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PHYSICA D 

What do polarons owe to their harmonic origins? 

Abstract 

Polaron (and related) soliton concepts are based on the assumption that quasiparticles are in linear interaction with harmonic 
oscillators. The discrete nonlinear Schriidinger equation and its semiclassical relatives are also based on this assumption. Study 
ofthe effects of nonlinearity in interaction. and anharmonicity in the restoring force of the oscillators. has led to notable results 
such as saturation of nonlinearities and counterintuitive pheonomena such as destruction of self-trapping on increasing the 
nonlinearity. We report on these and related results. The geneml aim of the investigation is to determine what polarona owe to 
their harmonic (and linear) origins and how a generalized conceptual framework may be built which includes known polaron 
physics as a subset. Copyright 0 1998 Elsevier Science B.V. 

K~,xwo~Y/\: Polarons: Anharmonicity: Nonlinearity in interaction 

1. Introduction 

The purpose of the present lecture/article is to delve into the interesting question as to what polnrons [ I-31 

owe to their harmonic origins. The first report of such work was presented at another conference in Greece eight 
years ago 141. The question has been revived recently [S-7] and work is being carried out on several new fronts 
[&IO]. Among new results and ideas that we present in this article are an analysis of anharmonic alternatives to the 
harmonic origins of the polaron which we discuss in the language of Stokes diagrams, an appropriate expression 
for the so-called ‘logarithmically hard oscillator’ along with a distinction between it and the ‘logarithmically soft 
oscillator’. and a discussion of self-trapping when the ‘oscillator’ with which the quasiparticle interacts is extremely 
nonlinear in that it has a vanishing frequency, i.e., is a free particle constrained in a box. The layout of this article is 
as follows. In Section 2 we describe what we mean by polarons and explain what harmonic origins are of concern to 
us here. in Section 3 we describe our method of attack and describe results for the so-called rotational polarons, in 
Section 4 we comment on stationary states of these rotational polarons and mention other cases of anharmonicity. 
and in Section 5 we touch upon current and planned work on the microscopic description of these effects. 
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2. Polarons and their harmonic origins 

A polaron is, by definition, a quasiparticle such as an electron, an exciton, a vibrational excitation, or a light inter- 
stitial particle, e.g. a muon, in such strong interaction with oscillations, such as lattice vibrations or intramolecular 
motions, that it displays unusual properties in its transport and other characteristics. Unusual properties of this kind 
include dramatic features such as self-trapping and counterintuitive behavior such as an increase in the mobility with 
increasing temperature. The physical picture accompanying these phenomena is that the quasiparticle ‘digs its own 
well’ as a result of its strong interactions with the oscillations, thus causing self-trapping. An increase in temperature 
helps the quasiparticle to climb out of its well and thus to move more efficiently than at lower temperatures. This 
is in contrast to the nonpolaronic situation wherein an increase in temperature results merely in greater scattering 
through an increase in the oscillation amplitudes: the quasiparticle moves less efficiently than at lower temperatures 
[l-3]. Polaronic descriptions have been useful in a wide variety of materials and systems and continue to present 
fascinating challenges to the theorist. The approach incorporating the Davydov soliton [ 111 is an example of such a 
description. Dressing transformation approaches [ 12-141, the method of the discrete nonlinear Schriidinger equation 
[4,15,16], and ‘numerically exact’ procedures [ 17,181 constitute other examples of polaronic descriptions. 

In order to understand what harmonic origins are of interest to us here, it is best to state the basic Hamiltonian H 
which describes the usual polaronic system studied. In standard notation which we will not describe here for want 
of space, 

H = c e,aiam + c Vmnaza, + 
M m,,7 

bqfb, +; 
> 

+ N-‘i2 c tzw,g, expliq . R,)(b, + b?y)aza,. (2.1) 
m.q 

Essentially every standard polaron theory is built on the basis of (2.1). We draw the reader’s attention to the third 
and fourth terms in the right-hand side of (2.1). The third term describes excitations of harmonic oscillators, i.e., 
oscillators in which the restoring force follows the (linear) Hooke’s law. The fourth term describes a quasiparticle- 
oscillation interaction in which the site energy of the quasiparticle is modulated by an amount linear in the oscillation 
amplitude. The question under investigation here is: what are the consequences of taking the oscillators to be not 
Hookian, and/or the quasiparticle-oscillation interaction to be not linear in the oscillation amplitude. Our interest is 
not in slight excursions from harmonicity or linearity, which can be easily addressed through perturbation methods, 
but in qualitatively significant departures from traditional analyses of the polaron. The proper way of addressing 
the question raised is at the microscopic level [8-IO] described by the Hamiltonian (2.1). However, we will focus in 
this article on studies based on the discrete nonlinear Schrodinger equation (DNLSE) [2,11,15,16], which has been 
widely thought to be a consequence of (2.1) under two known approximations: the semiclassical approximation, and 
the timescale disparity approximation. Our essential question can be understood graphically as follows. The standard 
‘Stokes shift diagram’ shows the essence of the traditional polaron through the graphical fact that a straight line (linear 
interaction) when added to a parabola (harmonic interaction) produces a parabola which is shifted (displacement of 
the oscillator) and lowered (polaronic binding energy). Our present question can be stated pictorially (see Fig. 1) 
as being related to the addition of a nonlinear curve to an anharmonic interaction. One instructive example is the 
addition of a saturating interaction such as that represented by the hyperbolic tangent (of the oscillation amplitude) 
to a saturating potential such as a hyperbolic secant. They reduce, respectively, to a straight line and a parabola for 
small amplitudes. Another instructive example, and one which we will analyze below more in detail. is provided by 
the addition of a sinusoidal interaction to a cosinusoidal potential. Graphical inspection of Fig. 1 already suggests 
the possibility of saturation and indicates what may be expected from the analysis below. 
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Fig. I, Graphical depiction of anharmonicities and interaction\ 

3. Method of attack and rotational polarons 

Consider for simplicity dispersionless (Einstein) oscillators of frequency w in (2. I ). Under the semiclassical 
assumption (the assumption that the oscillations may be treated classically). (2. I ) leads to 

C.3.l) V,nrd.,r + ~0-h cm . 
I1 

d’x,,, 
dr’ + A,, + Slc.,,,12 = 0. (3.2) 
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where cm is the amplitude for the quasiparticle to be at site m, x,,, is the (now classical) amplitude of the oscillation 
at site m, and Eo and S are constants related to the coupling constant. Through an argument of timescale disparity 
which allows one to neglect the first term in (3.2), (3.1) is often written as the DNLSE [ 15,161 

de, 
ij+- = 

c 
dt n 

Vmn(.n - xIGR12c,. (3.3) 

where x is the nonlinearity parameter (the energy lowering due to polaronic effects) and is given by EoS/o’. 
We now pose our question at the level of description of (3.3): how is (3.3), along with its well-known consequences 

such as self-trapping, modified when the oscillators in the system are not Hookian and/or the interaction with the 
quasiparticle is not linear in the oscillation amplitude? 

The last terms in (3.1) and (3.2) arise from the last term in (2.1). At a semimicroscopic level, the latter may be 
represented by an interaction of the form 

E(&?, 1 c,) = Egx, Ic, 12. (3.4) 

which yields the respective terms in (3.1) and (3.2) through differentiation with respect to c, and x,, respectively. 
There are two assumptions of linearity in the above standard procedure, both of which arise from a Taylor series 
argument. The interaction term Eox~/c~I~ in (3.4) is linear in xm and so is the restoring force in (3.2). We now 
investigate the consequences of relaxing these linearity assumptions in the two terms. We are thus interested 
in generally nonlinear restoring force f(x,) for the molecular oscillator and in generally nonlinear potentials 
E (x,) Jcm I2 for the interaction between the oscillations and the quasiparticle. 

Since no molecular oscillator is truly Hookian and no interaction energy is truly linear in the oscillator dis- 
placement, it should be clear that our investigation has considerable physical relevance. Systems in which the 
nonlinearities might be particularly interesting are the ones in which xm is a rotation rather than a vibration. For 
notational purposes in such rotational situations, we will denote it by an angle variable 8,. The system could thus 
be an electron/exciton moving among the sites m of a chain, there being a rotator (for instance a dipole) at each 
site m whose angle from a fixed direction is H,,. Periodicity in 0, being essential at least at every interval of 271, 
the nonlinear effects could be quite important for rotations which are not too small compared to 2n. We replace 
the standard Hooke’s linear restoring force by a general nonlinear force proportional to a function ,f(&) of the 
rotational coordinate, and the standard linear interaction potential (2.4) by the general nonlinear potential 

Eqs. 

E(&, c,) = E(em)lc, 12. 

(3.1) and (3.2) are now generalized to 

92% = C Vmnc,, + E(&)c,, 
n 

d2& 
dt2 + w’f’(&) + RE’(&)lcm I2 = 0, 

(3.5) 

(3.6) 

(3.7) 

where, for this rotational case, the constant R is essentially the reciprocal of the moment of inertia of the rotator. 
The resulting generalization of the DNLSE (3.3) is 

(3.8) 

where h( (c, j2) is simply -E(&), the quantity 0, being expressed as a function of (c, (’ obtained as the solution 
of ,f(&) = -(R/w2)E’(8,Jc,~2. 
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With W = I. (3.8) leads to the nonlinear Von Neumann equation 

(3.9) 

for the density matrix p. Eqs. (3.8) and (3.9) thus allow us to study the effect on polaronic evolution of restoring 
forces and interaction potentials which are nonlinear in the rotational coordinate H,. Physically rich solutions can be 
obtained immediately for a two-site system in which m, y1 take the values I and 2. Thus, p, the probability difference 
of the quasiparticle occupation at the two sites, can be shown to obey a closed equation in terms of a quantity ,q( p) 
defined. up to an arbitrary constant, through 

(3. IO) 

and solved explicitly to display striking behavior [4-6]. We now examine the solutions for the simple case when 
the restoring force j’(H) and interaction energy E(0) are simple sinusoidal functions of H: 

f(H) = 
sin( AH) 

A * 
E(H) = 2 sin(M). (3.1 I) 

The limit A -+ 0 gives the linear, harmonic, case, i.e., the standard polaron, with x = Ei R/w’. Our interest is in 
examining nonzero A. An important energy in this genera1 case is 

*,E! 
A' 

(3.12) 

which describes (see (3.12)) the ceiling on the quasiparticle-oscillation interaction energy and will be seen below 
to measure the (static) site energy lowering that every site in the crystal feels for high values of nonlinearity. In the 
usual polaronic case, this saturation energy A is infinitely large. One immediately anticipates saturation effects. The 
ratio of A to other key parameters such as x and V will be seen to play a crucial role in determining new aspects 
of polaronic evolution. 

The explicit form of the generalized DNLSE for the rotational polaron is 

dc,n 
ih- = c Vmn(.,7 - 

x km I2 
df ?I Jl + (x/A)*l~,l~ 

cm (3.13) 

It reduces to the standard DNLSE (3.3) for small x/A but predicts substantially different transport features for 
nonnegligible values of x/A. Thus, whereas increase in the nonlinearity x leads in the traditional case (3.3) to 
merely stronger nonlinear effects, (3.13) shows that such increase leads first to stronger nonlinear effects but 
eventually to a total disappearance of nonlinear features. Indeed, for large values of x/A. (3.13) reduces to a linear 
equation which, unlike (3.3) exhibits no self-trapping whatsoever! 

The function s(p) defined in (3.10) becomes, for the rotational case, 

S(P) = A 
[J 

(p + I)’ + GA/x) + (p - I )’ + (24/x)’ - 24+ 1 . (3.14) 

the arbitrary constant in g(p) having been chosen to make g(0) = 0. The dynamics of the rotational polaron can 
be described graphically by plotting the effective dynamic potential U(p) obtained from (3.14) through 

U(P) = ~V’(P’ - pi) + $[g(p) - tdpo)l* - 2VrokCp) - s(m)l. (3.15) 

p() being the initial value of the probability difference. For simplicity. we consider the initial condition of complete 
localization at one of the two sites. We then have i>u = 1. We have taken a fixed saturation energy A in Fig. 2. In 
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xl2V = 2 
Free (low nonlinearity) free (high nonlinearity) 

Fig. 2. The dynamic potential U(p) showing graphically the occurrence and eventual disappearance of self-trapping on increasing 

nonlinearity. A = 6V for all curves. The case x/2 V = 2 shows free motion resulting from a low value of nonlinearity. A higher value of 

nonlinearity. viz. x/2V = 6. shows the occurrence of self-trapping. A further increase in nonlinearity. x/2V = 12. shows the destruction 
of self-trapping. By contrast. the results of the standard DNLSE would be to make self-trapping always more effective as nonlinearity is 
increased. 

units of2 V, it equals 3. Whether the motion is self-trapped or free is clear from the vertical location of the horizontal 
line depicting the “constant energy” of the fictitious oscillator representing the evolution, If it lies always above 
U(J>). the motion is free. Otherwise, the motion is self-trapped, the intersection of the horizontal line with the U(p) 
curve being indicative of the extent of values that the probability difference p can take. For small values of the 
nonlinearity there is free motion as is clear from the x/2V = 2 case. An increase in the nonlinearity x results in 
self-trapping as expected: the x/2V = 6 curve shows that the probability difference oscillates between 1 and about 
0.6. The surprising new consequence of our analysis is evident from the x/2V = 12 curve. We see that a further 
increase of nonlinearityfrees the quasiparticle rather than self-trapping it more effectively, as would happen in the 
DNLSE, i.e., in the limit that A/x tends to infinity. 

The above analysis addresses the time evolution of the dimer for given initial conditions. The stationary states of 
the dimer also show interesting variation with nonlinearity which we describe in the following section. 

4. Stationary state effects 

We refer the reader to (61 for the details of the stationary state analysis. The general result valid for arbitrary 
interaction nonlinearity and anharmonicity is that the stationary state probability differences are obtained as the 
solutions of 

2v,, f 

For the rotational polaron represented by (3.14), self-trapped stationary states are the solutions of 

(4.1) 
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will result in the generalized DNLSE 

ih % = C V,,,, c,, - &)[I _ e-_(x/xoM~ km 
11 

(5.2) 

and to essentially all the effects described for the rotational polaron. A partial analysis of the general conditions 
necessary in an arbitrary system for the occurrence of the saturation effects elucidated here has been carried out and 
will be reported in a forthcoming publication [20]. 

While other ongoing work addresses these effects in extended systems and explicit consequences on the tem- 
perature dependence of the mobility, we believe the most important issue at the moment to be the investigation of 
what in the predicted effects survives when we refrain from making the semiclassical and the timescale disparity 
assumptions. The effects described result from a generalization of the DNLSE. The microscopic validity of the 
DNLSE, and generally of semiclassical constructs, has, however, come under strong criticism recently. Objections 
to semiclassical equations of motion have existed for quite some time [21]. Recent work has made clear the pre- 
cise sources of the shortcomings [ 17,221 and shown under what conditions semiclassical equations can provide a 
reasonable description [ 181. The domain of validity of the DNLSE as a consequence of (1.1) emerges, as a result 
of this recent work, to be surprisingly (indeed alarmingly) small. It is, therefore, of obvious importance to study 
which of the exciting consequences of the generalized DNLSEs explained above persist when the point of departure 
is directly the appropriate generalizations of (1.1). A number of such studies have been carried out and others 
are under way. One such investigation [9, IO] addresses self-trapping from the two-site version of (I. I) when the 
‘oscillator’ is a free particle constrained in a box of length L. A comparison is carried out between this case and the 
harmonic oscillator case, taking L to be equal to h/Mw, where M is the oscillator mass. The latter is the value of 
the displacement of the oscillator whose classical potential energy equals one quantum of vibrational energy. Clear 
similarities in the two cases, as well as differences, have been found. Other work along these microscopic directions 
has included a study of the fully quantum mechanical oscillator evolution for the rotational case [8] and attempts at 
a generalization of the standard displaced oscillator (dressing) transformation [ 121. It is hoped that a clear picture 
will soon emerge. 
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