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Quantum versus semiclassical description of self-trapping: Anharmonic effects
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Self-trapping has been traditionally studied on the assumption that quasiparticles interact with harmonic
phonons and that this interaction is linear in the displacement of the phonon. To complement recent semiclas-
sical studies of anharmonicity and nonlinearity in this context, we present below a fully quantum-mechanical
analysis of a two-site system, where the oscillator is described by a tunably anharmonic potential, with a square
well with infinite walls and the harmonic potential as its extreme limits, and wherein the interaction is
nonlinear in the oscillator displacement. We find that even highly anharmonic polarons behave similar to their
harmonic counterparts in that self-trapping is preserved for long times in the limit of strong coupling, and that
the polaronic tunneling time scale depends exponentially on the polaron binding energy. Further, in agreement,
with earlier results related to harmonic polarons, the semiclassical approximation agrees with the full quantum
result in the massive oscillator limit of small oscillator frequency and strong quasiparticle-oscillator coupling.
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I. INTRODUCTION

Recent work by Grigolini and co-workers,1 and by
Salkola and the present authors,2,3 have uncovered subtl
features associated with selftrapping of quasiparticles in
teraction with vibrations. The vibrations considered in
those analyses have been harmonic. The question of
polaron dynamics and self-trapping are affected by anhar
nicities in the vibrations was raised by Kenkre4 several years
ago at the level of the discrete nonlinear Schro¨dinger equa-
tion ~DNLSE! and analyzed in the context of rotation
polarons,4,5 exponential saturation,6,7 and general
considerations.7 Since the validity of the DNLSE has bee
called into question by recent considerations,1–3 it is impor-
tant to examine the issue of what polarons, or selftrapp
owe to harmonic features from a starting point, which is fu
quantum. The present paper is devoted to such an exam
tion for a two-site system.

We will focus here on confined systems rather than
periodic systems such as those that may lead to rotati
polarons.4,7 In a certain sense, the most anharmonic poten
conceivable is that which corresponds to a box with infinit
high walls as it corresponds to a harmonic piece with v
ishing frequency throughout the interior of the box but o
with infinite frequency at the wall. We choose the symmet
Pöschl-Teller potential given by

VPT~x!5U0 tan2~ax!, ~1!

because it allows continuous transition between the harm
oscillator and the box limits and because it can be trea
analytically with ease. In Eq.~1! U0 ,a are constants defin
ing, respectively, the strength and confining region of
potential. The potential becomes infinitely steep atx5
6p/2a. By rewriting the strength of the potentialU0 as
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l(l21)\2a2/2m, wherem is the mass of the particle, w
introduce the parameterl, which describes the departure o
the potential between the box and harmonic oscillator lim
In the limit l→1, the Po¨schl-Teller potential becomes th
infinite square well of widthp/a. In the opposite limitl
→`, a→0, la2 remaining constant~and finite!, one re-
covers the harmonic oscillator potential. The eigenenerg
of the Pöschl-Teller potential~1! are given by8

En5
\2a2

2m
~n212nl1l!, n50,1,2, . . . ~2!

and the corresponding eigenfunctions are

fn~x![^xufn&5Nn cos1/2axPn1l21/2
1/22l ~sinax!, ~3!

where Pa
b(t) are the associated Legendre functions, w

Nn5@a(n1l)G(n12l)/G(n11)#1/2.

II. ANHARMONIC POLARON –STATIONARY ASPECTS

Consider a two-site system consisting of a quasiparti
like an electron or an exciton, whose intersite hopping
described by a matrix element of strengthV. The quasipar-
ticle also strongly interacts with a vibrational mode betwe
the two sites. This vibrational mode is described by t
Pöschl-Teller potential~1!. In the harmonic case the usu
interaction is linear in the vibrational amplitude and cons
quently connects nearest-neighbor eigenstates of the os
tor. These two features are distinct from each other. In
veloping a scheme for analyzing effects of a genealization
anharmonic situations, we must maintain either one or
other of the two features. We have studied both cases. H
we present results of maintaining the second feature, viz.
9929 ©1999 The American Physical Society
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interaction that joins nearest-neighbor energy eigenstates
Nieto and Simmons8 and Crawford and Vrcsay9 have pointed
out in a different context, a sinusoidal interaction posse
this feature for the Po¨schl-Teller potential, and also reduce
to the linear form in the harmonic limit. We thus take the fu
Hamiltonian of our system to be

H5
v0

2~l11/2!
@p̂z

21l~l21!tan2 ẑ#1v0gA~l1 1
2 ! p̂

3sinẑ1Vr̂, ~4!

where

v05
a2

m
~l1 1

2 ! ~5!

is the difference between the energies of the first exc
state and the ground state of the Po¨schl-Teller potential,z is
the dimensionless oscillator coordinateax, and g is the
quasiparticle-oscillator coupling constant. Here and hen
forth, we put\51 for simplicity.

The operatorsp̂, r̂ are the operators describing the qua
particle, with p̂5c1

†c12c2
†c2 , r̂ 5(c1

†c21c2
†c1), where the

c’s are quasiparticle creation and destruction operators.
factorization or the semiclassical approximation~SCA! con-
sists of assuming, equivalently, that the oscillator opera
behave classically or that products of quasiparticle-oscilla
operators can be factorized.

We compare the SCA with the fully quantum-mechani
results first by computing the polaron binding energies. T
is done easily in the strong-coupling limit by freezing t
quasiparticle hopping dynamics. We note first that, in
harmonic oscillator limit, the polaron binding energy is pr
portional tog2 whereas, in the opposite limit of the infinit
square well, the width of the well remains finite and t
interaction produces a lowering of energy that is proportio
to g. This cross-over behavior becomes evident from the
quantum-mechanical calculations as shown in Fig. 1. Plo

FIG. 1. Polaron binding energy as a function of t
quasiparticle-oscillator coupling constantg. The inset shows the
same quantities on a logarithmic scale. The solid line indicates
quantum-mechanical result whereas the dashed line indicate
result of the semiclassical approximation~SCA!.
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in the main figure is the binding energy~in arbitrary units! as
a function ofg. In the inset, the same quantities are plott
on a logarithmic scale. The bold lines indicate the fu
quantum-mechanical calculation and the dashed lines i
cate the results of the SCA. In all the cases, the oscilla
frequencyv0 has been kept fixed, andl varied allowing the
oscillator to pass smoothly from the box~l51! limit to the
harmonic~l→`! limit. Two key results are evident in Fig. 1
First, the SCA results agree with the exact ones only in
harmonic oscillator limit; in the square-well limit, the depa
ture becomes quite drastic. Second~see inset!, when the sys-
tem is in the box-limit~l51!, the fully quantum system be
haves harmonically for smallg but exhibits a crossover fo
larger values ofg showing the true box-limit slope of unity

We also calculate the overlap between the adiabatic
displaced ground-state wave functions. This overlap, b
cally the Huang-Rhys factor, governs the polaronic tunnel
rate in the strong-coupling limit. One knows, for instanc
that in the harmonic oscillator limit, the tunneling rate
proportional toe2g2

. In Fig. 2, we plot the overlap facto
~logarithmically! as a function ofg for the box limit, i.e.,
l51 ~dashed line!, and for the harmonic oscillator limit, i.e.
l→` ~solid line!. The quadratic dependence is clearly se
for the latter. However, forl51, the rise is sublinear, show
ing that the dependence of the overlap factor ong is much
weaker.

III. HEISENBERG EQUATIONS

We discuss in this section the temporal evolution of t
system, and show how the SCA differs from the ful
quantum-mechanical treatment. The equations of motion
responding to the Hamiltonian~4! can be written as

ṗ̂52Vq̂, ~6a!

q̇̂522Vp̂12v0g~l11/2!1/2r̂ sinẑ, ~6b!

r̂̇ 522v0g~l11/2!1/2q̂ sinẑ, ~6c!

e
the

FIG. 2. The overlap of the adiabatically displaced ground-st
wave functions plotted logarithmically as a function ofg for box
limit, l51 ~dashed line! and harmonic oscillator limit,l→` ~solid
line!.
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ż̂5
v0

~l11/2!
p̂z, ~6d!

p̂z
˙52v0F l~l21!

~l11/2!
tanẑ sec2 ẑ1g~l11/2!1/2p̂ cosẑG , ~6e!

where q̂5 i (c1
†c22c2

†c1) and the quasiparticle operato

p̂,q̂, r̂ cyclically satisfy the commutation relations,@ p̂,q̂#

52i r̂ , and@ ẑ,p̂z#5 i . As stated earlier, the SCA consists
assuming the oscillator operatorsẑ,p̂z to be c numbers. In
the temporal analysis, we compare the results of such
approximation with those given by the full quantum evo
tion described by Eq.~6!. We plot in Figs. 3–5, the evolution
of the population difference of the quasiparticle between
two sitesp(t) as a function of dimensionless timeVt. In all
our calculations, the initial condition used for the quantu
system is the ground state of the quasiparticle-oscillator
tem projected onto the one-site localized part of the Hilb
space, such that^ p̂&(0)51. The initial condition used for the
SCA calculation isp(0)51, ż(0)5ṗz(0)50. In all the
plots, the solid line indicates the full quantum evolution a
the dashed line indicates the evolution due to the SCA.
polaron binding energy has been kept constant to facili
comparison. This value~which we take to be 1.5 V! equals

FIG. 3. The evolution of the quasiparticle probability differen
p(t) as a function of dimensionless timeVt. In all the figures, the
polaron binding energy has been kept fixed at 1.5 V andl→`. The
solid line denotes the fully quantum-mechanical result and
dashed line denotes the result of the SCA. In~a! v0510V, ~b!
v05V, ~c! 5v050.1V.
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g2v0/2 in the harmonic oscillator limit. In Fig. 3,l5200, the
oscillator potential is essentially that of the harmonic osc
lator potential. The oscillator energyv0 takes on the values
10V, V, and 0.1V in ~a!, ~b!, and~c!, respectively. As dis-
cussed elsewhere,2 whereas the SCA shows self-trapping f
all the values of the oscillator frequency, the full quantu
evolution differs substantially, except in the limit of low
oscillator energyv050.1V. In this limit, for short times, the
full quantum evolution and SCA agree in that both sho
self-trapping, with nearly the same average value of s
trapping and oscillation frequency. However, the quant
evolution shows a considerably richer structure involvi
collapses and revivals. At much longer times, the dres
quasiparticle tunnels from one site to the other. This is e
dent in Fig. 3~b!. Whenl510, ~Fig. 4!, the potential is more
‘‘square-well’’-like and some departures, especially in t
small oscillator frequency regime@Fig. 4~b!# are visible. For
instance, the ‘‘silent runs’’ separating the collapse and
vival sequence, are less quiescent, and the agreemen
tween the SCA and the full quantum evolution is sligh
worse. In Fig. 5, we takel51, wherein the potential is es
sentially the infinite square well. Whereas the agreement
tween the SCA and the full quantum evolution is best wh
the oscillator energy is least,v050.1V, @Fig. 5~c!#, the
agreement is far worse than for the harmonic potential@Fig.
5~c!#. Further, the ‘‘silent runs’’ are barely noticeable, wit
the collapses and revivals intruding into each other.

A key time scale in the temporal evolution is the o
associated with the polaronic tunneling between the t
sites. Since this time scale is intimately connected with

e

FIG. 4. Same as Fig. 3, withl510.
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polaron binding energy, we plot in Fig. 6, the logarithm
the tunneling time as a function of the binding energy. T
solid line denotes the harmonic oscillator limitl→`
whereas the dashed line denotes the infinite square-
limit, l51. Note that for small values of the binding energ
the timescales for both cases is only weakly dependen
the energy. However, for larger coupling~binding energy!,
both show a clear linear dependence~albeit with different
slope!. This clearly indicates that even for the boxlike pote
tial, the polaronic tunneling time scale is exponentially d
pendent on the binding energy. While well known for ha
monic polarons, this exponential dependence constitute
important new result for anharmonic polarons emerging fr
the present analysis.

FIG. 5. Same as Fig. 3, withl51.
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IV. SUMMARY

By analyzing the dynamics and energetics of a quasi
ticle interacting with a tunably anharmonic oscillator, sp
cifically described by a Po¨schl-Teller potential, we find that
in the limit of strong coupling between the quasipartic
and the oscillator, self-trapping is robust and persists
strong anharmonicities, with the polaron tunneling time sc
being exponentially dependent on the polaron binding
ergy, a feature that has been earlier known to be true
harmonic polarons. We further find that the full quantu
result agrees with the predictions of the semiclassical
proximation only in this strong coupling, low-frequency r
gime, in agreement with earlier findings for harmonic p
larons.
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FIG. 6. The polaron tunneling time scale plotted logarithmica
as a function of the polaron binding energy, both computed with
making the SCA. The solid line indicatesl→` ~harmonic oscillator
limit ! and the dashed line indicatesl51 ~box limit!.
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