quantum corrections have been i
cluded to describe collapse and revival sequences@9,14#,
phase decoherence and dephasing of Josephson oscilla
@15–17#, phase squeezing@18#, and phase diffusion and
renormalization of oscillation frequencies@14#. The ap-
proaches to include quantum corrections that gave rise
collapses and revivals and departures from semiclassica
namics@9,14# have been different and complementary.

The Gross-Pitaevskii equation describing the mean-fi
dynamics of a BEC is formally identical to the nonline
Schrödinger equation that has appeared earlier in other fie
Therefore, many of the results, methods, and insight can
fruitfully applied from those other fields to the study of BE
dynamics. Several such useful tools and results exist in
PRA 601050-2947/99/60~3!/1787~4!/$15.00
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context of interacting quasiparticle-boson systems~polaron
dynamics!, where the discrete nonlinear Schro¨dinger equa-
tion ~DNLSE! has served as a powerful instrument for d
scribing self-trapping and several related phenomena. Th
include a self-trapping transition@19#, a static transition@20#,
and an additional amplitude transition@21# in the dynamics.
While recent investigations have cast doubt on the validity
the DNLSE for conserved quasiparticles interacting with
boson field@22,23#, the objections do not appear to apply
the Gross-Pitaevskii equation, which emerges from the
croscopic dynamics in a substantially different way. It
therefore of interest to return to the results previously o
tained @20# from the DNLSE in the polaron context, and
with their help, to ask about the relationship of the full qua
tum dynamics of the BEC system to its semiclassical co
terpart as represented in the Gross-Pitaevskii equation.
focusing on two specific phenomena, we will show belo
that results obtained earlier through the DNLSE in the c
text of coupled quasiparticle-boson systems@19–21#, and
through a semiclassical analysis in the context of B
@10,11#, are indeed observed in the fully quantum version
the BEC tunneling model on short times, whereas, for lo
times, self-trapping is destroyed, as is always expected
translationally invariant quantum system@24#. We will also
show the dependence of this long time scale on the t
number of condensate atoms, including an onset of a
self-trapping in the limit that this number becomes infinite

Our model describes tunneling between two condens
via a weak Josephson link created by focusing blue-detu
far-off-resonant light into the center of the trap containing
BEC, generating a repulsive optical dipole force@4#. We note
here that our model could also describe tunneling of ato
between two internal atomic states with the help of a las
induced Raman transition@5#. The second quantized Hami
tonian can be written as

H522K~b1
†b21b2

†b1!1U~b1
†b1

†b1b11b2
†b2

†b2b2!,
~1!

where the operatorsbi ,bi
† are boson operators satisfying th
R1787 ©1999 The American Physical Society
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usual commutation rule@bi ,bj
†#5d i j . The tunneling matrix

element is described byK and the nonlinear mean-field in
teraction is described byU. As is standard and as has be
considered by earlier authors@8–15#, the parametersk andU
are considered to be constant and independent of the di
ence in the number of atoms. This is an approximation tha
valid even for reasonably large fractional population diffe
ence between the two traps. The error involved in this
proximation has been estimated to be small@8,11#. The pro-
cedure to obtain the above two-mode BEC Hamiltonian fr
the underlying many-body Hamiltonian describing a trapp
atomic BEC@25# is well-known and has been outlined, fo
example, in Refs.@9,16,18#. Earlier use of Hamiltonian~1!
has occurred in the work of Scott, Eilbeck, and co-work
@26# on energy transfer and trapping in coupled anharmo
oscillators.

The analysis of Eq.~1! is simplified by the use of angular
momentum operatorsĴx5 1

2 (b1
†b21b2

†b1), Ĵy5 i
2 (b1

†b2

2b2
†b1), Ĵz5

1
2 (b2

†b22b1
†b1), and Ĵ65 Ĵx6 i Ĵy in terms of

which Hamiltonian~1! may be rewritten as

H524KĴx12UĴz
2 , ~2!

barring constant energy shifts that depend on the total n
ber of atoms. If we denote the total number of atoms in
two traps@conserved by Hamiltonian~1!# by NT , define the
normalized operators Ŝi5 Ĵi /(NT/2), and define L
5UNT/2K, which measures the ratio of the mean-field e
ergy to the tunneling energy, we obtain the operator eq
tions of motion corresponding to Hamiltonian~2!:

Ṡ̂z52Ŝy , ~3a!

Ṡ̂y5Ŝz1
L

2
~ŜzŜx1ŜxŜz!, ~3b!

Ṡ̂x52
L

2
~ŜyŜz1ŜzŜy!. ~3c!

In Eqs. ~3!, the time t has been rescaled to dimensionle
time Kt. The semiclassical approximation can be derived
factorizing the operator products in Eqs.~3b! and ~3c!. This
yields the tunneling equations for two coupled condensa
@9–11#, the discrete self-trapping equation@27#, and the dis-
crete nonlinear Schro¨dinger equation for a polaronic dime
@19#,

ż52A12z2 sinf, ~4!

ḟ5Lz1
z

A12z2
cosf, ~5!

where^Sz&[z,^Sy&[A12z2 sinf,^Sx&[A12z2 cosf.
We present two results. One is motivated by theampli-

tude transitiondiscovered by Tsironis and Kenkre@21# and
the relatedp states and oscillations shown in Refs.@10,11#.
The other governs the dependence on the atom number o
self-trapping transition@9–11# which is similar to the po-
laron transition in the DNLSE/DSTE analysis in Ref
@19,27#.
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Results for the amplitude transition andp states.To see
the amplitude transition andp states, we numerically solve
the set of equations@~3a!,~3b!,~3c!# for short times with the
help of initial states that are expected to closely mimic
semiclassical counterparts. These states are the atomic c
ent states@28# defined as follows. A general state of th
system can be written as a superposition of numb
difference states

uC&5 (
N250

N

cN2
uN2 ,N1&, ~6!

where N1 ,N2 are the number of atoms in traps 1 and
whose sum we will denote byNT . This conservation is con
nected with the fact that the total angular-momentum ope
tor Ĵ2 commutes with the Hamiltonians~1! and ~2!. This
helps us define the total angular-momentum quantum n
ber j 5 (N11N2)/2 and thez-projection quantum numbe
m5 (N22N1)/2. In terms of these number-difference stat
an atomic coherent state is defined@28# as

uu,w&5 (
N250

NT S NT!

N2!N1! D
1/2

sinN2S u

2D
3cosN1S u

2De2 iN2wuN2 ,N1& ~7!

and the expectation values of the angular-momentum op
tors are given by

^Ŝz&52cosu, ^Ŝx&5sinu cosw, ^Ŝy&5sinu sinw.
~8!

Thus the state is specified uniquely once the expectation
ues of the operatorsŜi are specified. We use the above pr
scription to specify the initial states for the numerical calc
lation shown in Fig. 1. Further, in order to make contact w
the semiclassical equations~4! and~5!, we operationally de-
fine the probability differencez(t)[^Sz&(t) and the phase
difference f(t)[cos21

„^Sx&(t)/A12^Sz&(t)
2
…. The figure

shows the time evolution of the probability difference, d

FIG. 1. Time evolution of̂ Sz&(t)5z(t) as a function of dimen-
sionless timeKt. L increases as one goes from~a! through~f!. The
details of the numerics are given in text.
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fined asz(t), as a function of dimensionless timeKt. We
have used 35 atoms for our numerical calculation and
initial condition chosen is^Sz&(0)50.8,̂ Sx&(0)520.6.
~This implies that̂ f&(0)5p.) We emphasize here that w
get the same results qualitatively when we increase the n
ber of atoms by two orders of magnitude and use a differ
numerical procedure than the one used throughout this pa
The value of nonlinearity defined asL increases as one goe
from ~a! through~f!. In passing from Fig. 1~a! to Fig. 1~d!,
the frequency of oscillations first decreases and then
creases. This is exactly like the semiclassical prediction@29#
and the point at which the frequency starts to increase u
increase ofL marks self-trapping@11,19#. Note also that, in
Fig. 1~d!, the oscillations are with a nonzero value
^Sz&(t) signifying self-trapping. What is even more remar
able is that in Fig. 1~e!, the probability difference evolution
is practically stationary. This is analogous to the self-trapp
stationary state in the polaron context discussed in R
@20,21# and to thez-symmetry breaking state discussed
Ref. @11#. Upon increase of the mean-field interaction, t
probability evolution actually increases from its initial valu
signaling the ‘‘amplitude transition’’ precisely like its sem
classical counterpart. It is important to note that the criti
values ofL where the self-trapping and amplitude transitio
take place in Fig. 1 are very close to the values predicted
the semiclassical analysis even though we have used on
particles. For the self-trapping transition, the semiclass
and fully quantum values ofL are 1.25 and around 1.3
respectively, whereas for the amplitude transition, the se
classical and fully quantum values are 1.67 and 1.75, res
tively. We display in Fig. 2 a phase-plane plot withz against
f. Different contours define different values ofL. The num-
ber of condensate atoms is the same as in Fig. 1. This ph
plane plot is remarkably similar to the semiclassical ana
of Refs. @10,11#. The dynamics with the average phase d
ference across the junction locked top, giving rise to p
states and oscillations@11#, is displayed even by the fully
quantum model, at least for short times. The quantum
namics is complicated by a complex structure with
quences of collapses and revivals, which will be analyz
elsewhere. These features in different dynamical regim
have been studied in Refs.@9,14#.

FIG. 2. Phase-plane plot ofz vs f. L increases as one goes fro
~a! through~d! and different contours signify different values ofL.
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Dependence of self-trapping on the number of atoms
the condensate.As explicitly shown earlier @24#, self-
trapping orz-symmetry breaking in a translationally invar
ant Hamiltonian of the type of Eq.~1! is an artifact of the
factorization assumption inherent in the semiclassical
namics and must be destroyed at long times, for a system
finite number,NT , of condensate atoms. True self-trappi
or z-symmetry breaking@11# can, however, occur asNT
→`. In order to understand this dependence onNT clearly,
we first note that the ground state and first excited state
the system described by Eqs.~1! and ~2!, like all the other
eigenstates of the system, are characterized by^Sz&50. Fur-
ther, in the limit of large particle number, these two states
very nearly degenerate even for finiteL. This means that if
one were to prepare the state initially as a superposition
these two lowest states, the longest time scale in the dyn
ics will be the inverse of the energy spacing between th
two states.

We plot in Fig. 3 this tunneling time scale~logarithmi-
cally!, in units ofK21, as a function of the total condensa
atom numberNT . As we increaseNT , we decreaseU so that
the dimensionless ratioUNT /2K5L is kept constant@30#. In
Fig. 3,L51.25, which would put the semiclassical system
the self-trapped regime for the initial chosen value of^Sz&.
The open circles are the numerical calculations and the s
line is the fit to a straight line. It is clear that the tunnelin
time scale increases exponentially with the total number
condensate atoms. This means that the self-trapping,
scribed by semiclassical equations of motion like t
DNLSE @20# or the BEC tunneling equations@9–11#, in-
creases in validity remarkably quickly as one increases
number of condensate atoms because of the exponentia
pendence. This exponential dependence is similar to
well-known behavior of the polaronic tunneling time sca
with respect to the quasiparticle-phonon coupling const
@23#. We also note that the semiclassical regime will be
ways obtained in the limit of smallL compared to the tota
number of atoms@31#, that the observed behavior is certain
related to the choice of the initial state, and that damp
effects could play an important role in the dynamics@8#.

To summarize, we have studied the fully quantum dyna
ics of a coupled two-mode BEC tunneling model in relati

FIG. 3. Tunneling time scale~in units of K21) plotted logarithmi-
cally vs the total number of condensate atoms,NT .
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to its nonlinear mean-field counterpart. We have shown
there exists a clear separation of two time scales. For s
times, the fully quantum dynamics reproduces several
tures of the semiclassical dynamics. These include a dyna
self-trapping transition, an amplitude transition, the existe
of self-trapped~z-symmetry-broken! stationary states, andp
states. For longer times, the quantum dynamics shows
struction of self-trapping in contrast to the prediction of t
A.
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nonlinear semiclassical equations. We show, however,
the time scale associated with the destruction of self-trapp
increases exponentially with the total number of condens
atoms, suggesting that self-trapping could be robust for
experimentally relevant and macroscopically large num
of condensate atoms.
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