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A simple technique for solving the Torrey–Bloch equations ap- in unconfined geometry. We obtain an expression for the
pearing in the calculation of the NMR signal under gradient fields signal which contains explicit information about the initial
is presented. It is applicable to arbitrary time dependence of the distribution of spins and show that it reduces to well-known
gradient field to arbitrary initial distribution of spins, and to spin expressions in particular cases. For instance, we show that
motion on discrete lattices as well as in the continuum under the contribution of the initial spin distribution factor cancels
conditions of unrestricted diffusion. Known results are recovered

for a bipolar pulse experiment such as the usual Stejskal–as particular cases and new results are presented. The discrete
Tanner diffusion experiment. We apply our result to rela-lattice results are shown to be similar to known results for re-
tively new situations such as a slow turn-on of the gradient,stricted diffusion in the continuum. Also presented is a surprising
sinusoidal gradient, and also calculate the time dependenceequivalence between results for a simple two-site hopping model
of the signal that would arise in nonstandard experimentsand earlier expressions for the NMR signal for spins undergoing

restricted diffusion in a continuum. q 1997 Academic Press which would be sensitive to nonuniform initial magnetiza-
tion density such as the Gaussian and the square distribution.
We give a generalization of our transformation technique to
spin motion in discrete space as among Wannier states in a1. INTRODUCTION
lattice and examine particular cases of our result. Finally,
we analyze confined systems through an exact solution of aThere has been a recent revival of interest in pulsed gradi-
representative two-state system which we find, surprisingly,ent and constant gradient NMR studies of nuclear spins in
to be completely equivalent, or simply related, to earlierunconfined as well as confined geometries. The aims of these
analysis (5–7) .studies are varied. The externally applied gradient can pro-

vide information about the diffusion coefficient. Alterna-
2. EXACT SOLUTIONS IN THE CONTINUUMtively, if the diffusion coefficient is known, one may obtain

information about the confinement of the diffusing particles
The Torrey–Bloch equation for the magnetization density(1) . Externally applied gradients have also been used to

M(r , t) arising from spins diffusing with diffusion coeffi-provide useful diffusion-related contrast in magnetic reso-
cient D and an arbitrary time-dependent linear gradient fieldnance imaging (1–4) .
is (8)The purpose of this paper is to present some alternative

methods of solving the Torrey–Bloch equations in order to
derive expressions for the NMR signal containing explicit ÌM(r , t)

Ìt
Å 0ig f ( t)xM(r , t) / DÇ2M(r , t) , [1]

information about the diffusion of spins, their initial distribu-
tion, and, where applicable, their confinement. The results

where g denotes the product of the gyromagnetic ratio gwe present include exact calculations under the condition of
and the gradient strength, the gradient field has the temporalno confinement and approximate calculations for confined
shape function f ( t) and is taken to be in the x direction, andgeometry, i.e., restricted diffusion. They have the advantage
r is the position vector of the spin. For motion in one dimen-that the solutions are available for arbitrary time dependence
sion Eq. [1] becomesof the applied gradient and for arbitrary initial spin distribu-

tion. We first present a useful transformation technique
which allows us to obtain exact solutions for the NMR signal ÌM(x , t)

Ìt
Å 0ig f ( t)xM(x , t) / D

Ì 2M(x , t)
Ìx 2 . [2]

1 Also the Lovelace Institutes, 2425 Ridgecrest Dr. S.E., Albuquerque,
NM 87108. Our method of solution consists of obtaining and solving
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63SIMPLE SOLUTIONS OF TORREY–BLOCH EQUATIONS

the equation obeyed by the spatial Fourier transform M(k , obtained without performing the inversion of the Fourier
transform, and we are able to write, directly from Eq. [8] ,t) of Eq. [2] . The definition of the Fourier transform is

MO (k , t) Å *
`

0`

M(x , t)e0ikxdx . [3] M( t) Å MO Sg *
t

0

f (s)ds , 0D
From Eq. [2] , the evolution equation for Fourier-trans-

1 expH0D *
t

0
Sg *

t

t =
f (s)dsD2

dt *J . [10]formed magnetization density is

Equation [10] is a general result for the NMR signal asÌMO (k , t)
Ìt

Å g f ( t)
ÌMO (k , t)
Ìk

0 Dk 2MO (k , t) . [4]
it develops in the presence of a time-dependent magnetic
field gradient. Our derivation above is simple and transpar-

To solve Eq. [4] , we employ the transformation ent. The expression obtained contains two factors. The sec-
ond (exponential) factor is identical to the signal obtained

J(k , t) in past derivations (4, 9) . The preexponential factor in our
expression describes the effect of the initial distribution of

Å MO (k , t)expHD *
t

0

dt *Sk / g *
t

t =
f (s)dsD2J [5] spins. This distribution affects the dephasing of the spins in

the presence of the magnetic field gradient. We see that it
is independent of the spin diffusion constant. In a standard

and obtain, for the evolution of the transformed quantity pulsed gradient spin echo experiment, one arranges for com-
J(k , t) , the simple one-sided wave equation in k space: plete rephasing of spins to occur, i.e., for the time integral

of f ( t) to vanish. It is obvious from Eq. [10] that the preex-
ponential factor we display is of no importance to such ex-ÌJ(k , t)

Ìt
Å g f ( t)

ÌJ(k , t)
Ìk

. [6]
periments. However, the factor is of value in the context of
observations in which complete rephasing is not utilized. A
possible example is the situation where the diffusion constantIt is trivial to solve Eq. [6] since it results in the ballistic
is known and the initial magnetization density is under inves-displacement of the initial k dependence of J(k , 0) at the
tigation.time-dependent velocity g f ( t) . The solution of [6] is, thus,

Equation [10] is implicit in earlier analyses in the litera-
ture. Relatively little use has been made, however, of its

J(k , t) Å JSk / g *
t

0

f (s) , 0D , [7]
ability to predict the NMR signal for arbitrary time depen-
dence of the gradient. Furthermore, the effect of nonuniform
magnetization density, which is treated easily from our resultwhere the right-hand side equals the initial displacement
Eq. [10], appears not to have been analyzed earlier. There-with the k replaced by k / g *t

0
f (s)ds . According to the

fore, we present a few examples of the application of Eq.transformation given by Eq. [5] , we obtain the explicit solu-
[10] to demonstrate its versatility.tion for the magnetization in k space to be

Case (i): Time-Dependent Turn-on of the Gradient
MO (k , t) Å MO Sk / g *

t

0

f (s)ds , 0D Because we are not interested in this case in the effect of
the preexponential factor, we will take the initial placement
of the spin to be localized so that M(k , 0) Å 1. Our interest1 expH0D *

t

0

dt *Sk / g *
t

t =
f (s)dsD2J .

is in describing the result of a slow turn-on of the gradient
field. We model the time dependence of the turn-on through[8]
f ( t) Å (1 0 exp(0t /t)) , where t is the turn-on time. We

While it is a straightforward matter in principle to invert obtain from Eq. [10]
Eq. [8] to obtain M(x , t) , it is convenient to notice that
M( t) , the NMR signal normalized to its initial value, is M( t) Å exp(0Dg 2t 3 /3)exp[0Dg 2t 3h( t /t)] , [11]
given by

where the function h is given by
M( t) Å *

`

0`

M(x , t)dx Å lim
kr0

MO (k , t) [9]
h( t /t) Å ( t /t / 3/2)e02 t /t

/ [( t /t)2 0 4]e0t /t / (5/2 0 2t /t) . [12]as is evident from Eq. [3] . Thus, the NMR signal can be
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64 KENKRE, FUKUSHIMA, AND SHELTRAW

Figures 2a and 2b show the time dependence of the signals
given by Eq. [13] and Eq. [14], respectively, for various
values of the quantity (Dg 2) 1/3 /v which is the ratio of the
gradient period to the magnetization decay time. In both
cases, the oscillating fields give rise to extrema in the signal.
It is clear from Eq. [13] and Eq. [14] that the location of
the extrema is independent of the diffusion coefficient and
the gradient strength. However, the magnitude of the signal
at an extremum is dependent on both the diffusion coefficient
and the gradient strength. We also see that the NMR signal
in both cases follows the standard cubic exponential at short
times but that the envelope decays exponentially (linear ex-
ponential) with the characteristic time given by v 2 /Dg 2 .

Case (iii ): Nonuniform Initial Density

As explained above, a novel feature of our general result
is the ability to incorporate the effect of an arbitrary initialFIG. 1. The NMR signal M( t) /M(0) for the slow turn-on case f ( t) Å
spin distribution. We consider an initial Gaussian distribu-(1 0 exp(0t /t)) as a function of the dimensionless time T Å t(Dg 2) 1/3 .

The four curves are labeled by the respective values (0, 2, 10, and 30) of tion as well as an initial square distribution, and treat only
the parameter t(Dg 2) 1/3 which is the ratio of the turn-on time of the applied the case of a constant gradient for simplicity. In the case
gradient to the magnetization decay time for the full applied gradient. The of an initial Gaussian distribution of spread L , Eq. [8]
time dependence of the applied gradient is shown in the inset.

leads to

M( t) Å exp[0(g 2t 3 /3)(D / 3L 2 /4t)] [15]
Notice that the slow turn-on process introduces a multiplica-
tive factor into the signal which results in a relative period and shows that a finite initial spread results in the logarithm
of quiescence of the signal. An expansion of h( t /t) in as- of the signal being quadratic rather than cubic at short times.
cending powers of its argument shows that the constant, The effective diffusion constant is increased by a term pro-
linear and quadratic terms in the expansion vanish identi- portional to the square of the initial spread and inversely
cally. This corresponds to the quiescence. The larger the proportional to the time. At long times, the well-known cubic
turn-on time t, the larger the period of quiescence. This is dependence is restored. These results are depicted in Fig. 3a
shown in Fig. 1 where the signal is plotted for several values where the signal for various values of the dimensionless
of the dimensionless parameter (Dg 2) 1/3t which equals the constant L 2(g /D)2/3 is given.
ratio of the gradient turn-on time t to the magnetization An initial distribution which is uniform over a distance L
decay time (Dg 2)01/3 in the presence of the full gradient. centered on the zero of the gradient leads to
The leftmost curve represents a sudden turn-on (t Å 0).

Case (ii): Sinusoidal Gradient M( t) Å Fsin(gtL /2)
gtL /2 Gexp(0Dg 2t 3 /3) [16]

The case of sinusoidal gradients is of relevance to recent
experiments performed by Callaghan and Stepisnik (10) to which, as in the Gaussian case, shows a quadratic rather
analyze the frequency dependence of coherent and incoher- than cubic initial dependence on time. These results are de-
ent motion of spins. We consider two cases of a sinusoidal picted in Fig. 3b for various values of the dimensionless
gradient. For f ( t) Å cos vt , we get, for the same initial parameter (g /D)1/3L .
condition as in case (i) ,

3. SOLUTIONS IN DISCRETE SPACE
M( t) Å exp{0(Dg 2 /v 3)[vt 0 (vt /2)cos 2vt

Spins may move not only continuously in space as de-/ (3/4)sin 2vt 0 2 sin vt]}, [13]
scribed above but also discretely among localized states such
as Wannier states in a crystal. An example is triplet excitonswhereas, for f ( t) Å sin vt , we get
moving via exchange interactions among the molecules in
an aromatic hydrocarbon crystal such as anthracene or tetra-

M( t) Å exp{0(Dg 2 /v 3)(vt / (vt /2)cos 2vt
chlorobenzene. Such systems underwent considerable exper-
imental scrutiny in the 1970s through the ODMR (optically0 (3/4)sin 2vt)}. [14]

AID JMR 1216 / 6j22$$$$23 09-11-97 04:44:24 maga



65SIMPLE SOLUTIONS OF TORREY–BLOCH EQUATIONS

FIG. 2. The NMR signal M( t)/M(0) for the sinusoidal time dependence of the gradient field as a function of the dimensionless time T Å t(Dg2)1/3 .
The time dependence of the applied gradient is shown in the insets and is given by f ( t) Å cos vt in (a) and by f ( t) Å sin vt in (b) . The three curves
are labeled by the respective values (0.25, 1, and 2) of the parameter (Dg 2) 1/3 /v. This parameter is a measure of the ratio of the period of the applied
gradient to the magnetization decay time for the full applied gradient.

detected magnetic resonance) probe fashioned particularly involves the diagonalization of a transition matrix related to
the F matrix. In the case of one-dimensional hopping motionto study fundamental issues such as exciton coherence

(11, 12) . For such a system, the diffusion term DÌ 2M(x , via nearest neighbors with hopping rate F , the Torrey–Bloch
equation takes the formt) /Ìx 2 is represented by a gain–loss expression of the form

(n [FmnMn( t)0 FnmMm( t)] , where Mm represents the contri-
bution to the NMR signal from the mth spin, m and n denote
vectors in the appropriate number of dimensions, and Fmn is dMm

dt
Å 0ibg f ( t)mMm / F(Mm/1 0 2Mm / Mm01) , [17]

the hopping rate from state n to state m . The general problem

FIG. 3. The NMR signal M( t) /M(0) as a function of the dimensionless time T Å t(Dg 2) 1/3 for a constant gradient and nonuniform initial distribution
of spins. This initial distribution, denoted by M(x , 0) , is Gaussian with half-width L in (a) and is a square distribution of width L in (b) . The four
curves in each case are labeled by the respective values (20, 5, 1, and 0) of the parameter (g /D) 1/3L . This parameter is the square of the ratio of the
spread of the initial distribution of spins to the distance the spins diffuse in the time representing the maximum difference in the precession periods due
to the applied gradient field.
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66 KENKRE, FUKUSHIMA, AND SHELTRAW

where b is the distance between neighboring sites. We solve
this equation by employing the method of discrete Fourier
transforms. With the definition M(k , t) Å (mÅ`

mÅ0` Mm( t)e ikm ,
Eq. [17] is converted into

ÌM(k , t)
Ìt

Å 0bg f ( t)
ÌM(k , t)
Ìk

0 2FM(k , t)(1 0 cos k) . [18]

We modify our method of solution for the continuum equa-
tion by using the related transformation.

J(k , t) Å M(k , t)expH2F *
t

0

dt *

FIG. 4. The NMR signal M( t) /M(0) as a function of the dimensionless1 F1 0 cosSk / bg *
t

t =
f (s)dsDG J , time T Å t(Fb 2g 2) 1/3 for a constant gradient and localized initial density.

The value of the parameter F /gb , which measures the ratio of the difference
between spin precession times under the applied gradient field at locations[19]
separated by the intersite distance b to the time taken by the spin to hop
that distance, is taken to be 0.1, 0.25, and 1.0, respectively.and obtain

ends up at long times with an envelope essentially followingM( t) Å MSbg *
t

0

f (s)ds , 0DexpH02F *
t

0

dt *
the linear exponential exp(0Ft) . It appears that the spacing
of the discrete lattice introduces a quasi-confinement in this
unconfined system. The results of this quasi-confinement can1 F1 0 cosSbg *

t

t =
f (s)dsDG J . [20]

be seen in Fig. 4. Oscillations with respect to time appear
with a frequency which is proportional to b , the site spacing.

Equation [20] is our result for discrete lattices and consti-
Case (ii): Two-Pulse Gradient

tutes a generalization of Eq. [10] which is valid for the
The standard two-pulse gradient experiment (1) is repre-continuum. It can be shown that, in the limit of vanishing

sented byb , Eq. [20] reduces to Eq. [10]. We now show three particu-
lar cases of the discrete result. While it is possible to explore

f ( t) Å U( t) 0 U( t 0 d) 0 U( t 0 D)with its help the effect of initial spin distributions, we con-
centrate here only on the exponential factor, i.e., consider a / U( t 0 [D / d]) , [22]
localized initial condition so that the preexponential factor
equals 1. where d is the pulse duration and D is the pulse separation.

The NMR signal is observed at the peak of the spin echo
Case (i): Constant Gradient occurring at t Å 2D. For the discrete lattice one gets

For a constant gradient, the signal becomes
M(2D) Å exp{02F(D / d 0 (2/bg)sin bgd

M( t) Å exp{0F[ t 0 (1/gb)sin gbt]}. [21] 0 (D 0 d)cos bgd)}. [23]

One may envision an experiment in which the lattice con-Notice that this spin diffusion result differs from the well-
stant b is unchanged and the pulse duration d and intervalknown continuum result M( t) Å exp(0Dg 2t 3 /3) but re-
D are also constant but gd is varied. Figures 5a and 5b showduces to it for small gb /F as one can see by retaining terms
that the discrete nature of the lattice gives rise to oscillationsup to the cubic in the expansion for the sine in Eq. [21] and
of the signal with respect to the quantity gdb . The positionsidentifying Fb 2 with D . In the opposite limit of large gb /F
of the extrema bqex in Figs. 5a and 5b satisfythe signal becomes a simple exponential. This is quite unlike

the unrestricted continuum result. For a given value of the
parameters, the time dependence of the signal starts out as 2r

cos bqex

bqex

0 2r
sin bqex

(bqex ) 2 0 sin bqex Å 0, [24]
the cubic exponential exp(0Fb 2g 2t 3 /3) at short times but
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67SIMPLE SOLUTIONS OF TORREY–BLOCH EQUATIONS

FIG. 5. The NMR signal M(2D) as a function of qb for the PGSE experiment for spin motion on the discrete lattice. The value of F(D 0 d) , the
ratio of the difference between the pulse interval and pulse duration to the time the spin takes to hop between neighboring sites, is 1 in (a) and 10 in
(b) . The value of r Å d / (D 0 d) , which, for a large pulse interval relative to the pulse duration, is the ratio of the duration to the interval, equals 0.01,
0.1, and 0.5, respectively, as shown in (a) and 0.01 and 0.05 in (b) .

where r Å d / ( (D 0 d)) and qex equals gd at the extrema. expanded in terms of Bessel functions through well-known
identities such asTherefore, for large gdb , the minima are separated by p.

With a magnetic field gradient of sufficient strength, one
might experimentally determine b from b Å p / (q2 0 q1) , cos[(bg /v)sin vt]
where q2 and q1 are the values of gd for adjacent minima.

Å J0(bg /v) / 2 ∑
`

nÅ1

J2n(bg /v)cos 2nvt . [27]We see again that the discrete locations of the spins in this
unconfined system give rise to behavior which is similar to
that of spins diffusing in the presence of confinement (7)

Approximations to the NMR signal involving low-order Bes-and is highly reminiscent of pore hopping solutions for diffu-
sel functions are easily developed for large v by using thesion in a rectangular lattice obtained earlier (13) .
fact that, if the neglect of fast oscillations is justified, the
LHS of Eq. [27] is given by its average value J0(bg /v) .Case (iii ): Sinusoidal Gradient
This value vanishes whenever bg /v equals a zero of the
Bessel function. We do not display these approximationsIf the gradient is sinusoidal in time, we get
here but merely remark that the parameter bg /v thus controls
the signal in a crucial way: oscillations will occur with in-

M( t) Å exp(02Ft)expH2F *
t

0

dt * creasing gradient strength, specifically with increasing bg /
v, exactly as in the confined continuum case. This parameter
bg /v is a measure of the ratio of the period of the applied1 cos[(bg /v)(sin vt 0 sin vt *)]J [25]
gradient to the characteristic time bg . The period of the
gradient in this case is analogous to the duration d of the

for the case that f ( t) Å cos vt , and pulse in case (ii ) analyzed above. Once again we see that
b , the lattice spacing, plays the role of a confining distance
in this unconfined system.

M( t) Å exp(02Ft)expH2F *
t

0

dt *

4. SOLUTIONS FOR A REPRESENTATIVE
1 cos[(bg /v)(cos vt 0 cos vt *)]J [26] TWO-STATE SYSTEM

The above analysis holds only for systems of infinite ex-
tent where translational invariance is not broken by endfor the case that f ( t) Å sin vt . In both cases we see the

appearance of a cosine of cosines or of sines which can be walls. The NMR technique is, however, of particular sig-
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nificance for the study of systems involving confining geom- which is identical to the Stepisnik expression (14) used by
Wang et al. (6) where f( t) is proportional to the autocorrela-etries. A simple calculation with a surprising range of appli-

cability can be given in the context of a representative two- tion function of the spin displacement. Thus, all the results
of Wang et al. (6) can be recovered from our exact simplestate system. The system consists of a spin hopping between

just two sites which we label by 1 and 01. The Torrey– two-state diffusion result through the above slow-M( t) ap-
proximation. The necessary correspondence of the parame-Bloch equations are then
ters as given by Sheltraw and Kenkre (7) is that the two-
state system distance b equals the actual confinement lengthdM1

dt
Å 0F(M1 0 M01) 0 ibg f ( t)M1 a except for a proportionality constant (b Å a /2

√
3), and

the two-state hopping time 1/F equals the diffusion time
also except for a proportionality constant (1/F Å a 2 /5D) ,dM01

dt
Å F(M1 0 M01) / ibg f ( t)M01 . [28]

where D is the diffusion constant of the spins in the actual
system. In a certain sense, the two states of the two-state

We now define the quantities M{( t) Å M1( t) { M01( t) system represent two halves of the confined region under
whose evolution is given by consideration.

The essence of many of the results obtained earlier can
be understood from the fact that there is an exact equivalencedM/( t)

dt
Å 0ibg f ( t)M0( t)

between our two-state diffusion system and a damped har-
monic oscillator. Indeed, Eq. [30] represents the displace-dM0( t)

dt
Å 02FM0( t) 0 ibg f ( t)M/( t) . [29] ment of a harmonic oscillator with a time-dependent fre-

quency g( t) and a time-dependent damping rate 2F 0 (1/
f ( t))(df ( t) /dt) . In the case of a constant gradient or of the

The NMR signal M( t) , which is the sum of the contributions experimentally common two-pulse gradient, g is a constant
from both sites, is obviously given by M/( t) , a closed equa- and we have a normal damped harmonic oscillator with a
tion for which is obtained from Eq. [29]: frequency which is either zero or nonzero according to the

time under consideration. Phenomena such as motional nar-
rowing, wherein increasing D can have opposite effects ac-d 2M( t)

dt 2 / F2F 0 1
f ( t)

df ( t)
dt G dM( t)

dt cording to the range of system parameters, or the various
useful regime clarifications given by Wang et al. (6) , are/ b2g2 f 2( t)M( t) Å 0. [30]
then understood transparently.

Whereas the two-state system gives the Stepisnik (14) orEquation [30] can be easily rewritten as
Wang et al. (6) results under the slow-M( t) approximation,
it is equivalent without any approximations to the memorydM( t)

dt
/ f ( t) *

t

0

dt * f ( t *)f( t 0 t *)M( t *) Å 0, [31] results of Sheltraw and Kenkre. This means that the various
oscillatory features of the NMR signal, both with respect to

where f( t 0 t *) Å b 2g 2e02F ( t0t = ) . This is identical to the time in the constant gradient case and with respect to the
memory equation given by Sheltraw and Kenkre (7) , which gradient strength in the two-pulse experiment, present in the
goes beyond earlier treatments (6, 14) based on truncated analysis of Sheltraw and Kenkre (7) , are also immediately
cumulants. These memory effects are known to be real obtainable from the two-state analysis given in the present
(15, 16) and, as explained in Ref. (7) , are inaccessible to paper. The determination of the quantities b and F from
approaches which, explicitly or otherwise, incorporate the system parameters requires, however, a first-principles treat-
assumption of Gaussian behavior. Those Gaussian results ment such as that given in Ref. (7) .
can be derived, however, from the more general and more
accurate two-state result [31]. Thus, to reobtain the analysis 5. SUMMARY
of Wang et al. (6) we approximate Eq. [31] by taking M( t)

We have given a simple method for calculating the NMRoutside the integral sign under the supposition that it is a
signal of spins diffusing in the presence of a linear gradient.slow variable. We obtain, as an approximate version of our
The method easily incorporates arbitrary initial conditionsfull result [31],
as well as an arbitrary time dependence of the gradient. The
method has been applied to obtain old as well as new results

M( t) Å expH0b 2g 2 *
t

0

dt * *
t =

0

dt 9
for the case of continuum as well as hopping type diffusion
in the absence of confinement. We have seen that results for
the discrete unconfined system exhibit features characteristic1 f ( t *) f ( t 9)f( t * 0 t 9)J , [32]
of the continuum confined system, the confinement length
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