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Quantum versus semiclassical description of self-trapping: Anharmonic effects
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Self-trapping has been traditionally studied on the assumption that quasiparticles interact with harmonic
phonons and that this interaction is linear in the displacement of the phonon. To complement recent semiclas-
sical studies of anharmonicity and nonlinearity in this context, we present below a fully quantum-mechanical
analysis of a two-site system, where the oscillator is described by a tunably anharmonic potential, with a square
well with infinite walls and the harmonic potential as its extreme limits, and wherein the interaction is
nonlinear in the oscillator displacement. We find that even highly anharmonic polarons behave similar to their
harmonic counterparts in that self-trapping is preserved for long times in the limit of strong coupling, and that
the polaronic tunneling time scale depends exponentially on the polaron binding energy. Further, in agreement,
with earlier results related to harmonic polarons, the semiclassical approximation agrees with the full quantum
result in the massive oscillator limit of small oscillator frequency and strong quasiparticle-oscillator coupling.
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|. INTRODUCTION N\ —1)%2a%/2m, wherem is the mass of the particle, we

o introduce the parametar, which describes the departure of
Recent work by Grigolini and co-worketsand by  the potential between the box and harmonic oscillator limits.
Salkola and the present authdrshave uncovered subtle |n the limit A—1, the Pschl-Teller potential becomes the
features associated with selftrapping of quasiparticles in inpfinjte square well of widthm/a. In the opposite limitx
teraction with vibrations. The vibrations considered in all _, 4,0, Na? remaining constantand finite, one re-

those analyses have been harmonic. The question of howyyers the harmonic oscillator potential. The eigenenergies
polaron dynamics and self-trapping are affected by anharmas the Pschi-Teller potentiall) are given b§
nicities in the vibrations was raised by Kenkseveral years

ago at the level of the discrete nonlinear Sclinger equa- 5222

tion (DNLSE) and analyzed in the context of rotational E,=—=—(n?+2n\+\), n=0,1,2... 2)
polarons*®> exponential  saturatioh! and general 2m

consideration$.Since the validity of the DNLSE has been i ) )

called into question by recent considerationdit is impor- ~ and the corresponding eigenfunctions are

tant to examine the issue of what polarons, or selftrapping,

owe to harmonic features from a starting point, which is fully dn(X)=(X| pn) =N, cod’2ax Pﬁ’f;ﬁl,z(sin ax), (3
guantum. The present paper is devoted to such an examina-
tion for a two-site system. where PA(t) are the associated Legendre functions, with

We will focus here on confined systems rather than oanz[a(n+)\)F(n+2)\)/1“(n+1)]1’2.
periodic systems such as those that may lead to rotational
polarons®’ In a certain sense, the most anharmonic potential
conceivable is that which corresponds to a box with infinitely
high walls as it corresponds to a harmonic piece with van-  consider a two-site system consisting of a quasiparticle,
ishing frequency throughout the interior of the box but onejike an electron or an exciton, whose intersite hopping is
with infinite frequency at the wall. We choose the symmetricyescribed by a matrix element of strength The quasipar-

Il. ANHARMONIC POLARON —-STATIONARY ASPECTS

Poschl-Teller potential given by ticle also strongly interacts with a vibrational mode between
the two sites. This vibrational mode is described by the
Vpr(X)=U,tarf(ax), (1) Paschl-Teller potential1). In the harmonic case the usual

interaction is linear in the vibrational amplitude and conse-
because it allows continuous transition between the harmoniguently connects nearest-neighbor eigenstates of the oscilla-
oscillator and the box limits and because it can be treatetbr. These two features are distinct from each other. In de-
analytically with ease. In Eq1) U,,a are constants defin- veloping a scheme for analyzing effects of a genealization to
ing, respectively, the strength and confining region of theanharmonic situations, we must maintain either one or the
potential. The potential becomes infinitely steep xat other of the two features. We have studied both cases. Here,
+m/2a. By rewriting the strength of the potentidly as  we present results of maintaining the second feature, viz., an
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FIG. 1. Polaron binding energy as a function of the FIG. 2. The overlap of the adiabatically displaced ground-state
quasiparticle-oscillator coupling constagt The inset shows the wave functions plotted logarithmically as a function gfor box
same quantities on a logarithmic scale. The solid line indicates th@mit, A=1 (dashed linand harmonic oscillator limit\—2 (solid
quantum-mechanical result whereas the dashed line indicates thige).
result of the semiclassical approximati®CA).

in the main figure is the binding ener@w arbitrary unit$ as
interaction that joins nearest-neighbor energy eigenstates. Agfunction ofg. In the inset, the same quantities are plotted

Nieto and Simmorfsand Crawford and Vrcsdyhave pointed  on a logarithmic scale. The bold lines indicate the fully

out in a different context, a sinusoidal interaction posseseguantum-mechanical calculation and the dashed lines indi-

this feature for the Pschl-Teller potential, and also reduces cate the results of the SCA. In all the cases, the oscillator
to the linear form in the harmonic limit. We thus take the full frequencyw, has been kept fixed, andvaried allowing the

Hamiltonian of our system to be oscillator to pass smoothly from the béx=1) limit to the

harmonic(A\—) limit. Two key results are evident in Fig. 1.

First, the SCA results agree with the exact ones only in the

harmonic oscillator limit; in the square-well limit, the depar-

. ture becomes quite drastic. Secdsde inset when the sys-

X sinz+Vr, (4)  tem is in the box-limit(\=1), the fully quantum system be-
haves harmonically for smatj but exhibits a crossover for
larger values ofy showing the true box-limit slope of unity.

a2 We also calculate the overlap between the adiabatically
wo=—(\+3) (5)  displaced ground-state wave functions. This overlap, basi-
m cally the Huang-Rhys factor, governs the polaronic tunneling

is the difference between the energies of the first excitedi@€ in the strong-coupling limit. One knows, for instance,
state and the ground state of thesBlal-Teller potentialz is that in the harmoguc oscillator limit, the tunneling rate is
the dimensionless oscillator coordinage, and g is the  proportional toe”9". In Fig. 2, we plot the overlap factor
quasiparticle-oscillator coupling constant. Here and hencedogarithmically as a function ofg for the box limit, i.e.,
forth, we puti=1 for simplicity. A=1 (dashed ling and for the harmonic oscillator limit, i.e.,

The operator,t are the operators describing the quasi—)‘_’“’ (solid ling). The quadratic dependence is clearly seen

. o~ + ~ + + for the latter. However, fok=1, the rise is sublinear, show-

particle, withp=cjc;—c5C,, r=(c €+ C5C1), Where the

. . ‘ . ing that the dependence of the overlap factorgois much
c's are quasiparticle creation and destruction operators. Th\?/gaker P P o

factorization or the semiclassical approximati@CA) con-
sists of assuming, equivalently, that the oscillator operators
behave classically or that products of quasiparticle-oscillator
operators can be factorized. We discuss in this section the temporal evolution of the
We compare the SCA with the fully quantum-mechanicalsystem, and show how the SCA differs from the fully
results first by computing the polaron binding energies. Thigjuantum-mechanical treatment. The equations of motion cor-
is done easily in the strong-coupling limit by freezing the responding to the Hamiltoniaf#) can be written as
guasiparticle hopping dynamics. We note first that, in the
harmonic oscillator limit, the polaron binding energy is pro- 6:2\/& (69)
portional tog? whereas, in the opposite limit of the infinite '
square well, the width of the well remains finite and the A ~ U
interaction produces a lowering of energy that is proportional q=—2Vp+2weg(\ +1/2)7 sinz, (6b)
to g. This cross-over behavior becomes evident from the full )
guantum-mechanical calculations as shown in Fig. 1. Plotted I =—2wg(\+1/2)Y%q sinz, (60

(&)

= 50t g LT M Dt 21+ weg VN )P

H

where

Ill. HEISENBERG EQUATIONS



PRB 59 QUANTUM VERSUS SEMICLASSICAL DESCRIPTION OF ... 9931

1.09

0.54

T R A T R R T Uy ey R T T T T R T T T T T e
AR AV AR Y P VAWV AR

AR VvV vy \ 1y
0.5+ 0.5

= 00 o0
< £
=

=05 -0.54

b) b)
-1.0 - - . 10

1.0

0 10 20 ED 4o
Vi Vi
FIG. 3. The evolution of the quasiparticle probability difference FIG. 4. Same as Fig. 3, with=10.

p(t) as a function of dimensionless tim&. In all the figures, the
polaron binding energy has been kept fixed at 1.5 Vange. The 5 . . ) L .
solid line denotes the fully quantum-mechanical result and théd”@o/2 in the harmonic oscillator limit. In Fig. 3,=200, the
dashed line denotes the result of the SCA.(#h wo=10V, (b) oscillator potential is essentially that of the harmonic oscil-
wg=V, (€) =wy=0.1V. lator potential. The oscillator energy, takes on the values
10V, V, and 0.¥ in (a), (b), and(c), respectively. As dis-
wy cussed eIseWheFaNherea_s the SCA shows self-trapping for
mwz, (6d) all the_ vaIu_es of the oscn_lator frequenpy, the _fuI_I guantum
evolution differs substantially, except in the limit of low-
oscillator energywy=0.1V. In this limit, for short times, the
tanz se82+g(x+1/2)1’2b cosz|, (6e) full quant_um e\{olution and SCA agree in that both show
self-trapping, with nearly the same average value of self-
R trapping and oscillation frequency. However, the quantum
where q=i(c}cz—c;c1) and the quasiparticle operators evolution shows a considerably richer structure involving
p,q,r cyclically satisfy the commutation relation§p,q] collapses_ and revivals. At much longer times, the_ dressgd
=2if, and[2,7,]=i. As stated earlier, the SCA consists jn duasiparticle tunnels from one site to the other. This is evi-
. . A~ dent in Fig. 3b). When\=10, (Fig. 4), the potential is more
assuming the oscillator operatarsr, to be ¢ numbers. In

the t | si h its of h “square-well”’-like and some departures, especially in the
€ temporal analysis, we compare the results of SUCH a4 gscillator frequency regin{€ig. 4(b)] are visible. For
approximation with those given by the full quantum eVOIu'instance, the “silent runs” separating the collapse and re-

tion describedn by E.c{.G).We plotin Figs..3—5{the evolution ;| sequence, are less quiescent, and the agreement be-
of the_ population d|ffere_nce of t_he qu§S|part|c_Ie between th(ifween the SCA and the full quantum evolution is slightly
two sitesp(t) as a function of dimensionless tinv&. In all worse. In Fig. 5, we taka=1, wherein the potential is es-

our calculations, the initial condition used for the quantumSentially the infinite square well. Whereas the agreement be-

system is the ground state of the quasiparticle-oscillator SYSween the SCA and the full quantum evolution is best when

tem projected onto the one-site localized part of the Hilbertthe oscillator energy is leastpo=0.1V, [Fig. 5c)], the

space, such thgp)(0)=1. The initial condition used for the = agreement is far worse than for the harmonic poteifii.
SCA calculation isp(0)=1, z(0)=m,0)=0. In all the 5(c)]. Further, the “silent runs” are barely noticeable, with
plots, the solid line indicates the full guantum evolution andthe collapses and revivals intruding into each other.

the dashed line indicates the evolution due to the SCA. The A key time scale in the temporal evolution is the one
polaron binding energy has been kept constant to facilitatassociated with the polaronic tunneling between the two
comparison. This valuéwhich we take to be 1.5 Mequals sites. Since this time scale is intimately connected with the

7=
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@0 \+1/2)
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b) FIG. 6. The polaron tunneling time scale plotted logarithmically
'12 as a function of the polaron binding energy, both computed without
CLAR AR AR AR RS AR A AN A making the SCA. The solid line indicatas-c (harmonic oscillator
i p i i i 1 i l'l i 0 H' i limit) and the dashed line indicatas=1 (box limit).
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g 1\ i n i1 i\
Wi | 1 1l I AR B . . . .
Soslll YV Y d HEH R R R LI R IR f ¥y By analyzing the dynamics and energetics of a quasipar-
ticle interacting with a tunably anharmonic oscillator, spe-
o cifically described by a Bzhl-Teller potential, we find that,
045 s % % iy in the limit of strong coupling between the quasiparticle
Ve and the oscillator, self-trapping is robust and persists for

strong anharmonicities, with the polaron tunneling time scale
being exponentially dependent on the polaron binding en-

polaron binding energy, we plot in Fig. 6, the logarithm of €"9Y: a_feature that has been earller known to be true for
the tunneling time as a function of the binding energy. Theéharmonic polarons. We further find that the full quantum
solid line denotes the harmonic oscillator limit—o  result agrees with the predictions of the semiclassical ap-
whereas the dashed line denotes the infinite square-wefroximation only in this strong coupling, low-frequency re-
limit, A\=1. Note that for small values of the binding energy, 9ime, in agreement with earlier findings for harmonic po-
the timescales for both cases is only weakly dependent olarons.
the energy. However, for larger couplirfinding energy,

both show a clear linear dependen@dbeit with different

slope. This clearly indicates that even for the boxlike poten-

tial, the polaronic tunneling time scale is exponentially de-
pendent on the binding energy. While well known for har- One of us(V.M.K.) acknowledges the financial support of
monic polarons, this exponential dependence constitutes dhe National Science Foundation under Grant No. DMR-
important new result for anharmonic polarons emerging fromP614848, and of the Los Alamos National Laboratory under
the present analysis. Grant No. 0409J0004-3P.

FIG. 5. Same as Fig. 3, with=1.
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