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What do polarons owe to their harmonic origins?
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Abstract

Polaron (and related) soliton concepts are based on the assumption that quasiparticles are in linear interaction with harmonic
oscillators. The discrete nonlinear Schrodinger equation and its semiclassical relatives are also based on this assumption. Study
of the eftfects of nonlinearity in interaction, and anharmonicity in the restoring force of the oscillators. has led to notable results
such as saturation of nonlinearities and counterintuitive pheonomena such as destruction of self-trapping on increasing the
nonlinearity. We report on these and related results. The general aim of the investigation is to determine what polarons owe to
their harmonic (and linear) origins and how a generalized conceptual framework may be built which includes known polaron
physics as a subset. Copyright © 1998 Elsevier Science B.V.
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1. Introduction

The purpose of the present lecture/article is to delve into the interesting question as to what polarons [1-3]}
owe to their harmonic origins. The first report of such work was presented at another conference in Greece eight
years ago {4]. The question has been revived recently [5-7] and work is being carried out on several new fronts
[8-10]. Among new results and ideas that we present in this article are an analysis of anharmonic alternatives to the
harmonic origins of the polaron which we discuss in the language of Stokes diagrams, an appropriate expression
for the so-called ‘logarithmically hard oscillator’ along with a distinction between it and the ‘logarithmically soft
oscillator’, and a discussion of self-trapping when the *oscillator” with which the quasiparticle interacts is extremely
nonlinear in that it has a vanishing frequency, i.e., is a free particle constrained in a box. The layout of this article is
as follows. In Section 2 we describe what we mean by polarons and explain what harmonic origins are of concern to
us here, in Section 3 we describe our method of attack and describe results for the so-called rotational polarons, in
Section 4 we comment on stationary states of these rotational polarons and mention other cases of anharmonicity.
and in Section 5 we touch upon current and planned work on the microscopic description of these effects.
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2. Polarons and their harmonic origins

A polaron is, by definition, a quasiparticle such as an electron, an exciton, a vibrational excitation, or a light inter-
stitial particle, e.g. a muon, in such strong interaction with osciliations, such as lattice vibrations or intramolecular
motions, that it displays unusual properties in its transport and other characteristics. Unusual properties of this kind
include dramatic features such as self-trapping and counterintuitive behavior such as an increase in the mobility with
increasing temperature. The physical picture accompanying these phenomena is that the quasiparticle ‘digs its own
well” as a result of its strong interactions with the oscillations, thus causing self-trapping. An increase in temperature
helps the quasiparticle to climb out of its well and thus to move more efficiently than at lower temperatures. This
is in contrast to the nonpolaronic situation wherein an increase in temperature results merely in greater scattering
through an increase in the oscillation amplitudes: the quasiparticle moves /less efficiently than at lower temperatures
[1-3]. Polaronic descriptions have been useful in a wide variety of materials and systems and continue to present
fascinating challenges to the theorist. The approach incorporating the Davydov soliton [11] is an example of such a
description. Dressing transformation approaches [ 12—14], the method of the discrete nonlinear Schrédinger equation
[4,15,16], and ‘numerically exact’” procedures [17,18] constitute other examples of polaronic descriptions.

In order to understand what harmonic origins are of interest to us here, it is best to state the basic Hamiltonian H
which describes the usual polaronic system studied. In standard notation which we will not describe here for want
of space,

1
H= Zemaxam + Z Vinayan + Zhwq (b;bq + E)
m m.n m
+ N2 " hay gy expliq - Ru)(bg + bt )atan. @2.1)

m.g

Essentially every standard polaron theory is built on the basis of (2.1). We draw the reader’s attention to the third
and fourth terms in the right-hand side of (2.1). The third term describes excitations of harmonic oscillators, i.e.,
oscillators in which the restoring force follows the (linear) Hooke’s law. The fourth term describes a quasiparticle—
oscillation interaction in which the site energy of the quasiparticle is modulated by an amount linear in the oscillation
amplitude. The question under investigation here is: what are the consequences of taking the oscillators to be not
Hookian, and/or the quasiparticle~oscillation interaction to be not linear in the oscillation amplitude. Our interest is
not in slight excursions from harmonicity or linearity, which can be easily addressed through perturbation methods,
but in qualitatively significant departures from traditional analyses of the polaron. The proper way of addressing
the question raised is at the microscopic level [8—10] described by the Hamiltonian (2.1). However, we will focus in
this article on studies based on the discrete nonlinear Schrodinger equation (DNLSE) [2,11,15,16], which has been
widely thought to be a consequence of (2.1) under two known approximations: the semiclassical approximation, and
the timescale disparity approximation. Our essential question can be understood graphically as follows. The standard
‘Stokes shift diagram’ shows the essence of the traditional polaron through the graphical fact that a straight line (linear
interaction) when added to a parabola (harmonic interaction) produces a parabola which is shifted (displacement of
the oscillator) and lowered (polaronic binding energy). Our present question can be stated pictorially (see Fig. 1)
as being related to the addition of a nonlinear curve to an anharmonic interaction. One instructive example is the
addition of a saturating interaction such as that represented by the hyperbolic tangent (of the oscillation amplitude)
to a saturating potential such as a hyperbolic secant. They reduce, respectively, to a straight line and a parabola for
small amplitudes. Another instructive example, and one which we will analyze below more in detail, is provided by
the addition of a sinusotdal interaction to a cosinusoidal potential. Graphical inspection of Fig. | already suggests
the possibility of saturation and indicates what may be expected from the analysis below.
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Fig. 1. Graphical depiction of anharmonicities and interactions.

3. Method of attack and rotational polarons

Consider for simplicity dispersionless (Einstein) oscillators of frequency w in (2.1). Under the semiclassical
assumption (the assumption that the oscillations may be treated classically). (2.1) leads to

., doy .
ih— = E VinCn + Eoxmei.
dr
n
\
dex,

? + Cszm + S|Cm|2 =0.
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where ¢, is the amplitude for the quasiparticle to be at site m, x,, is the (now classical) amplitude of the oscillation
at site m, and Eq and S are constants related to the coupling constant. Through an argument of timescale disparity
which allows one to neglect the first term in (3.2), (3.1) is often written as the DNLSE [15,16]

dep, B

ih =
dr

Z Vimnen — X Icmlzcmy (3.3)
n
where x is the nonlinearity parameter (the energy lowering due to polaronic effects) and is given by EoS Jw?.

‘We now pose our question at the level of description of (3.3): how is (3.3), along with its well-known consequences
such as self-trapping, modified when the oscillators in the system are not Hookian and/or the interaction with the
quasiparticle is not linear in the oscillation amplitude?

The last terms in (3.1) and (3.2) arise from the last term in (2.1). At a semimicroscopic level, the latter may be
represented by an interaction of the form

Emy cm) = Eoxmlem|?, (3.4)

which yields the respective terms in (3.1) and (3.2) through differentiation with respect to ¢,, and x,,, respectively.
There are two assumptions of linearity in the above standard procedure, both of which arise from a Taylor series
argument. The interaction term Eoxmlcm|? in (3.4) is linear in x,, and so is the restoring force in (3.2). We now
investigate the consequences of relaxing these linearity assumptions in the two terms. We are thus interested
in generally nonlinear restoring force f(x,) for the molecular oscillator and in generally nonlinear potentials
E (xm)|cm|? for the interaction between the oscillations and the quasiparticle.

Since no molecular oscillator is truly Hookian and no interaction energy is truly linear in the oscillator dis-
placement, it should be clear that our investigation has considerable physical relevance. Systems in which the
nonlinearities might be particularly interesting are the ones in which x,, is a rotation rather than a vibration. For
notational purposes in such rotational situations, we will denote it by an angle variable 6,,. The system could thus
be an electron/exciton moving among the sites m of a chain, there being a rotator (for instance a dipole) at each
site m whose angle from a fixed direction is 6,,. Periodicity in 6,, being essential at least at every interval of 27,
the nonlinear effects could be quite important for rotations which are not too small compared to 2. We replace
the standard Hooke’s linear restoring force by a general nonlinear force proportional to a function f(8,,) of the
rotational coordinate, and the standard linear interaction potential (2.4) by the general nonlinear potential

EOm, cm) = EGm)leml*. (3.5)

Egs. (3.1) and (3.2) are now generalized to

.. de

lh—d[ﬂ = Z VianCn + EOm)cm. (3.6)
29m 2, ' 2
dr2 + " f(Bn) + RE (6)lcm|” =0, (3.7)

where, for this rotational case, the constant R is essentially the reciprocal of the moment of inertia of the rotator.
The resulting generalization of the DNLSE (3.3) is

., dem

ih— = Z Viunen = h(lem*)em. (3.8)

where h(|c,,|?) is simply — E(6,,), the quantity 6,, being expressed as a function of |¢,,|> obtained as the solution
of f(6m) = —(R/&*)E' Om)lcm ™.
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With # = 1, (3.8) leads to the nonlinear Von Neumann equation
9210 SV — ) = Pl Ao — h(oun)] (3.9)
dr = ‘, ms Psn snPm s Pmn Pmn Pnn 3.

for the density matrix p. Eqs. (3.8) and (3.9) thus allow us to study the effect on polaronic evolution of restoring
forces and interaction potentials which are nonlinear in the rotational coordinate 6,,. Physically rich solutions can be
obtained immediately for a two-site system in which m, n take the values | and 2. Thus, p, the probability difference
of the quasiparticle occupation at the two sites, can be shown to obey a closed equation in terms of a quantity g(p)
defined. up to an arbitrary constant, through

dg(p)
dp

= h(py1) — hip2) (3.10)

and solved explicitly to display striking behavior [4-6]. We now examine the solutions for the simple case when
the restoring force f(¢) and interaction energy E(6) are simple sinusoidal functions of ¢:

sin{ Af)

: Ey
) = E®) = —A—sm(AH). 3.1
The limit A —— 0 gives the linear, harmonic, case, i.e., the standard polaron, with x = EéR/wz. Our interest is in
examining nonzero A. An important energy in this general case is

Eg

A= —, 312
A (3.12)

which describes (see (3.12)) the ceiling on the quasiparticle-oscillation interaction energy and will be seen below
to measure the (static) site energy lowering that every site in the crystal feels for high values of nonlinearity. In the
usual polaronic case, this saturation energy A is infinitely large. One immediately anticipates saturation effects. The
ratio of A to other key parameters such as x and V will be seen to play a crucial role in determining new aspects
of polaronic evolution.

The explicit form of the generalized DNLSE for the rotational polaron is

. .2
in L _ S Vinnen — Xlem| . (3.13)
¢ 4 VT+ (/8 cnl?

It reduces to the standard DNLSE (3.3) for small x/A but predicts substantially different transport features for
nonnegligible values of x/A. Thus, whereas increase in the nonlinearity x leads in the traditional case (3.3) to
merely stronger nonlinear effects, (3.13) shows that such increase leads first to stronger nonlinear effects but
eventually to a total disappearance of nonlinear features. Indeed, for large values of x /A, (3.13) reduces to a linear
equation which, unlike (3.3), exhibits no self-trapping whatsoever!

The function g(p) defined in (3.10) becomes, for the rotational case,

gp=A4 [\/(er D2 +(2A/x)2+\/(p- D?+QA/X)? =21+ (2A/x)2]. (3.14)

the arbitrary constant in g(p) having been chosen to make g(0) = 0. The dynamics of the rotational polaron can
be described graphically by plotting the effective dynamic potential U (p) obtained from (3.14) through

Up) =2V3(p* — pd) + Le(p) — g(po) 1> — 2Vrolg(p) — g(po)l. (3.15)

po being the initial value of the probability difference. For simplicity, we consider the initial condition of complete
localization at one of the two sites. We then have pg = 1. We have taken a fixed saturation energy A in Fig. 2. In
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Fig. 2. The dynamic potential U(p) showing graphically the occurrence and eventual disappearance of self-trapping on increasing
nonlinearity. A = 6V for all curves. The case x /2V = 2 shows free motion resulting from a low value of nonlinearity. A higher value of
nonlinearity. viz. x /2V = 6. shows the occurrence of self-trapping. A further increase in nonlinearity. x /2V = 12, shows the destruction
of self-trapping. By contrast. the results of the standard DNLSE would be to make self-trapping always more effective as nonlinearity is
increased.

units of 2V, itequals 3. Whether the motion is self-trapped or free is clear from the vertical location of the horizontal
line depicting the “constant energy” of the fictitious oscillator representing the evolution. If it lies always above
U (p). the motion is free. Otherwise, the motion is self-trapped, the intersection of the horizontal line with the U (p)
curve being indicative of the extent of values that the probability difference p can take. For small values of the
nonlinearity there is free motion as is clear from the y /2V = 2 case. An increase in the nonlinearity x results in
self-trapping as expected: the x /2V = 6 curve shows that the probability difference oscillates between 1 and about
0.6. The surprising new consequence of our analysis is evident from the x /2V = 12 curve. We see that a further
increase of nonlinearity frees the quasiparticle rather than self-trapping it more effectively, as would happen in the
DNLSE, i.e., in the limit that A/ x tends to infinity.

The above analysis addresses the time evolution of the dimer for given initial conditions. The stationary states of
the dimer also show interesting variation with nonlinearity which we describe in the following section.

4. Stationary state effects

We refer the reader to [6] for the details of the stationary state analysis. The general result valid for arbitrary
interaction nonlinearity and anharmonicity is that the stationary state probability differences are obtained as the
solutions of

d
2V, £ /1 —p>?—g(p)=0. 4.1)
dp

For the rotational polaron represented by (3.14), self-trapped stationary states are the solutions of
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=0 (4.2)

v 1—p2< L +p ~ - p )
X VI+ 62820+ p) T+ (/241 = p)?

with nonzero p. New effects such as the disappearance of self-trapping (as manifested in the stationary states) on
increasing the nonlinearity may be described through bifurcation diagrams of p versus x/V as in [4.6]. For small
values of the ratio x / V, the probability difference in the stationary state p is seen to be vanishing (no self-trapping)
until a critical value is reached, to bifurcate, giving equal and opposite values showing a localized stationary state
whose localization increases as x/V is increased, and then to drop off to zero again on reaching another critical
value of x/ V. signifying the eventual destruction of self-trapping.

An interesting question is whether the second critical value of x/V can. in a certain sense, be smaller than the
first critical value, i.e., whether a physical situation can occur in which self-trapped stationary states can cease to
exist for all values of x /V. An answer can indeed be given [6]. A stability analysis shows that at the self-trapping
transition, the quantity z = (x /2A)> must satisfy the cubic equation

:3+3z2+[3—(A/V)2]z+1 =0. 4.3)

The two real roots of (4.3) correspond, respectively, to the appearance and the disappearance of self-trapping
states. For large enough values of the saturation energy A, these roots always exist. However, as A becomes smaller,
the roots become identical to each other at a critical point and then become imaginary signifying the absence of
self-trapping stationary states independently of the value of x/ V. The critical condition for this novel prediction is
seen easily from (4.3) tobe (A/V)? < 27/4.

From standard polaronic treatment we have known that self-trapping is governed by the ratio of the polaron
binding energy to the quasiparticle bare bandwidth, roughly x/V. The present analysis shows that, for rotational
polarons of the kind considered here, the effect of this ratio can be superseded by that of the ratio of the saturation
energy (a new quantity introduced in this analysis) to the bandwidth, if the latter ratio is small enough. Physically,
this means that increases in the nonlinearity parameter do not succeed in overpowering the intersite motion of the
quasiparticle because of the ceiling determined by the saturation energy.

Rotational polarons are of interest generally in any system in which a quasiparticle (an electron, or electronic
or vibrational excitation) interacts with angular oscillations so strongly that the presence of the quasiparticle has
an appreciable effect on the equilibrium direction of the molecule. Liquid crystals [19], which consist of partially
ordered aggregates of molecules possessing directed shapes such as rods or discs, provide an example.

5. Ongoing work, microscopic evolution, and concluding remarks

The new effects we have described above for the rotational polaron, viz., saturation of nonlinearity. destruction
of self-trapped states, and occurrence of multiple stationary states, are neither particular to the specific similarities
in the coordinate dependence of the restoring force and the interaction energy exemplified in (3.11), nor even to
rotations. Indeed, it has recently been shown [7] that a linear quasiparticle-oscillation interaction along with the
anharmonicity represented by the oscillation potential 2

1
U(x)z;ka [(a—]x[)ln(l—%)—i—l_’cl] (5.1

> The potential (5.1) which leads to (5.2) and to the analysis of exponential saturation given in [7] was earlier written and plotted
as Ux) = (1/2)kal(a + |x]) In(1 + |x|/a) — |x|] as a result of a consistent sign error. This “logarithmically soft oscillator’ contains
physics different from the model presented in [7] which should be properly termed the “logarithmically hard oscillator”. The nature of
the transition is considerably altered by the sign change.
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will result in the generalized DNLSE

dc - wl?
d;n - ; VinnCn — xo[1 — € x/xoleml Jem (5.2)

ih

and to essentially all the effects described for the rotational polaron. A partial analysis of the general conditions
necessary in an arbitrary system for the occurrence of the saturation effects elucidated here has been carried out and
will be reported in a forthcoming publication [20].

While other ongoing work addresses these effects in extended systems and explicit consequences on the tem-
perature dependence of the mobility, we believe the most important issue at the moment to be the investigation of
what in the predicted effects survives when we refrain from making the semiclassical and the timescale disparity
assumptions. The effects described result from a generalization of the DNLSE. The microscopic validity of the
DNLSE, and generally of semiclassical constructs, has, however, come under strong criticism recently. Objections
to semiclassical equations of motion have existed for quite some time [21]. Recent work has made clear the pre-
cise sources of the shortcomings [17,22] and shown under what conditions semiclassical equations can provide a
reasonable description [18]. The domain of validity of the DNLSE as a consequence of (1.1) emerges, as a result
of this recent work, to be surprisingly (indeed alarmingly) small. It is, therefore, of obvious importance to study
which of the exciting consequences of the generalized DNLSEs explained above persist when the point of departure
is directly the appropriate generalizations of (1.1). A number of such studies have been carried out and others
are under way. One such investigation [9,10] addresses self-trapping from the two-site version of (1.1) when the
‘oscillator’ is a free particle constrained in a box of length L. A comparison is carried out between this case and the
harmonic oscillator case, taking L to be equal to #/Mw, where M is the oscillator mass. The latter is the value of
the displacement of the oscillator whose classical potential energy equals one quantum of vibrational energy. Clear
similarities in the two cases, as well as differences, have been found. Other work along these microscopic directions
has included a study of the fully quantum mechanical oscillator evolution for the rotational case [8] and attempts at
a generalization of the standard displaced oscillator (dressing) transformation [12]. It is hoped that a clear picture
will soon emerge.
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