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Nonlocal approach to the analysis of the stress distribution in granular systems.
I. Theoretical framework

V. M. Kenkre, J. E. Scott, and E. A. Pease
Center for Advanced Studies, Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 8

A. J. Hurd
Sandia National Laboratories, Albuquerque, New Mexico 87185

~Received 22 August 1997!

A theoretical framework for the analysis of the stress distribution in granular materials is presented. It makes
use of a transformation of the vertical spatial coordinate into a formal time variable and the subsequent study
of a generally non-Markoffian, i.e., memory-possessing~nonlocal! propagation equation. Previous treatments
are obtained as particular cases corresponding to, respectively, wavelike and diffusive limits of the general
evolution. Calculations are presented for stress propagation in bounded and unbounded media. They can be
used to obtain desired features such as a prescribed stress distribution within the compact.
@S1063-651X~98!14305-2#

PACS number~s!: 81.05.Rm, 61.43.Gt, 81.20.Ev
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I. INTRODUCTION

Considerable activity is apparent in the recent literat
@1–15# in the calculation of the stress distribution in granu
materials ranging from sandpiles to ceramic powder co
pacts. The interest stems in part from new experimental
sults@16–18#, in part from the fact that important features
old experimental data@19–21# have never been satisfactori
explained, and in part from the need to understand and c
trol the formation of undesirable density gradients in t
manufacture of metal and ceramic parts. Variations in
density distribution have been identified as a source
shrinking, cracking, and failure during the pressing and s
tering processes@22–24#.

Our purpose in the present paper is to provide a theo
cal framework for the analysis of stress distribution in gran
lar materials on the basis of the idea of the formal interp
tation of the vertical spatial coordinate as time. Such an i
appears in two earlier analyses in the literature. One of th
is by Bouchaudet al. @8# who use continuum mechanics
derive a ‘‘wave equation’’ to describe the ‘‘coherent’’ tran
mission of stress in a granular compact. The other, altho
it might not have been recognized as such, is the quite u
lated analysis of Liuet al. @11# who describe stress distribu
tion through the use of a discrete Master equation follow
what may be regarded as a Markoffian evolution. Our
proach in the present paper starts in the continuum mec
ics picture, proceeds through the introduction of forma
natural constitutive relations more general than those use
earlier work, and ends in propagation equations that arenon-
local in the vertical coordinate. A simple case of our equ
tion turns out to be identical to the telegrapher’s equat
@25#. With its help, we are able to unify the treatments
Bouchaudet al. @8# and of Liu et al. @11# by showing that,
while seemingly disparate, they are extreme consequenc
our general treatment. To the best of our knowledge,
interconnection has not been realized earlier. It allows on
combine excellent nonoverlapping insights developed i
stress transmission by the authors of those two referen
571063-651X/98/57~5!/5841~9!/$15.00
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Furthermore, our theory describes intermediate situati
wherein the transmission of stress is neither completely
herent@8# nor completely incoherent@11# .

II. STRESS BALANCE EQUATIONS
AND OUTLINE OF OUR APPROACH

Some features of stress distribution in powder compa
arise directly from their granular nature. Others can be
scribed through an application of continuum mechanics.
the present paper, we start with continuum mechanics a
the analysis of Ref.@8#. We focus attention on the stres
tensor, which, in rectangular coordinates, is given by

s5F sxx sxy sxz

syx syy syz

szx szy szz

G . ~2.1!

In the absence of torques, the off-diagonal shear-stress te
are equal in pairs (sxy5syx , syz5szy , and szx5sxz).
Newton’s second law of motion is described by the Cauc
relation

“•s1rb5r
dv

dt
, ~2.2!

wherer is the mass density of the body at a point,dv/dt is
the acceleration of the point, andb is the body force per unit
mass acting on the point. In equilibrium, if the only bod
force acting on the point is the gravitational force in thez
direction, we have

]sxx

]x
1

]syx

]y
1

]szx

]z
50, ~2.3!

]sxy

]x
1

]syy

]y
1

]szy

]z
50, ~2.4!
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]sxz

]x
1

]syz

]y
1

]szz

]z
5rg. ~2.5!

These stress balance equations describe the behavi
the six unique elements ofs. Because interest lies primaril
in the local density in the compact, which is believed to b
function @26,27# of the local value ofszz, we will focus
entirely onszz. Equation~2.5!, which governs this quantity
can be recast in the form of a two-dimensional continu
equation:

“• j1
]S

]z
5rg. ~2.6!

The ‘‘flux’’ j is a two-dimensional vector withsxz andsyz
as itsx andy components, respectively, the ‘‘density’’S of
the fictitious fluid whose flow is given by Eq.~2.6! is iden-
tical to szz, andrg is a ‘‘source term.’’ In this interpreta-
tion, the z coordinate assumes the role of time@8#. If the
applied stresses are much larger than the gravitational fo
the ‘‘source term’’ can be neglected. For the sake of simp
ity, we will consider this situation realized in the body of th
paper and return to the source term in Sec. VI.

Equation~2.6!, which we now consider with its right-han
side put equal to zero, can be used to determineS only if an
additional equation relating the components ofj to S is
given. In order to understand the spirit of our analysis belo
it is useful to consider three examples of such an additio
equation which are known in fluid flow. The first example
Fick’s law:

j52D“S, ~2.7!

which, when substituted in the continuity equation, leads
the diffusion equation forS, with D the diffusion constant.
The symbol“ here represents thetwo-dimensionalgradient.
The second example is

] j

]z
52c2

“S, ~2.8!

and describes the proportionality between the ‘‘time’’ d
rivative (z derivative! of the flux and the gradient of th
density. It leads to the wave equation, with wave propaga
speedc. The third example combines features of the first a
the second examples,

] j

]z
1

c2

D
j52c2¹S, ~2.9!

and reduces to the previous two limits in easily understo
extreme limits. When substituted in the continuity equati
Eq. ~2.9! leads to what is known as the telegrapher’s eq
tion @25,28#:

]2S

]z2
1

c2

D

]S

]z
5c2¹2S. ~2.10!

This telegrapher’s equation, which we will find of conside
able use in the present paper, unifies diffusive and w
behaviors in a straightforward fashion and is itself a spe
of

a

e,
-

,
al

o

-

n
d

d
,
-

e
l

case of a generalized memory equation@29# where the con-
stitutive relation is nonlocal in thez coordinate

j ~z!52DE
0

z

dz8f~z2z8!“S~z8!. ~2.11!

The resulting equation governingS is an integrodifferential
equation of the Volterra type,

]S~z!

]z
5DE

0

z

dz8f~z2z8!¹2S~z8!, ~2.12!

and reduces to the diffusion, the wave, and the telegraph
equations in the respective limits of a ‘‘memory’’ that va
ishes@f(z)5d(z)#, is constant@f(z)5c2/D#, and is inter-
mediate@f(z)5(c2/D)e2(c2/D)z#.

We will see below that an examination of the constituti
relations commonly assumed in the literature on stress tr
mission in granular media~e.g., in Ref.@8#! suggests a natu
ral generalization, that the generalization leads to the n
Markoffian evolution equation~2.12! reducing in a simple
instance to the telegrapher’s equation~2.10!, and that it is
possible, on the basis of these equations, to construct a
tailed framework for the description of stress distribution
granular media.

III. GENERALIZED CONSTITUTIVE „CLOSURE…
RELATIONS

Since the stress balance equations~2.3!, ~2.4!, ~2.5! are
three in number but involve six independent quantities, th
cannot be solved unless additional relations are introdu
among the six stress tensor components. Such relations
known as constitutive or closure relations. In the pres
state of the theory of stress distribution in granular materi
they form the weakest link because, whether made explic
implicit in the analysis, they aread hocin nature. This is true
of all such relations to be found in the literature@8,11,24,30–
33#. It appears extremely difficult, at the present stage of
field, to provide any satisfactory physical justification f
existing relations. As in the case of other constitutive re
tions in the literature, the one we propose below is alsoad
hoc. However, it is mathematically natural and has the d
tinct advantage of leading to a unification and generalizat
of earlier treatments.

The closure assumption of Janssen@30# and Thompson
@24#, particularly as expressed by Bouchaudet al. @8#, pos-
tulates proportionality between the diagonal elements of
stress tensor (sxx , syy , andszz), as well as the vanishing o
the shear components in thex-y plane:sxy5syx50. In the
second part of their analysis, Bouchaudet al. @8# attempt to
go beyond this assumption through the inclusion of non
ear, second-order corrections insxz andsyz . Nonlinear con-
stitutive relations also appear in the treatment by Edwa
and Mounfield@15#.

In the absence of a satisfactory physical argument,
most natural constitutive relation is a simple proportional
betweensxx , syy , andszz, as assumed in Ref.@8#:

sxx5const3szz, syy5const3szz. ~3.1!
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We note, however, that this relation is never used directly@8#
for combining with Eqs.~2.3!,~2.4!, but only in the form of
spatial derivatives:

]sxx

]x
5c1

2
]szz

]x
,

]syy

]y
5c2

2
]szz

]y
. ~3.2!

Herec1
2 andc2

2 are constants of proportionality that are equ
to each other in isotropic media. We develop our constitut
relation by first reexpressing Eq.~3.1! in the derivative form
~3.2!, and then generalizing it to incorporate the contrib
tions of sxz and syz . We represent these contribution
through the addition of first-order terms in the sense o
Taylor’s series expansion:

]sxx

]x
5c1

2
]szz

]x
1a1sxz ,

]syy

]y
5c2

2
]szz

]y
1a2syz .

~3.3!

As in the case ofc1andc2, the quantitiesa1 anda2 would
equal each other in isotropic media. Combining these res
with Eqs.~2.3! and~2.4! and, assuming, as in the analysis
Ref. @8# that sxy5syx50, we obtain

c1
2
]szz

]x
1a1sxz1

]sxz

]z
50, ~3.4!

c2
2
]szz

]y
1a2syz1

]syz

]z
50. ~3.5!

Identifying, as in Eq.~2.6!, the componentsj x , j y of the
two-dimensional ‘‘flux’’ j with sxz and syz , respectively,
and the ‘‘fluid density’’S with szz, we express our consti
tutive relation~3.4!, ~3.5! as

] j

]z
1a1 j xâx1a2 j yây52S c1

2
]S

]x
âx1c2

2
]S

]y
ây D , ~3.6!

where âx and ây are unit vectors inx and y directions, re-
spectively. Equation~3.6! or its isotropic counterpart Eq
~2.9! ~which we will use in most of the analysis below! is our
constitutive relation. It leads to the telegrapher’s equat
~2.10! for szz. While we have assumed above, followin
Ref. @8#, that sxy andsyx are identically equal to zero, it is
actually not necessary to make this assumption to get
~3.6!. It is enough to postulate that Eq.~3.3! is replaced by

]sxy

]y
1

]sxx

]x
5c1

2
]szz

]x
1a1sxz ,

]sxy

]x
1

]syy

]y
5c2

2
]szz

]y
1a2syz . ~3.7!

We close this section by rewriting our constitutive relati
~2.9! in the memory form~2.11! with D5c2/a and f(z)
5a exp (2az):

j ~z!52c2E
0

z

dz8e2a ~z2z8!
“S~z8!. ~3.8!
l
e

-

a

lts

n

q.

IV. OUR EVOLUTION EQUATION
AND UNIFICATION OF EARLIER TREATMENTS

Our memory form of the constitutive relation~2.11! leads
to the nonlocal equation~2.12!. The general program o
analysis may thus proceed by assuming on physical grou
or determining from experiment, the memory functionf(z)
and the quantityD, and then solving Eq.~2.12! for szz, i.e.,
S. We write Eq.~2.12! explicitly in the form

]szz~x,y,z8!

]z
5DE

0

z

dz8f~z2z8!¹2szz~x,y,z8!.

~4.1!

Properties of the granular material would be reflected
f(z) and D, and complex behavior could be describ
through appropriate forms off(z). A particularly useful fea-
ture of the theory we present is the unification it provides
two seemingly unrelated treatments of stress distribut
available in the literature. The connection of our theory
that of Bouchaudet al. @8# is obvious, given that we have
followed their analysis closely in developing the prese
treatment. We simply take the memory function in Eq.~4.1!
to be a constant:f(t)5c2/D. We then obtain, from our Eq
~4.1!, the wave equation

]2szz~x,y,z!

]z2
5c2¹2szz~x,y,z!

5c2F ]2szz~x,y,z!

]x2
1

]2szz~x,y,z!

]y2 G ,

~4.2!

which, with the identification ofc2 with k1, is the essential
result of Ref.@8#. The interpretation here is that the spat
memory function corresponding to the analysis of Ref.@8#
describes the perfect retention of information on how str
propagates from layer to layer in thez direction. Such a
system can be imagined as consisting of identical, frictio
less spherical particles arrayed in a perfectly ordered latt
The stress applied on one particle would be transmitted al
the lines of contact between particles and there would be
loss of information about the original strength and directi
of the applied force.

This coherent limit does not fully describe a realis
granular system in which random-shaped particles of rand
sizes are packed in a random arrangement. This would
gest that stress propagation might be best described in te
of Markoffian processes characteristic of spatial memorie
the system that decay quickly with the result that the str
path takes on the behavior of a random walk in the mediu
The limit of our theory, which is opposite to that in which w
recover the results of Bouchaudet al. @8# as discussed above
is one in which the memory is not perfect~constant, nonde-
caying! but decays immediately, i.e.,f(z)5d(z). In such a
limit we recover the equation
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]szz~x,y,z!

]z
5D¹2szz~x,y,z!

5DF ]2szz~x,y,z!

]x2
1

]2szz~x,y,z!

]y2 G .

~4.3!

We shall now show that this result~4.3! is, in essence, the
evolution equation of Liuet al. @11#.

In the analysis of Liuet al. @11#, the transmitted stress pe
granular particle,w(z,x), is described as arising from a su
of contributions from random probabilistic transmission
forces from particles in one layer of the granular materia
particles in the next lower layer. The system is discretized
terms of layers of a given thicknessd. ~We will denote the
thickness by the symbold instead of byD used in Ref.@11#
to avoid confusion with our ‘‘diffusion constant’’.! Sites j , i
are considered to be in the horizontal direction and a sum
taken over particles in the previous layer that participate
the transmission of forces to thej th particle. Withqi j (d) as
the random fraction of the stress that passes from thei th site
in layer d to the j th site in layerd11, the evolution of the
stress is described@Eq. ~2! of Ref. @11## through

w~d11,j !5m~d11,j !g1(
i

qi j ~d!w~d,i !. ~4.4!

We have shown explicitly here the weightm(d11,j )g, the
product of the mass of the particle in layerd11 at sitej and
the acceleration due to gravity. In their analysis, the auth
of Ref. @11# take that source term to be unity. If we negle
this term under the standard assumption that the app
pressure is much greater than the internal stresses du
gravity, notice that the force transmitted through the parti
j on layerd11 must equal the total of the fractional forc
transmitted through the particlesi on layerd, i.e., ( iqi j (d)
51 @see Eq.~3! of Ref. @11##, and subtract from Eq.~4.4! the
identity

w~d, j !5F(
i

qi j ~d!Gw~d, j !, ~4.5!

we find

w~d11,j !2w~d, j !5(
i

@qi j ~d!w~d,i !2qji ~d!w~d, j !#.

~4.6!

This is a difference equation in the discrete layer variabld
whose incrementDd equals 1. Going to the continuum lim
in the variabled, dividing by Dd, and taking the limitDd
→0, we obtain the well-known Master equation

]w~z, j !

]z
5(

i
@Fi j ~z!w~z,i !2F ji ~z!w~z, j !#, ~4.7!

where Fi j (z) is limDd→0 qi j (d)/Dd and we have replace
the discrete variabled by the continuous variablez. If, for
simplicity, we take theF ’s to be nearest neighbor in exte
f
o
n

is
n

rs
t
d
to

e

and independent of location within the layer, and the ho
zontal space to be one dimensional, we have

]w~z, j !

]z
5F~z!@w~z, j 11!1w~z, j 21!22w~z, j 11!#,

~4.8!

which, in the continuum limit inj , reduces to the diffusion
equation with a diffusion constant that is dependent on b
z andx,y. More generally, if we take the quantitiesFi j to be
local in thex-y space, the right-hand side can be written
proportional to the two-dimensional Laplacian operat
With the identification ofw with szz, we thus have Eq.
~4.3!, which is the extreme Markoffian limit of our theory, a
representing the theory of Liuet al. @11#.

The authors of Refs.@8# and@11# appear not to have mad
use of each other’s work and to have proceeded from t
evolution equations in entirely different ways. We hope th
the unification we have provided here will allow furthe
work in this field to combine insights offered by both sets
analysis.

V. APPLICATIONS OF THE THEORY

As illustrations of the usefulness of our theoretical fram
work, we work out its consequences for stress distribution
unbounded media and in long pipes, respectively. We w
use for this purpose the telegrapher’s equation

]2szz~x,y,z!

]z2
1a

]szz~x,y,z!

]z
5c2¹2szz~x,y,z! ~5.1!

with D5c2/a. For the sake of simplicity, we will conside
here only a two-dimensional system and thus use, instea
Eq. ~5.1!, the equation

]2szz~x,z!

]z2
1a

]szz~x,z!

]z
5c2

]2szz~x,z!

]x2
. ~5.2!

A. Stress distribution in unbounded media

We take the applied stressszz(x,0) at the ‘‘surface’’z
50 to be a delta functiond(x). The solution of Eq.~5.2! is
then given by

szz~x,z!5e2az/2Fd~x1cz!1d~x2cz!

2
1TG , ~5.3!

where the termT vanishes identically forcz<x, and equals,
for cz>x,

T5S a

4cD H I 0S a

2c
Ac2z22x2D

1
cz

Ac2z22x2
I 1S a

2c
Ac2z22x2D J ~5.4!

the I ’s being modified Bessel functions. We immediately r
cover the interesting phenomenon of ‘‘light cones’’ disco
ered by Bouchaudet al. @8#. Thus, in the limita50,
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szz~x,z!5~1/2!@d~x1cz!1d~x2cz!# ~5.5!

as in Ref.@8#. Our theory shows that, in addition, there is
nonvanishing stress distributionwithin the light cones. This
stress is given by our termT. In the limit that reduces ou
theory to the opposite extreme of Liuet al. @11#, the light
cones spread out to coincide with the surfacez50, and the
entire region experiences stress:

szz~x,z!5
e2x2/4Dz

~4pDz!1/2
. ~5.6!

Needless to say, the solution for arbitrary prescribed dis
bution at the surfacez50 is obtained by using the solutio
~5.3! as a propagator, i.e., as

szz~x,z!5E dx8G~x2x8,z!szz~x8,0!, ~5.7!

whereG(x,z) is the right hand side of Eq.~5.3!.
In Figs. 1 and 2, we display plots for the ‘‘normal stres

szz(x,z) in arbitrary units as predicted from the prese
analysis when the applied stress is ad function. The extreme

FIG. 1. Unification of~a! the wave limit representative of th
theory of Bouchaudet al. @8#, and~b! the diffusive limit represen-
tative of the theory of Liuet al. @11# shown through plots of the
stress distribution in an unbounded medium for an app
d-function stress. Both the ‘‘light cones’’ of the wave limit and th
Gaussian profile of the diffusive limit are seen. Parameters ac
51, a50.005 in ~a!, andD51 ~along with a→` , c→`, c2/a
5D) in ~b!. Units are arbitrary.
i-

t

limits are shown in Fig. 1 and intermediate cases are sho
in Fig. 2. In all cases except that depicted in Fig. 1~b!, c
51, and the quantity plotted corresponds to just the wa
portion e2az/2T in Eq. ~5.3!, viz., it does not include the
singular part of the stress. In Fig. 1~b!, the quantity plotted is
the entire stress given by Eq.~5.6! and D51. The wave
extreme can be seen in Fig. 1~a! for which a is nearly van-
ishing: a50.005, and corresponds essentially to the wa
limit of Bouchaud et al. @8#. The ‘‘light cone’’ behavior
mentioned by those authors is evident in Fig. 1~a!. Case 1~b!
is the extreme diffusive limit as would correspond to t
equations of Liuet al. @11#. Figure 2 describes intermediat
situations inaccessible to extreme wave or diffusive tre
ments. We see both ‘‘light cone behavior’’ and the onset
the diffusive ~Gaussian! profile further down from the sur-
face. Parameter values in Figs. 2~a! and 2~b! area50.2, a
53.2, respectively. The scale changes along the stress
are indicative of the fact that the wake is zero for vanish
a, and rises in value as the evolution becomes more di
sive.

B. Stress distribution in pipes

To analyze the distribution of stress in long pipes w
solve the boundary value problem relevant to Eq.~5.2!. The
application of the method of separation of variables
straightforward as far as the form of the solution is co
cerned,

szz~x,z!5(
k

~Akcoskx1Bksin kx!gk~z!; ~5.8!

d

FIG. 2. Stress distribution in an unbounded medium for an
plied d-function stress for intermediate parameter ranges. Par
eters arec51, a50.2 in ~a!, and c51, a53.2 in ~b!. Units are
arbitrary.
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gk~z!5e2~a/2!zFcoshVkz1
a

2Vk
sinh VkzG ,

Vk5Aa2/42c2k2. ~5.9!

However, the choice of the boundary condition to be use
almost as difficult to motivate on physical grounds as
constitutive relations. For illustrative purposes only, we w
take the stress to be vanishing on the boundaries of the c
pact. Thus, we assume that the compact extends fromx5
2L/2 to x5L/2, and thatszz(6L/2,z)50. Only the cosines
in Eq. ~5.8! survive as a result of the obvious symmetry
the problem, theA’s are obtained from the functional form o
the applied stress atz50:

Ak5~2/L !E
2L/2

L/2

dx coskxszz~x,0!, ~5.10!

and, withm50,1,2, . . . ,

k5~2m11!~p/L !. ~5.11!

For the usual case wherein a constant punch pressurep0 is
applied across the top surface of the compact,

szz~x,z!5p0e2~a/2!z (
m50,1, . . .

4~21!m

p~2m11!

3cos
~2m11!px

L Fcosh~vmz!

1
a

2vm
sinh~vmz!G , ~5.12!

vm5$a2/42@~2m11!~cp/L !#2%1/2. ~5.13!

Equation~5.12! shows that the stress dependence on
horizontal coordinatex is oscillatory as is appropriate to th
boundary stress being held constant throughout the
walls. The dependence along the vertical coordinate is
perbolic if a/2.2cp/L. When this inequality is not satis
fied, the dependence is hyperbolic~trigonometric! for modes
for which a/2 is greater~smaller! than (2m11)(cp/L). Our
analysis thus reveals the interesting feature that the natu
the stress variation along thevertical coordinate depends o
the mode considered, while which modes predominate is
termined by the top surface stress distribution along thehori-
zontalcoordinate. Here, we see similarities with, and dep
tures from, the behavior predicted by Janssen@30# and
Thompson@24#. Their calculations show the stress as hav
a simple exponential dependence on depth. This could re
from the retention of only the lowest spatial frequency ter
in the Fourier sum in Eq.~5.12!. If, however,a is relatively
small, i.e., if the spatial memory function that decays slow
a significant contribution to the behavior of the stress can
made by the higher frequency components. This can resu
oscillations in the stress as a function of depth.

The analysis of Thompson@24# predicts that the stres
variation along the center line of the compact is consta
This is in contradiction with experimental observations. It
is
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interesting to examine this center line variation with the h
of our results. Equation~5.12! gives, for the center line
stress,

szz~0,z!5p0e2~a/2!z (
m50,1, . . .

4~21!m

p~2m11!Fcosh~vmz!

1
a

2vm
sinh~vmz!G . ~5.14!

The sum can be evaluated exactly by going into the Lapl
domain. Using tildes to denote the Laplace transform,« be-
ing the Laplace variable, we have

szz̃~0,«!/p05 (
m50,1, . . .

4~21!m

p~2m11!

3
«1a

«21«a1@~2m11!cp/L#2

5
1

«F12sechS L

2c
A«21«a D G . ~5.15!

The summation is confirmed in standard tables@34#. The
Laplace inverse of the extreme right side of Eq.~5.15! is
known for a50. In that wave limit, the stress is a squa
wave W(z) along thez coordinate. It is constant at the ap
plied value p0 for 0,z,L/2c, flips to 2p0 for L/2c,z
,3L/2c, flips back top0 for 3L/2c,z,5L/2c, and contin-
ues alternating in this fashion. Using a theorem@35# that
allows one to calculate the Laplace inverse off̃ (A«22a2) if
the Laplace inverse off̃ («) is known, it is possible to invert
Eq. ~5.15! to obtain the center line stress explicitly as

szz~0,z!/p0511E
0

z

due2~a/2!uFM ~u!1~a/2!

3E
0

u

dsI1~s!M ~Au22s2!G , ~5.16!

whereI 1 is a modified Bessel function andM (z), the deriva-
tive dW(z)/dz of the square waveW(z) described above
can be expressed as an infinite sum ofd functions centered a
multiples ofL/2c. In the completely diffusive limit, the cen
ter line stress distribution is given by (1/«)$1
2sech@(L/2)A«/D#% in the Laplace domain. Inversion
yields

szz~0,z!/p052E
0

1/2

dn u1S nU 4Dz

L2 D , ~5.17!

whereu1 is the elliptic theta function of the first kind.
In Fig. 3 we plot the center line stress as a function

depthz for c51. Several features are worthy of note. In~a!
the stress is plotted for three values ofa: 6, 12, and 24. The
discontinuities near the values of multiples ofL/2c, which
are evident particularly for the smaller values ofa, arise
from wall reflections and are a consequence of the finiten
of the ‘‘speed parameter’’c. The stress is constant from th
surface to the depth that corresponds to the first reflect
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The decay at greater depths is slower for larger values oa.
In ~b! we show a comparison of the telegrapher’s equat
analysis to the diffusion equation analysis~as would be ap-
propriate to Ref.@11#!. Diffusion results are shown by dotte
lines, the telegrapher’s results by solid lines and values oa
chosen are 6 and 24, respectively. The parameter in the
fusion equation,D, is taken to be related to the telegraphe
equation parametersc,a throughD5c2/a. The difference is

FIG. 3. The center line stress plotted as a function of depthz for
c51, L51 from equation~5.16!. Units are arbitrary. In~a! the
stress is plotted for three values ofa: 6, 12, and 24. In~b! the
solutions of the telegrapher’s equation are shown by solid lines
those of the corresponding diffusion equation~see text! by dotted
lines. Thompson’s results@24# that the center line stress is indepe
dent of depth could correspond to the extreme diffusive limit.
n

if-

more pronounced for lower values ofa and the diffusion
equation results do not exhibit discontinuities. Our theore
cal prediction that the center line stress generally depend
z is in agreement with experiment but in conflict with th
theory of Thompson@24#, which could correspond to the
extreme diffusive limit.

Our purpose in presenting the above treatment of
boundary value problem has been only illustrative. Wa
features present in the wave or telegrapher’s equation
lead to unphysical consequences such as negative value
the stress particularly as a consequence of imposed boun
conditions. A more general treatment that eliminates th
features has been developed in the following paper@36#
where we have compared our predictions to experiment.

Boundary value treatments of the kind we have given h
appear not to have been presented from Bouchaudet al.’s
wave equation~4.2!, or from Liu et al.’s diffusion equation
~4.3!. The former authors have focused attention on w
may be termed ‘‘the ray optics limit’’ of the wave equatio
in their treatment of silo geometry, while the latter autho
have concentrated on a mean field treatment of the st
distribution. Our boundary condition analysis shou
complement these earlier methods of investigation.

VI. NONLINEAR EVOLUTION EQUATIONS

Our analysis thus far has used the reduced form of
‘‘continuity equation’’ ~2.6! in which the termrg is consid-
ered negligible. This is warranted when the stress due to
weight of the granular material is a small perturbation on
applied stress—a situation that is usual during compact
However, we return to the general case in this section
show how the inclusion of the source termrg leads to non-
linear evolution equations.

Our point of departure is the full form of Eq.~2.12! with
the gravity term added

]szz~x,y,z8!

]z
5DE

0

z

dz8f~z2z8!¹2szz~x,y,z8!1gr~z!.

~6.1!

Study of the stress-density relation in powder compacts
led to forms for the equation of state that expresses the d
sity r as an explicit nonlinear function of the stress comp
nentszz @26,27#. If one recognizes that thez dependence of
r in Eq. ~6.1! occurs through such an explicit stress depe
dence ofr, one sees Eq.~6.1! to be an integrodifferentia
equation of the Volterra type with a nonlinear forcing term

]szz~x,y,z8!

]z
5DE

0

z

dz8f~z2z8!¹2szz~x,y,z8!1gr~szz!.

~6.2!

For an exponential ‘‘memory’’f(z)5a exp (2az), the
nonlinear equation takes the form

]2szz

]z2
1Fa2g

dr~szz!

dszz
G]szz

]z
5c2¹2szz1agr~szz!,

~6.3!

d
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which is a nonlinearly driven telegrapher’s equation with
nonlinear damping constant. The limits for extreme forms
the ‘‘memory’’ are the nonlinearly driven wave equation

]2szz

]z2
2g Fdr~szz!

dszz
G]szz

]z
5c2¹2szz, ~6.4!

and the nonlinearly driven diffusion equation

]szz

]z
5D¹2szz1gr~szz!, ~6.5!

respectively. As an example, we state the evolution equa
that results in the extreme diffusive limit by using the equ
tion of state given by Kenkreet al. @27#:

]szz

]z
2gH r0F12S r`2r0

r`
D @b1~12e2szz /s l !

1b2e2sa /szz#G21J 5D
]2szz

]x2
. ~6.6!

We have studied equations such as~6.6! through analyti-
cal approximations including perturbation techniques a
mode-coupling procedures as well as via numerical meth
The interplay of the diffusive evolution with the nonlinear
ties arising from the rearrangement process associated
s l and the crushing process associated withsa gives rise to
rich behavior that will be reported elsewhere. These con
erations are of importance to self-compacting systems s
as sandpiles or unconsolidated geological features suc
hillsides and mine tailings.

VII. REMARKS

We discuss below the primary steps that constitute
theory, the advantages and disadvantages of our theore
framework, and work in progress. The essential ingredie
of the theory we have presented in this paper are as follo
~i! the treatment of granular material through the Cauc
relations ~2.3!, ~2.4!, ~2.5! for the stress tensor under th
assumption of the validity of continuum mechanics,~ii ! in-
terpretation of one of the Cauchy relations as a tw
dimensional continuity equation~2.6! for a fluid whose den-
sity and flux are given respectively byszz and a two-
dimensional vector whosex and y components aresxz and
syz , ~iii ! a search for additional relations between the ot
stress components in the form of a constitutive relation
the flow of the ‘‘fluid,’’ and a statement of such a new co
stitutive relation,~2.9! or ~3.7!, obtained through alinear
extension of previous arguments of Janssen-Thomp
Bouchaud,~iv! the derivation of a generally non-Markoffia
evolution equation~4.1! for szz involving a spatial memory
function with the related interpretation of the vertical coo
dinate as a time variable,~v! unification of two quite unre-
lated treatments in the literature by deriving them as t
extreme cases of our general result: the wave equation~4.2!
and the diffusion equation~4.3!, ~vi! application of our te-
legrapher’s equation analysis to treat stress distribution
f
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unbounded as well as bounded granular media, which
interesting features to the results of earlier analyses and
gest entirely new features not accessible to earlier the
~vii ! derivation of nonlinear evolution equations consisti
of the telegrapher’s~or memory! equation driven by terms
that combine the present analysis of stress gradients with
previous analysis of the stress-density equation of state g
by some of the present authors@27#.

One of the shortcomings of our theory, which it shar
with all treatments known to us in the literature, is that t
exact physical origin or justification of the constitutive rel
tions is not known. Since all the treatments justify the co
stitutive relations only on mathematical grounds, there is c
tainly a possibility of the emergence of spurious results. W
know of no solution to this problem at the present. The v
lidity of the assumptions can be judged only through co
parison to experiment. Another point of concern is related
the fact that, whereas the diffusion equation preserves p
tivity of the quantity it governs, the wave and the telegr
pher’s equations do not. The treatment of Bouchaudet al. @8#
as well as the telegraphers equation analysis can, there
give rise to unphysical negativities. These undesirable f
tures appear in two dimensions for all media and one dim
sion for bounded media under certain boundary conditio
An extension of our analysis, which removes these nega
ties in practical applications to experiment, is given in t
succeeding paper@36#. An additional problem that our theor
shares with all treatments that interpret thez coordinate as a
time coordinate~and they include the descriptions of bo
Bouchaudet al. @8# and Liuet al. @11#! is that, in the presen
form, they are valid only in long pipes or media without
bottom. Termination in thez direction as in a compact intro
duces ‘‘boundary conditions in time,’’ which appear difficu
to treat from evolution equations. In the true time evoluti
situation, we predict behavior at a later time, given spa
boundary conditions for all time and an initial condition. Th
incorporation of a ‘‘final’’ condition, i.e., a boundary cond
tion at large values of time seems difficult to impleme
Work is under way on this conceptual~technical! problem.
Pending the resolution of this feature, we must consider
present theories in this category, whether ours or those
Refs.@8# and@11#, to be restricted in their validity to predic
tions in regions far away from bottom surfaces.

The success of our theory lies in the unification of t
seemingly disparate treatments of Refs.@8# and@11#, the ex-
plicit application to existing observations with both qualit
tive and quantitative agreement@36#, and the considerable
potential for further results. We briefly mention this potent
by alluding to our ongoing work.

We have seen in Sec. V that explicit incorporation
finite acceleration due to gravity leads to nonlinear equati
of stress distribution. We are currently involved in analytic
approximations and numerical investigations of the solut
of these nonlinear equations. We point out that these non
earities arise from the combination of our framework w
stress-density equations of state current in the litera
rather than from generalizations of constitutive relations
in @8#. Our theory allows us to do ‘‘smart processing,’’ i.e
achieving desired stress distributions in given locations
controlling the applied stress. By calculating the Fourier c
efficients for a system whose extent changes in width, i
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possible to analyze the compaction behavior of constrai
granular systems beyond that of pipes. Such systems inc
funnel-shaped silos, dies with sloping sides, and perh
even sandpiles wherein the boundaries are defined by
sides of the pile that have relaxed to the angle of repo
Because we treat thez-coordinate formally as time, this sce
nario is simply the problem of calculating the transport b
havior in a system with moving boundaries. We hope
od

ud
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e
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de
ps
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report on these and related matters in forthcoming publ
tions.
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