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Transitions in coherent oscillations between two trapped Bose-Einstein condensates
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By solving numerically the tunneling quantum dynamics between two trapped Bose-Einstein condensates
(BEC's), we find two distinct time scales. On the short time scale, we recover semiclassical predictions such as
“macroscopic quantum self-trapping” and the “amplitude transition,” first studied in the polaron context, and
the “m states,” previously discovered in the context of BEC's. On a much longer time scale, quantum
dynamics shows that self-trapping is destroyed in contrast to semiclassical behavior. However, this time scale
increases exponentially with the total number of condensate atoms, indicating that self-trappingrand *
states” would be relevant and experimentally observable in the tunneling of BES1'850-294®9)51409-]

PACS numbg(s): 03.75.Fi, 05.30.Jp, 32.80.Pj, 74.50.

Bose-Einstein condensation in weakly interacting alkali-context of interacting quasiparticle-boson systeipslaron
metal gases was detected initially by several grqupsThe  dynamicg, where the discrete nonlinear Sctiger equa-
precise manipulation of these Bose-Einstein condensatd®n (DNLSE) has served as a powerful instrument for de-
(BEC’s) [2,3] has raised the possibility of tailoring these new scribing self-trapping and several related phenomena. These
BEC systems to a degree not possible with superfluid sysnclude a self-trapping transitidd 9], a static transitioi20],
tems such aéHe, 3He, as well as with superconductors. The and an additional amplitude transitip®1] in the dynamics.
experimental demonstration of spatial coherence through th@/hile recent investigations have cast doubt on the validity of
observation of interference fringes in two overlapping con-the DNLSE for conserved quasiparticles interacting with a
densateg4] and the measurement of the relative phase oPoson field[22,23, the objections do not appear to apply to
two condensates in different hyperfine spin stdfésnatu- the Gross-Pitaevskii equation, which emerges from the mi-
rally raise the question of measurement and exploitation ofroscopic dynamics in a substantially different way. It is
temporal phase coherence by means of a Josephson junctiiigrefore of interest to return to the results previously ob-
between two condensates. Aspects of the question have dgined[20] from the DNLSE in the polaron context, and,
ready been theoretically addressed in the context of BEC itvith their help, to ask about the relationship of the full quan-
the limit of noninteracting atomi$] and for small-amplitude tum dynamics of the BEC system to its semiclassical coun-
Josephson oscillationg7,8]. The semiclassical mean-field terpart as represented in the Gross-Pitaevskii equation. By
dynamics using the Gross-Pitaevskii equation has been stufpcusing on two specific phenomena, we will show below
ied and interesting phenomena such as macroscopic quantufft results obtained earlier through the DNLSE in the con-
self-trapping discussed by Milburet al. [9] and Smerzi text of coupled quasiparticle-boson systefi9-21, and
et al.[10,11], and the existence of states and oscillations through a semiclassical analysis in the context of BEC
(dynamical states, wherein the time-averaged quantum phab&0.11, are indeed observed in the fully quantum version of
difference across the junction equaty, have been predicted the BEC tunneling model on short times, whereas, for long
by Smerziet al. [10,11] in a weakly coupled double BEC times, s.elf—trap.ping'is destroyed, as is always expected in a
forming a boson Josephson junction. Similar studies havé&anslationally invariant quantum systei24]. We will also
been conducted to investigate driven two-component BEGhow the dependence of this long time scale on the total
[12]. Finite-temperature effects describing damping haveumber of condensate atoms, including an onset of a true
also been StUdie[:B,13]. Quantum corrections have been in- Self-trapping in the limit that this number becomes infinite.
cluded to describe collapse and revival sequeri€es4], Our model describes tunneling between two condensates
phase decoherence and dephasing of Josephson oscillatiofid & weak Josephson link created by focusing blue-detuned
[15-17, phase squeezinl8], and phase diffusion and far-off-resonant light into the center of the trap containing a
renormalization of oscillation frequencigd4]. The ap- BEC, generating a repulsive optical dipole fofé¢ We note
proaches to include quantum corrections that gave rise tBere that our model could also describe tunneling of atoms
collapses and revivals and departures from semiclassical djpetween two internal atomic states with the help of a laser-
namics[9,14] have been different and complementary. induced Raman transitiofs]. The second quantized Hamil-

The Gross-Pitaevskii equation describing the mean-fieldonian can be written as
dynamics of a BEC is formally identical to the nonlinear
Schrainger equation that has appeared earlier in other fields. H=—2K(blb,+blb;)+U(blblb;b; +blblb,b,),
Therefore, many of the results, methods, and insight can be (1)
fruitfully applied from those other fields to the study of BEC
dynamics. Several such useful tools and results exist in therhere the operatots; ,biT are boson operators satisfying the
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usual commutation rulgb; ,b;’]z dij - The tunneling matrix 1
element is described bf{ and the nonlinear mean-field in-
teraction is described by. As is standard and as has been
considered by earlier authd®—15], the parameters andU 05}
are considered to be constant and independent of the diffe_
ence in the number of atoms. This is an approximation that i:§
valid even for reasonably large fractional population differ-g
ence between the two traps. The error involved in this ap§
proximation has been estimated to be sr@/L1]. The pro- %
cedure to obtain the above two-mode BEC Hamiltonian from™
the underlying many-body Hamiltonian describing a trappec -°5 |
atomic BEC[25] is well-known and has been outlined, for
example, in Refs[9,16,18. Earlier use of Hamiltoniaril)

has occurred in the work of Scott, Eilbeck, and co-workers

[26] on energy transfer and trapping in coupled anharmoni 0 1‘& 20
oscillators.
The analysis of Eq(1) is simplified by the use of angular- ~ FIG. 1. Time evolution of S,)(t) =z(t) as a function of dimen-

sionless timeCt. A increases as one goes frga) through(f). The

momentum operatorsJ,= % (b!b,+blb,), J,=3% (blb
P x=2(b1batbby), Jy=7 (biby details of the numerics are given in text.

—bjb,), J,=3(b}b,—blb,), andJ. =J,=iJ, in terms of

which Hamiltonian(1) may be rewritten as Results for the amplitude transition ant states.To see
- A o the amplitude transition and states, we numerically solve
H=—4KJ,+2UJ;, 2 the set of equationg3a),(3b),(3c)] for short times with the

rThelp of initial states that are expected to closely mimic the

barring constant energy shifts that depend on the total nu semiclassical counterparts. These states are the atomic coher-
ber of atoms. If we denote the total number of atoms in the p )

two traps[conserved by Hamiltonia(l)] by N+, define the ent stated28] defme_d as follows. A gengrgl state of the
system can be written as a superposition of number-

normalized operators S§=1J;/(N/2), and define A jifference states
=UN+/2KC, which measures the ratio of the mean-field en-

ergy to the tunneling energy, we obtain the operator equa- N
tions of motion corresponding to Hamiltoni#®): |\P>=NEO cN2|N2,N1), (6)
p
S;=—3Sy, (33 where N;,N, are the number of atoms in traps 1 and 2,
A whose sum we will denote b\ . This conservation is con-
S_g+_(8843% nected with the fact that the total angular-momentum opera-
=51 5 (S5+SS), (3b)

tor J2 commutes with the Hamiltonian€l) and (2). This

_ A helps us define the total angular-momentum quantum num-
S,=—=(55+53,). (30 ber j= (N;+N,)/2 and thez-projection qua.ntum number
> 2 oSS m= (N,—N,)/2. In terms of these humber-difference states,

. . ) an atomic coherent state is defin&8] as
In Egs. (3), the timet has been rescaled to dimensionless riets]

time Kt. The semiclassical approximation can be derived by Ny Ny |22 i
factorizing the operator products in Eq8b) and(3c). This |0,¢)= 2 (W) SinNz(E)
yields the tunneling equations for two coupled condensates Np=0 1 TN2- N1
[9-11], the discrete self-trapping equatif2i7], and the dis- o\
crete nonlinear Schdinger equation for a polaronic dimer xooé“l(—) e N2¢IN,,N,) (7)
[19], 2
S e B and the expectation values of the angular-momentum opera-
2= —y1-2"sing, ) tors are given by
b=Az+ cosp, ) (S)y=—cos), (S)=sindcosp, (S,)=sindsine.

1-72 8
where(S,)=2,(S,)= 1= 22 sing(Sy=+1— 22 cosp. Thus the state is specified uniquely once the expectation val-
We present two results. One is motivated by #mpli-  ues of the operatorS; are specified. We use the above pre-
tude transitiondiscovered by Tsironis and Kenkf21] and  scription to specify the initial states for the numerical calcu-
the relateds states and oscillations shown in Ref$0,11]. lation shown in Fig. 1. Further, in order to make contact with

The other governs the dependence on the atom number of tilee semiclassical equatio®) and(5), we operationally de-
self-trapping transitiof9—11] which is similar to the po- fine the probability difference(t)=(S,)(t) and the phase
laron transition in the DNLSE/DSTE analysis in Refs. difference ¢(t)=cos *((S)(t)/\1—(S,)(t)?). The figure
[19,27. shows the time evolution of the probability difference, de-
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fined asz(t), as a function of dimensionless tiniét. We 10
have used 35 atoms for our numerical calculation and the
initial condition chosen is{S,)(0)=0.8(S,)(0)=—0.6.

(This implies that ¢)(0)=7.) We emphasize here that we

get the same results qualitatively when we increase the num- e |
ber of atoms by two orders of magnitude and use a different §
numerical procedure than the one used throughout this paper§
The value of nonlinearity defined asincreases as one goes
from (a) through(f). In passing from Fig. () to Fig. 1(d),

the frequency of oscillations first decreases and then in-
creases. This is exactly like the semiclassical predidt&@h

and the point at which the frequency starts to increase upon
increase ofA marks self-trapping11,19. Note also that, in
Fig. 1(d), the oscillations are with a nonzero value of , . . . .
(S,)(t) signifying self-trapping. What is even more remark- 410 120 130 140 150 160

able is that in Fig. (), the probability difference evolution Noumber of atoms

is practically stationary. This is analogous to the self-trappegc. 3. Tunneling time scalén units of K1) plotted logarithmi-
stationary state in the polaron context discussed in Refsally vs the total number of condensate atoids,

[20,2]] and to thez-symmetry breaking state discussed in

Ref. [11]. Upon increase of the mean-field interaction, the Dependence of self-trapping on the number of atoms in
probability evolution actually increases from its initial value, the condensateAs explicitly shown earlier[24], self-
signaling the “amplitude transition” precisely like its semi- trapping orz-symmetry breaking in a translationally invari-
classical counterpart. It is important to note that the criticalant Hamiltonian of the type of Eq1) is an artifact of the
values ofA where the self-trapping and amplitude transitionsfactorization assumption inherent in the semiclassical dy-
take place in Fig. 1 are very close to the values predicted bpamics and must be destroyed at long times, for a system of
the semiclassical analysis even though we have used only 3ite number,N, of condensate atoms. True self-trapping
particles. For the self-trapping transition, the semiclassicabr zsymmetry breaking11] can, however, occur abl;

and fully quantum values ofA are 1.25 and around 1.3, —vo°. In order to understand this dependenceNgnclearly,
respectively, whereas for the amplitude transition, the semiwe first note that the ground state and first excited state of
classical and fully quantum values are 1.67 and 1.75, respethe system described by Eq4) and (2), like all the other
tively. We display in Fig2 a phase-plane plot withagainst  eigenstates of the system, are characterize@3y=0. Fur-

¢. Different contours define different values &f The num-  ther, in the limit of large particle number, these two states are
ber of condensate atoms is the same as in Fig. 1. This phaseery nearly degenerate even for finite This means that if
plane plot is remarkably similar to the semiclassical analogpne were to prepare the state initially as a superposition of
of Refs.[10,11]. The dynamics with the average phase dif-these two lowest states, the longest time scale in the dynam-
ference across the junction locked tg giving rise tor  ics will be the inverse of the energy spacing between these
states and oscillationgl1], is displayed even by the fully two states.

guantum model, at least for short times. The quantum dy- We plot in Fig. 3 this tunneling time scalgogarithmi-
namics is complicated by a complex structure with se<ally), in units of L™, as a function of the total condensate
guences of collapses and revivals, which will be analyzeditom numbeilN;. As we increas&l;, we decreas¥t so that
elsewhere. These features in different dynamical regimethe dimensionless ratidN;/2K= A is kept constart30]. In

have been studied in Refi9,14]. Fig. 3, A =1.25, which would put the semiclassical system in
the self-trapped regime for the initial chosen value(8f).

The open circles are the numerical calculations and the solid
line is the fit to a straight line. It is clear that the tunneling
time scale increases exponentially with the total number of
condensate atoms. This means that the self-trapping, de-
scribed by semiclassical equations of motion like the
DNLSE [20] or the BEC tunneling equation®-11], in-
creases in validity remarkably quickly as one increases the
number of condensate atoms because of the exponential de-
pendence. This exponential dependence is similar to the
well-known behavior of the polaronic tunneling time scale
with respect to the quasiparticle-phonon coupling constant
[23]. We also note that the semiclassical regime will be al-
ways obtained in the limit of smalk compared to the total
number of atom$31], that the observed behavior is certainly
related to the choice of the initial state, and that damping
effects could play an important role in the dynamii8s

FIG. 2. Phase-plane plot afvs ¢. A increases as one goes from  To summarize, we have studied the fully quantum dynam-
(a) through(d) and different contours signify different values &f ics of a coupled two-mode BEC tunneling model in relation
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to its nonlinear mean-field counterpart. We have shown thamonlinear semiclassical equations. We show, however, that
there exists a clear separation of two time scales. For shotiie time scale associated with the destruction of self-trapping
times, the fully quantum dynamics reproduces several feahcreases exponentially with the t_otal number of condensate
tures of the semiclassical dynamics. These include a dynam@toms, suggesting that self-trapping could be robust for the
self-trapping transition, an amplitude transition, the existenc&XPerimentally relevant and macroscopically large number
of self-trappedz-symmetry-brokérstationary states, and of condensate atoms.

states. For longer times, the quantum dynamics shows de- One of us(S.R) acknowledges the support of NSF Grant
struction of self-trapping in contrast to the prediction of theNo. PHY94-15583.
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