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Nonlinear response theory: Transport coefficients for driving fields of arbitrary magnitude
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A theory of nonlinear response is developed for driving fields of arbitrary magnitude. Exact and usable
expressions are provided for electrical and thermal mobility, and related transport coefficients, in terms of
correlation functions of the system. A generalization into the nonlinear domain is provided of the Wiedemann-
Franz law connecting electrical and thermal response and of the Einstein relation relating the diffusion constant
and the mobility[S1063-651X97)08511-5

PACS numbg(s): 05.60:+w, 44.30+v, 66.10.Cb, 66.30-h

I. INTRODUCTION AND THE PRIMARY RESULT c(y)=ex U(y)/kT]exd — U(0)/kT] )

Until the middle of this century, the standard manner ofover the random potentidl. An equivalent expression for
calculating the response of a system to externally imposethe ensemble average is
fields consisted of attempting the solution of the full dynami-
cal equations of motion, such as the Liouville equation or the
Boltzmann equation, incorporating the external field into the
system Hamiltonian or evolution matrix. One of the great
simplifications introduced by Kubfi] and other§2—4] lies  \here| is the spatial extent of the system, taken to be infi-
in the possibility of the description of the effect of external hite in the limit.
fields in terms of a system’s own correlation functions. Thus, Equation(1) is our primary result. It shows that the mo-

if mobility is the property under investigation, one now cal- ity at arbitrary strength of the applied field is expressed in
culates merely the velocity autocorrelation function of theierms of a Laplace transform of the system correlation func-
system,without including the field in the Hamiltonian, and j5y The correlation function itself is to be calculated from
expresses the mobility in the linear response limit as the timeg, o system parameters in the absence of the external field,
integral of the autocorrelation function. This simplification, just as in linear-response theory. We will also derive related
conceptual as well as practical, is unfortunately present onlyeqits; specifically, expressions for the diffusion constant
in thelinear limit, i.e., for cases in which the external field is 514 for thermal transport coefficients. We introduce in Sec.
weak. The purpose of the present paper is to show that suGhihe | angevin equation for the particle as our starting point
a highly desirable feature can be obtained in nonlinear '®3nd indicate how Eq(1) may be obtained. Our derivation
sponse theory as well, in a well-defined and practical situaso|iows closely along the lines of previous Brownian motion
tion. . . . . analyses by Riskeft] and is similar to a study of a discrete
The system we flrst_ co_nS|der IS a cha_rged particle ofaster equation by Derrid®]. Our emphasis in the present
chargeq and massn moving in a one-dimensional space and paner is on the form of the result) and on exploiting that
subjected to a system potentld(x) and an external electric form as discussed above. In Sec. Ill we show a number of
field E. Our result for the nonlinear mobility, defined as  ¢onsequences of the mobility result for various realizations
the ratio of the particle velocity to the field, is of the correlatiorc(y) corresponding to stochastic as well as
deterministic systems. In Sec. IV we extend our formalism to
include thermal transport coefficients and comment on an

L
c(y)=lim (11L) ; dx g VeI UEyIKT 3

L—ow

ple)=—— Moo . (1)  interesting generalization of the Wiedemann-Franz law in the
6f dy e 9c(y) nonlinear regime. In Sec. V we analyze the diffusion con-
0 stant, present a generalization of the Einstein relation con-

necting the diffusion constant to mobility, and examine the

) ) ) ] diffusion constant for the examples considered in Sec. lll. In
He_ree is the ratiog E/KT of the electrlc_force on the partlcl_e Sec. VI we present concluding remarks, including a discus-
to its thermal energkT and has the dimensions of a recip- sion of applications such as to charge transport in molecu-

rocal length,y is the distance coordinate along the electric|arly doped polymer$7,8] and microwave interactions with
field, andc(y) is the system correlation function given by an ceramicg9,10.

ensemble averag@lenoted by an overbar

II. DERIVATION OF THE NONLINEAR RESPONSE

. . . FORMULA FOR THE MOBILITY
*Permanent address: Department of Physics, University of

Missouri—Rolla, Rolla, MO 654009. Our starting point is the Langevin equation governing the
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emy of Sciences, Warsaw, Poland. neous action of the applied electric field, the force due to a
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spatially varying potential in the system, and the temporally
random forceR(t), which represents the bath at temperature

T!

d2x+ dx+
Mae ™M™t

du

KZQE-FR(U.

(4)

Here v is the damping constant and the random fdr¢e) is
a Gaussian, stationary:-correlated stochastic process with
zero mean:

(R(t))=0, (RR(t'))= )

The strength of the correlatidnand the damping constamt
are related via the fluctuation-dissipation theorem

rot—t').

I'=2mykT. (6)

If the motion is highly damped to the extent that we can

neglect the inertial terrmd?x/dt?, we obtain

dx 1 dUu qE
at m—ya—m—y—f(t), (7
with
2kT
(&(1))=0, <§(t)§(t'))=m—y5(t—t')- (8
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kT/my

[ered ™

where the finite-space correlation functi@{L,y) is given
by

<v>:(1_e—qEL/kT)

)C(L y)
(13

1 (L U(x)—U(x+
C(L,y)zEJ’deex;{—W). (19
The mobility is thus given by
M:%:(l_e—qEUkT)
a/my
(15
(oo e

Equating L with the (macroscopit length of the sample
through which the particle moves, we can take formally the
limit that L becomes infinitely large and obtain our expres-
sion (1), wherec(y) in Eg. (2) is given by lim _.C(L,y)
and w.=qg/my is the well-known Drude expression ob-
tained in the absence of a potentldl In the presence of
disorder, i.e., when the system potentidlis random, the

The corresponding Fokker-Planck equation for the problimiting procedure involving.— o is obviously the same as

ability distribution P(x,t) of the position of the particle,
more commonly called the Smoluchowski equation, reads

)l

The average velocity of the particle, given &s(t))
= [dx(dx/dt)P(x,t), is obtained from Eq(7):

kT

ele o

my

P
o

du
dx

d

= 9

x|’

dU( ) gE

* iy (10

(v(t)}———fdx P(x,t) ———

In the stationary situatior?(x,t) loses its time dependence
and the Smoluchowski equatidf) reduces to

d
dx

dpP
E|P+kT——|.

ax (1))

du

dax
For calculational convenience, we will initially consider a
finite system of length. with periodic boundary conditions,
reserving the limil. — oo for systems where it is appropriate.
The linear equatioll) can then be solved by evaluating the

constants of integration from the normalization condition an
the periodicity ofP(x):

fLP(x)dx= 1, P(x+L)=P(x). (12
0

Substitution of the solution to Eq11) into Eq. (10) gives,
for the velocity of the particle,

the ensemble averadgsee the right-hand sides of Eq®)
and (3)].

IIl. CONSEQUENCES OF THE MOBILITY FORMULA

Several general conclusions follow immediately from Eq.
(1) with the help of Tauberian theorems. At high electric
fields, the mobility saturates to the valug. since
lim._.efody e “c(y)=limy_oc(y)=1. This is clear di-
rectly from Eq.(3). The field additiongEx to the potential
dominates, in this extreme, over the effects of the random
potential U(x) and thus leads to the Drude result with no
U(x). Graphically, the tilt produced in the potential by the
field overwhelms the relatively small corrugations that the
random potential contributes. At low fields, the linear-
response limit of the mobility is obtained @as, /c(°) since
lim._oefody € “c(y)=limy_.c(y)=c(»).  Typically,
the correlation functiorc(y) rises from the value 1 to a
saturation value higher than 1 gsncreases. We now con-
sider a simple deterministic example of the potertiék) as
well as several stochastic examples involving dichotomous
noise and examine, in their context, consequences of our

Gmoblhty formula (1).

A. Deterministic example: Sinusoidal potential

If the potential in which the particle moves is sinusoidal
with periodl, i.e.,U(x)=A cos(2mx/l), the evaluation of the
correlation function(14) is straightforward whenevdr is a
multiple of |. We expand the exponentials in terms of modi-
fied Bessel functions and write
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kT/mvyE
60 T T — _ ~—QqElKT
pe )f'd ek 22 sin ™Y
50 oyexp( gEy )Oﬁs'nl_
40 (18)
. is plotted as a function of the dimensionless field strength
Z 30 qEI/kT. In both figures we have set the amplitude of the
20 potential such thaf = 2kT.
10 B. Stochastic example: Single dichotomous potential
Let us assume that the potenti&(x) takes only two val-
0 ues separated byA?2 making discontinuous jumps at random
0 1 2 3 points along the one-dimensional space. Witha constant,
v/ we have
FIG. 1. Correlation functiorc(y) as a function of the dimen- UX)=Ug+n(x), 7(X)=A(— 1)nx0) (19

sionless position variablg/| for (a) the sinusoidal potentialb) the
dichotomous potential, an¢t) the Ornstein-Uhlenbeck potential. where the randomness of the functief{x) has been ex-
For each curve, the amplitude of the potential is adjusted so thatressed in terms of the random functioiix,,x;), which
A=2KT. See the text for definitions af and! for each potential.  counts the number of jumps the potential makes between the
valuesUy+ A andUy— A in the interval betweer=x; and
m (A} [A X=X,. We assume that the points of jump are distributed
ClL.y)= E (=% "NkT randomly and uniformly. It follows that

! 2mmx  2wn(x+ N(X>.X1) = | Xo— x4 /1, 20
x(l/l)fdx cos - cos - (x+y) (16) (X2,%1) =[Xa= X4 (20)
0

I I ’ . , .
where the “correlation length’l is the mean distance be-
where them,n summation is from-o to «. We expand the tween jumps. Furthermorey(x) =0 and the probability dis-
trigonometric product, employ standard summation formuladribution of n(x,0) is Poissonian. Explicitly, denoting(x,0)
involving cylindrical functions, and obtain the correlation Py N,

function p(n)=exp(—n)n"/n!. (21

2A
C(L,y)=|o<ﬁ sin Trl—y) =C(l,y). 17  The above-stz_ited properties _rmaxz,xl) al!ow a strz_aightfor-
ward calculation of the spatial correlation function for the

This correlation function is plotted in Fig. 1 as a function of dichotomous potentigl1 1]:

the dimensionless parametgt for several periods of the

e ) = A2exr — 2y, —
potential. In Fig. 2 the corresponding mobility expression K(x1.%2) = n(x1) n(xz) = A%expl = 2[x, =X,|/1). (22)

Equation (22) describes the correlation function of the

1.0 : | - potentialU(x). Our interest lies in the correlation function
| AKT=2 // | of the exponentialof the potential. The two-state nature of
o8 | @/ S b } the potential facilitates the calculation sincg(x)]%"=A2"
/ and[ 7(x)]>""1=A2"y(x). We notice that
£ [ ' |
<06 [ d . U(x)
3 / _ 7U /KT n
z o y § exp( T ) E (-1 (kT [7(0)]
204 ! —
E / 1 ~Ug /KT 77( )
7 =g Y0 COSHA/KT) — —— sinh(A/KT) ;.
02 -~ - .
= } (23)
0.0 | | |
107" 100 101 102 103 It is now straightforward to write the system correlation
field strength qQEVKT function
FIG. 2. Mobility, normalized to the infinite-field value, as a U(x) U(x+y)
function of the dimensionless field strengtkl/k T for (a) the sinu- c(y)=exg — KT KT

soidal potential(b) the dichotomous potential, arid) the Ornstein-

Uhlenbeck potential. For each curve, the amplitude of the potential =cosif(A/KT)—e YsinkP(A/KT) (24
is adjusted so that =2kT, as in Fig. 1. See the text for definitions

of A andlI for each potential. and the final expression for the mobility
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,Ufoo
m= o 2kT\ "1 2 @9 N E N
cost(ANKT) | 1+ Ty | sinfF(ANT) pmpe 11 Cosﬁ<k_+) 143, (-
We see that the mobility equalg../costf(A/KT) for low
fields(linear responserises algebraically from this value for K Al 1
moderate fields, and saturatesug for high fields. A plot of 1 tanh’-( i)
the correlation function for the dichotomous potential ap- n=1 kT
pears in Fig. 1 as a function of the dimensionless distgiice X K . (32

11<io<---<iy

for A=2kT. The mobility corresponding to this appears in
Fig. 2 as a function of the dimensionless field parameter
gEI/KT.

1+(2kT/qE) >, 1,
n=1 n

Itis clear that Eq(32) reduces to Eq25) for N=1. If we
C. Stochastic example: Sum of dichotomous potentials consider the sum of many dichotomous potentials all with
the sameA; (each equal ta\/\/N) and the samé; (each
quual tol), we get, in the limitN—«, an Ornstein-
Uhlenbeck process. The expression for the correlation func-
tion c(y) for finite N is

Generalization of the above case to a potential with man
differing A’s andl’s can be carried out as follows. The total
potential is now a finite sum dfl independent dichotomous
potentials

U(X) = 72(X) + 72(X) + -+ + np(X), (26) N @3

c(y)=| cosit

A A
| —a 2y R
kT\/N) e S|nl'12( kT\/N>

In the limit N—c we obtain the result for the Ornstein-
Uhlenbeck potential

where then;(x) obey

(7i(x))=0, (7i(X1) 7;(x2))= 5iinzeXF{ -2 |X1;X2|

(27)

We can use, as previously, the fact that for a single system _ _
This form (34) for the correlation function may also be ob-

P2"()=A" )= A" (X) (28)  tained directly from the fact that the Ornstein-Uhlenbeck
process is Gaussian.
Performing the Laplace transform of E@4), we obtain
the mobility expression

c(y)=exd (A/kT)2(1—e )], (39

and obtain

N
e~ UO/KTZ e—UO/kTH exp( _ ’7;((_:_()) 2kT/gEl
1l =u. ,
'N R (A TKT) ~ @ETRT (A2 (G EL/2K T, (A/KT)2)
(x (35
=e Yo/ (cosh‘ii— m; ) sinha‘i), (29
1l _
' ' where y(a,X) is the incomplete gamma functignot to be
with 8= A. /kT. Eurthermore confused with the damping constapin Eq. (4)]
] 1 - 3
—U(X)/KTQU(x+y)/KT X
e T 'y(a,x)=J e tte1dt, (36)
0
N
1
= Il;[l {COSH& = 7i(X) ;i (X+y) 525"“”? oi Equation(35) can also be expressed simply in terms; bf,
! the confluent hypergeometric functipb4]:
1
+ 5 sinhs;coshs; (7;(x+y) — ﬂi(X))] . (30 e
I

K= F1(1,1+ (QEN2KT),(A/KT)?)"
Since they; are independent with zero mean, we obtain the
correlation function as given by A plot of the correlation function for the Ornstein-
Uhlenbeck potential appears in Fig. 1 as a function of the
dimensionless distangd| for A=2kT. The mobility corre-
N sponding to this appears in Fig. 2 as a function of the dimen-
=H 1+(1—e‘2y”i)sinhz(ﬁ”. (31) sionless field parameteyEI/kT. Intermediate results corre-
=1 KT sponding to a continuous manifold of possible correlation
lengthsl lead to interesting consequences, which will be re-
The field dependence of the mobility is given as ported elsewhergl2].

c(y) — <e7U(x)/kTeU(x+y)/kT>
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IV. EXTENSION OF THE FORMALISM FOR THERMAL where by L, we mean the linear-response Lorenz ratio

RESPONSE (k/g)?. The multiplicative correction factor that our theory

It is straightforward to extend this formalism of nonlinear produces for nonlinear response involves t.he Laplace trans-
form of the correlation functior(y) at two different values

response to treat thermal stimuli. Let us consider the case o . ,
a constant applied thermal gradient, the response under Of the Laplace variableT"/T andqE/KkT. A powerful scal-

du
dx

P 9
gt ax

investigation being the thermal current. Equati®his now ing statement can be made, in addition, for a nonlinear re-
k P

P+ ——(To+xT') —
my X function of qE/KT are identical to each other except for a

sponse: The thermal mobility for arbitrary values of tempera-
1 ture gradient plotted as a function ©f/T and the electrical
(m— , (37 mobility for arbitrary values of electric field plotted as a
Y
where T, is the temperature at one end of the sample. Wemulnpllcatlve factor thgt IS a universal constadg. . L
. . In the general case in which thermal and electrical stimuli
rewrite this as : .
are simultaneously present, the Fokker-Planck equation takes

P d ( L\(du ], T) 7P a8 the form
at  ax|\my/\dx my/ ax*’ gP g [[ 1)(duU E+kT,)P . kT\ ¢°P
ot ax|lmy/ldx @ my| axz

T being the temperatur&,+xT’, and compare it to the

alternative form (42)

The counterpart of Eq13) for this case in the limit — is

gP 9 [[ 1)(dU Elp KT\ #2P a9 then
o \my/\ax 9P Ty e 89
B kT/my
of Eqg. (9). We see that E(q.38) differs from Eq.(39) only in (v)=— qe T’ ' (43
the substitution of the electric forcgE by the “thermal fo dy exg -y KT T c(y)

force” —kT'. If we consider the sample length to be taken

small enough to ensure that the variationTofs negligible,  yhich results in the well-known general transport relations

we can immediately write an expression for the thermal MO%onnecting electrical and thermal transpésee, e.g., Ref.
bility u, defined as the ratio of the velocity of the carrier [13)). ’ '

carrying the thermal current to the temperature gradiént

. q
k/ym =Q?KoE— =K, T, (44)
Mth(ﬂz#- (40) Jerm o=
mfody € 7c(y)
1
As expected, the expressio#0) for the thermal mobility Jth=0K.E— ?KzT', (45
is nearly identical to the expressio¢h) for the electrical mo-
bility. The differences are the appearance of the Boltzmanfyhere thek’s are given by
constantk in place of the carrier chargg and the replace-
ment ofe=qE/KT by 7=T'/T as the Laplace variable in the No nokT No(kT)?

transform expressions. Ko
Being valid in the nonlinear domain, our theory allows an
interesting generalization of the well-known Wiedemann-
Franz law valid for electric fields and temperature gradientHere the Laplace variable is=qE/kT—T'/T. In Egs.(44)
of arbitrary magnitude. The Wiedemann-Franz law stategind(45) we have fully nonlinear expressions for the electric
[13] that the ratio of the thermal conductivity=nkTu, 10 and thermal currents. However, simple proportionality rela-
the product of the temperatufie and the electrical conduc- tions exist between the nonlinear transport coefficidtys
tivity o=nqu is a universal constartknown as the Lorenz K,, andK,. In the so-called Seebeck effect, open current
ratio) provided that the electric current and the thermal curijrcuit conditions are maintained4=0), which means that
rent are carried by the same particles. That law is normally, vanishes. The’s then have their linear limiting values
stated only in the limit of a linear response. Our theory al-and the thermoelectric power, the ratio of the electric field to
lows us to extend it to the entire nonlinear domain. We Seéghe temperature gradient, is S|mp{m In the Peltier effect,
that it is obeyed not only for small fields and gradients sincehe temperature gradient is maintained zero. Kfedo not
(M) (lim,_ox/lim._o0) equals a universal constant have their linear limiting values, but the ratio of the thermal
(k/g)?, but also at very high fields and gradients sincecurrent to the electric current, known as the Peltier coeffi-
(Am)(lim,_.«/lim,_..o) also equals K/q)®. The law, in  cient, iskT/q and thus the Kelvin relation of thermoelectric-
the form known in linear-response theory, is, however, nofty [13], viz., that the Peltier coefficient equals the absolute
obeyed at intermediate values of fields and gradients. Genefemperature times the thermoelectric power, holds in this
ally, the Lorenz ratio is found to be nonlinear domain we treat. We have given here a simple
- classical analysis that does not introduce factors suet’&s
K ( qE) c(T'/T) (a1) that arise from a treatment that includes Fermi-Dirac statis-

=7 m'—o: tics for the carriers.

Tmygc(e) Y mygtle) 2 mygcle)
(46)
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V. DERIVATION OF THE NONLINEAR RESPONSE 1d

FORMULA FOR THE DIFFUSION CONSTANT D=lim > &[(xz(t»—(x(t))z] (52
t—o

In Sec. Il the Fokker-Planck equation for the probability
distribution P(x,t) was obtained and used to determine the 1 ) )
velocity and mobility of a particle moving in response to a _ . ;L _
driving force of arbitrary magnitude. In this section we are _,BTy[l fo A(U"—qE)7 dx Bmy(v)fo 4 dx}.
interested in obtaining an expression for the diffusion con- (53
stant that is valid under the same conditions. To this end, we
adapt a calculation given by Derridl@] for a discrete chain To determine the function(x), we first take the time de-
of hopping sites to that of a particle moving in a continuousrivative of Eq.(49), and use Eq(9) to obtain
random potential.

Thus we now consider our system potentigx), origi-

nally defined on a section of length, to be periodically d—azﬁxg— L [ﬂ(u'—qE)p(X,t)+2&p(X't)},
repeated throughout all space. The result of this construction dt pmy 20
is an infinite sample with a periodic system potentiglx) (54)

=U(x+L), but a constant driving forcgE of arbitrary e , . .
magnitude. The probability densif§(x,t) for the system is Wherep(x,_t)—Ek:_wP_(erkL,t) is another s_pat|_ally pert-
odic function whose integral over one period is equal to

now normalized over the entire real line, but still obeys theunity and whose equation of motion is easily shown to be the
Fokker-Planck equatiof®), which we can write compactl : :
d © PACY " same Fokker-Planck equation B$x,t). In fact, for equiva-

In the formdP/dt=L£,P, thereby implicitly defining the dif- lent initial conditions, the periodic functiop(x,t) and the

ferential operatorZ, . o . : :
For this system it is then possible to express the particle’ _erlo_d|c probability densitP(x,t) of Sec. Il must _be iden-
ical insofar as they obey the same normalization and the

velocity same equations of motion. Thus, at long timpéx,t) ap-
proaches a stationary limit which just turns out to be the

d * function po(x) introduced in Eq(50). To see this, substitute

E<X(t)>_ dt fﬁme(x,t)dx (47) Eg. (50) into Eqg.(54) and equate powers ¢f obtaining two

independent relations. The first relation confirms tpgt
d L= L 96 obeys the same stationarity conditiopg/dt=L,p,=0 as
:_f > (x+KL)P(x+ kL,t)dx=f —dx the function p(x,t) at long times. This latter equation is
dt Jo k=== o ot equivalent to the steady-state continuity equation for the con-
(48)  stant current density

in terms of a spatially periodic function
(v 1 (U'—qE) (Xt)+3P0(X,t)
sut)= S (x+KL)P(x+KLt) (49) (59
k=—o
The second relation stemming from the aforementioned pro-

of periodL. Note that at long times, Eq47) must approach cedure yields the differential equation
the steady-state drift velocity ), implying that

Lyr= [B(U"=qE)po+2pol+(v)po=4" (56)

1
a(X,t) = po(X){v)t+ 7(x), (50) Bmy
wherepy(x) andr(x) are time-independent but spatially pe- obeyed by the functiom(x). In Eq. (56) we have expressed
riodic functions, with the integral of, over one period be- the right-hand side as the derivative of a new periodic func-
ing equal to unity. By writing an equation similar to B4.7)  tion ¢(x). Using Eq.(55) to integrate Eq(56) and invoking
for (x2(t)), using the Fokker-Planck equati@®), integrat-  the periodicity ofys and py, we find that
ing it by parts, and performing a manipulation similar to that
in Eq. (48), it is straightforward to relate-(x,t) to the time

rate of change of the second moment as well. We find that P(X)= ”’BO(X) + % dey Ypo(X+Y)+N\, (57)
my 0
4 ety 2 2 f "B —qE)o(x.)dx where) is independent k. With y(x) determined, Eq(56)
dt Bmy pmy Jo gives an inhomogeneous equation f@K), the periodic so-

(51 lution to which is

where the prime denotes differentiation with respect.to

Combining Egs.(47)—(51), the diffusion constanD is m(X)= —,B_my_ fLefﬁqugz,(XjLy)efﬁ[U(x%u(xw)]dy_
then simply expressible in terms of the periodic function 1—-e FIEL Jg
7(x) introduced in Eq(50): (58)
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Moreover, from Eg. (56) we find that g(U'—qE)7
=pBmyy— 7', which allows Eq.(53) to be written as

D=

1
Bmy [1 ,Bm)/J P(X)dx— Bmy{v)f r(x)dx|.
(59
Using Eq.(58), the last integral of Eq59) can be rewritten
in the form

i

de=—mj dxf dy e PIEYy(x+y)

X @~ BUN~U(x+Y)]

pmy L
=T {_e PIEL Jo dx w(X) (x). (60)
Here we have introduced the periodic function
M(X):dey g BAEYe—AlU(—Y)~U(X)] (61)
0
whose integral
fL L BAEL
X)dx=———[1—e" 62
. m(X) Bmy<v>[ 1 (62)

follows from Egs.(61) and(13). To obtain Eq(60) we have
broken the original integral ovex up into two parts, one
from O to L—y and the other fromL—y to L; changed
variables(to z=x+Y in the first,z=x+y—L in the seconyg
used periodicity; and recombined the resulting integrals.
With Egs. (57), (60), (61), and(62), Eq. (59) finally re-
duces to a relatively simple expression of the form

D=Dy—AD, (63
where
v L
Do_m OM(X)Po(X)dX (64)
and
L m 2
ap=E - PTYCE = [Fax[Cay woopoocs iy

(65)

These expressions require the definitionugk) from Eq.
(61) and the stationary probability density

Bmy

() [+
pO(X):W‘ T f AU@-UEtN]4Z  (66)

which follows from a straightforward integration of the con-
tinuity equationdpg/dt= L,po=3dj/Ix=0, with j=(v)/L.

Equationg63)—(65) can be used to obtain the diffusion con-
stant for an arbitrary periodic potentidi(x). In the limit of
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an infinitely long sample, these expressions simplify and can
be expressed in terms of correlation functions similar to
those that appear in the mobility. To see this, we substitute
Egs.(66) and(61) into Egs.(64) and(65) and take the limit
L—oo. For Dy, this leads to the relation

Do=(v) f:w)po(x)dx

=ﬂmy<v)2fo dzfO dz' e PIEE+)e(z2+7'), (67)

where c(y)=lim__.C(L,y) is the same function that ap-
pears in the mobilitysee Eq(1)]. Since the integrand of Eq.
(67) depends only on the combinatiarn-z', we can change
variables on the double integral tp=z+2z' and x=(z
—2")/2, withy going from 0 tox andx ranging from—y to
+vy. After performing thex integration, we obtain

Do=ﬂmv<v>zfo dy e PiE¥c(y)

(v)? 9

- Bq JE (68

.y p—I
0

where the term in square brackets can be identified from Eq.
(13) as the correspondirig— limit of 1/{v). Thus we find
that, in this limit, we can write

1 v)

Do= Bq JE (69
Equation (69) constitutes a generalization of the standard
Einstein relatiorD = (v )/ BqE appropriate to linear-response
theory.

Before inserting Eq966) and(61) into Eq.(65) to obtain
a similar expression foAD, it is convenient to first rewrite
that expression using an identity

L L L

|Caz] ax| dy yootx+yyca
0 0 0
L2

L )
2t

(70

that follows from Eq.62). A little manipulation allows us to
use this relation to combine the two terms on the right-hand
side of Eq.(65) into the form

| a2 ax] ay y poox+y)

X[1(2) = u(x)].

Bmy(v)* 1
AD— 1_e PIEL | 2
(72)

Substituting Eqs(61) and (66) into this last expression and
taking L—c0, we obtain
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AD=(,8my)2<v>3J dwf dz e PaBwe~ AaEZG(w,z), 2 ' ' '
0 0
(72) X - AKT =2
where o
§
1 L £ 1
G(w,z)=lim - fo dy ylc(w)c(z) —cq(z,w,y) ], ©
Lo S
(73 é
. . . . . (=]
in which c(y) is given by Eq.(2) and the four-point corre-
lation functionc,(z,w,y) is defined through the relation o , -
1 (L 107 10° 10 102 108
c4(z,w,y)= lim EJ dxeBlUxty+w)—U(x+y) +U(x)-U(x=2)] field strength qEVKT
Lo 0
FIG. 3. Diffusion constant, normalized to the infinite-field value,
= gPLUyTW)=U(y) +U0)~U(=2)], (74 as a function of the dimensionless field streng®l/kT for (a) the

. B . sinusoidal potential(b) the dichotomous potential, an@) the
Just as the electrical mobility, the thermal mobility, and omstein-Uhlenbeck potential. For each curve, the amplitude of the
the cross-transport coefficienks can be found respectively potential is adjusted so that=2kT, as in Fig. 1. See the text for
from Egs. (15), (40), and (46) in terms of the correlation definitions ofA andl for each potential. The two contributioii,
c(y) given in Eg.(2), the diffusion constant can now be and AD to the diffusion constant for the sinusoidal potential are
calculated explictly through Eqs63), (69), and (72) in included as dotted lines.
terms of the correlation functiorigy) andc,(y) in Eq. (74).
We now apply these expressions to study the diffusion con-
stant for the deterministic sinusoidal potential and the sto-
chastic models treated in Sec. lll. In each of these systems
we can takd.—oo but keep the periodl, in the case of the
sinusoidal potential, and the correlation length, in the case ovthereC(y)=14(26 sinmy/l) and
a stochastic potential, finite. In this limit the contribution to 5
the diffusion constant arising from is given by Eq.(69) _“
and reduces at low fields to the standard Einstein relation. In |(zw)= 12 foy Ca(zw,y)dy
what follows we consider deviations from this generalized ) ,
Einstein relation as represented by E(&) and (73). _ KN -
For the sinusoidal potential of Sec. lll A, it is possible to -~ (2m)? fo y Cazw.y)dy. (76)
break the integral in Eq73) into intervals of length equal to
the periodl of the potential, change variables in each to aln this last expression we have introduced the reduced nota-
single fundamental period, and show that, for this case, tion y=2=y/l, with similar definitions for the quantities,
1 W, andz, to appear below. Also, in Ed76), C,(y) is the
_= _ finite length L=1) version of the correlation functio(v4).
Gw.2)=; Jody ACEWIC(2) = Ca(zw.y)] With 5=A/KT we have

I

2 PO " a N PN
C4(z,w,y)=% f Trd’)‘( e5cos{x+y+w)e—5cos{x+y)eﬁcos(x)eﬁcos{x—z)
0
1 (2r
— J d’)\( e—2é‘ S|n(W/2)S|r(x+y+w/2)e—26 sin(z/2)sin(x—z/2)
2 0

:i fzwdg( g2 sin(ﬁv/2)cos(§<+9+W/2)e—25sin(”y2>cos(>‘<—”yz>
2 0
" R 1 27 .
=D (=1)""M (25 sinW/2)I (26 sin 2/2) — f dx h(%), 77
n,m 2 0

where them,n sums are betweer « andh(X) = exp{i[n(Xx+y-+wW/2)—m(Xx—2/2)]}. The last integral
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1 27 oA
. 3 Ty — infy+(w+2z)/2]
27 ) dx h(X)= 6y ne (78
is easily evaluated, giving
Ca(zW,y) =2, Cy(W)Cy(2)eny+ (w212, (79
n

whereC,(W)=1,(24 sinv/2). With Eqg.(79), we can perform the integral in E¢76) to obtain

zw= 3 L\g)wcﬁexp{in[(\fv+2)/2]}fozw§/ei”§’d§/ (80)
.2 o
=Co(W)Co(D)+ — 21 n~1C,(W)C(2)sin n(W+2)/2], (81)

where we have expanded the exponential into its real and imaginary parts and noted that the imaginary parts for positive and
negativen>0 cancel. Thus we find that

I
G(W,2)= 5[Co(W)Co(2) ~ 1 (z,W)]
_ '; S, n iC,WIC,@sin niv+ 2], (82

This allows us to write

AD=(,8m7)2<v>3fmdwfmdz g PaEwe~ BAEZG (W, 2)
0 0

2 3 * o o0
:_(Bm77)7<v> ' D n_lj de dz e PIAEWe=BIEZC (W) C,(2)sinn(W+2)/2]. (83
n=1 0 0

Breaking the trigonometric function up, the resulting double 1 (o . -
integral factors to give Bn=7 fo dwe™ PIEVC, (W)sin nW/2]
1 1 (2= 2A
2(Bmy)3(v)31® & = — — f dg e PaEIdIm| (— sine)sin(na).
ap= - 2PMYHe) 77)T< ) nlAB,, (84 1-e P 7 Jg "\ kT
n=1
(86)
where Thus, for the sinusoidal potential the diffusion constant de-
viates from the generalized Einstein relati@®) by a non-
1 (= zero amount that may be evaluated as a function of the field
Anzl_ f dwe BIEVC (W)cog nW/2] using Egs.(84)—(86). In Fig. 3, Dy, |AD|, and D=D,
0 —AD are plotted as functions of the dimensionless field
1 1 (2= 2A strengthg EI/KT for the sinusoidal potential with =2KkT.
= T o 7FE jo do e—,B’qut‘ilvqn(ﬁ sina) cogné) For the stochastic models investigated in Sec. llIl, by con-

trast, we find thatAD vanishes identically, so that the total
(85) diffusion constanD as a function of the applied field obeys
the generalized Einstein relatigf9). To see this, we first
observe that thea-point correlation function for a single di-
and chotomous potential has the property that
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Kmn(X15 o Xm—2:Xm—1,Xm) = 7(X1) * ** 7(Xm—2) 7(Xm—1) 7(Xm) = Ky 2(X1, - X 2) K(Xiy— 1, Xmn) s (87)

|
wheneverx; <- - <Xq_»><Xm-1<Xm. In particular, all odd P(N1,...nm) =P(N1,..c N 1N P(Np). (89)

correlation functions vanish and all even ones factorize into
products of two-point correlation functions. Indeed, we havewherep(n,...,n,_1|ny,) is the conditional probability. But
from the independence of the individual jumps, we can write

Km(xla---yxm—ZiXm—lem)

p(nl’---1nm71|nm):p(nla---1nm72)p(nmfllnm)v

=A™ > (=1)MT T mp(ng,...nm), (89
ny,... Nm
. .. - . p(nmfl|nm):p(nm_nm—1)- (91
where p(nq,...,n,) is the joint probability distribution of
havingn; jumps between 0 ank, i=1,...m. Obviously, Hence
|
Km(Xl,...,Xm,Z,Xm,l,Xm):Am72 2 (_l)nl+...+nm_2p(n11"'vnm72)A2
Ny,....Nm—2
X 2 (=)™ mp(ng =N 1) P(Ni)
m—1:"m
=Km_2(X1,...,Xm_2)A22 (_1)np(n)p(nm)=Km—2(xla---va—Z)K(Xm—lem)v (92

n,Np,

where we have introduced the simplified notatios ny,
—n,,_1 and used Eq(22).

From the definition(74) and (23) we have, for a single
dichotomous potential,

c4(z,w,y)=cosH(A/kT)+e 2Ve~2Z!sintf(A/KT)
+(672(y+w)ll_e72(y+w+z)ll_e72y/I
+e7 2072 cost(A/KT)sinl?(A/KT)
:C(W)C(Z)_’_e*Zy/l(e*ZW/l_e72(W+Z)/|_1
+e 2 cosH(A/KT)sintP(A/KT). (93

Consequently,
G(W,Z) — (672W/| _ e72(W+Z)/| -1

_ Ay o LAY
+e 2”')cosi‘?<ﬁ_)smhz(ﬁ) lim

L—o

JLy e 2y
0

=0. (94)

It is clear from this result tha®G(w,z) also vanishes for

Ornstein-Uhlenbeck potentials is plotted as a function of the
dimensionless field strengttEI/KT for A=2kT, as in Figs.
1 and 2.

VI. REMARKS

We have presented a usable nonlinear-response theory
valid for a one-dimensional system of independent classical
carriers moving in a potential and subjected to an externally
imposed driving agency that can be mechanical such as an
electric field or thermal such as a temperature gradient. We
have given expressions for the electrical and thermal mobil-
ity, for cross-transport coefficients that appear in Onsager
relations, and for the diffusion constant, which can be evalu-
ated explicitly for given potentials. We have generalized the
Wiedemann-Franz law and shown that the Einstein relation
connecting the diffusion constant and the mobility may also
be generalized to give a part of the diffusion constant. For
the stochastic examples considered, that part has been shown
to be the entire diffusion constant. We suspect that this will
also be the case for many other random potentials in which
the autocorrelation function decays rapidly with distance, in-
cluding most of those that arise in physical applicatipi.

any potential constructed as a sum of independent dichotdA/e have evaluated the various transport coefficients for sev-
mous potentials and for the limiting case of the Ornstein-eral stated forms of the potential including one deterministic
Uhlenbeck process. The diffusion constant is thus given ircase(the sinusoidal potentialand several stochastic cases
its entirety for these stochastic models by the generalize@ichotomous noige

Einstein relation69). In Fig. 3 the field-dependent diffusion As stated in Sec. |, our response theory shares with the
constant predicted by Eq69) for the dichotomous and Kubo formalism[1,2] the feature that transport coefficients
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are obtained directly from the system correlation functions inin microwave interactions with cerami€8,10], but the for-
the absence of the external fields, but goes beyond that fomalism has general validity.

malism in that, while exact, our theory addresses external

fields of arbitrary magnitude. The correlation functions in ACKNOWLEDGMENTS
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