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Abstract

We report effects of the interplay of quantum phases and nonlinearity in small quantum systems that are characterized:
by strong interactions between a quasiparticle (an excitation or an electron) and Iattice vibrations, and are described by the
discrete nonlinear Schrodinger equation, The issue under investigation is the influence that features of the initial placement
of ‘4 guasiparticle can have on-the process of self-trapping. We find that initial phases profoundly control the dependence
of self-trapping on initial inhomogeneity. We also find that the only non-trivial stationary state of the system disappears
in the presence of complex initial site amplimdes and that the amplitude of oscillations, which dips sharply to zero at the
stationary state for real initial amplitudes, approaches a nonzero minimum for complex initial amplitudes. (© 1997 Published

by Elsevier Science B.V.

1. Introduction

The purpose of this article is to report on new find-
ings regarding the interplay of quantum phases and
nonlinearity in a nonlinear dimer. The discrete non-
linear Schridinger equation {DNLSE) [1-9], which
describes the adiabatic dynamics of quasiparticle evo-
lution in several systems, is

idep/dt = Viwen — X|cm| cmr s (L.1)
n

where ¢,, is the probability amplitude to find the par-
ticle at site m, V,,, is the inter-site matrix element, and
X is the nonlinearity parameter describing energy low-
ering of the particle due to interaction with the lattice.

Eq. (1.1) has been solved for the dimer and some
experimentally verifiable observables have been com-
puted [4]. The effect of varying the initial conditions
has also been explored [ 7,8} and two transitions have

been observed. One is a “frequency transition” that is
a signature of the system becoming self-trapped. The
other is an “amplitude transition”, characterized by
a decrease in the amplitude of oscillations (while in
the trapped state), passage through a stationary state,
and reversal of amplitude as nonlinearity is increased.
Whether self-trapping is aided or hindered by hav-
ing the quasiparticle occupy a few sites or many sites
at the initial time, constitutes a question of consider-
able relevance [10,11]. The analysis given below ad-
dresses this question for the quantum nonlinear dimer.
Studies of the dimer have so far concentrated on ini-
tial conditions wherein the site amplitudes have been
taken to be real [3,4,6-9). However, for an actual
physical system prepared in a pure state, initial con-
ditions will almost always be such that the site am-
plitudes will be complex. We examine effects of such
realistic considerations, including the dependence of
trapping on initial inhomogeneity of population and
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the stability of stationary states. It is important to note
that, although the regime of validity of the DNLSE
as a consequence of microscopic dynamics is limited
{12-14], the problem of the interplay between quna-
twm phases and nonlinearity studied in this paper is
of general interest in quantum nonlinear equations of
evolution. The results of the present paper have fo be
interpreted in this context.

We emphasize that, throughout this paper, as in ear-
lier work [3,4,6-9], by the phrase “quantum phases”,
we refer only to the quantum mechanical phases asso-
ciated with the quasiparticle. Clearly, after the semi-
classical approximation has been made, there is no
meaning to the association of a quantum phase with
the vibrational variables.

2. The role of initial phases in localization

Following standard analysis of the DNLSE dimer -

[15], we define the following density matrix combi-
nations,

p=lal’—lea* g=i(cier — aic}),

r=cica+eicy, 2.1
where ¢1 and ¢; are the amplitudes for the particle to

be on either site of the dimer. The above quantities
obey the closed equations [3,4]

p=—-2Vg g=2Vp + ypr F=—xpg. (2.2)

The solution to Egs. (2.2) is known in general [4,9]:

p() =Cdn[(Cx/2)(t— te}{1/k], (2.3a)
1/K° =2+ (2/C*) (6" - p§)

C?=pf — &+ [£'+ (go/k0)"1'?, (2.3b)
£ =101/ + 2ro/ko). (2.3c)

where ko = y/4V measures the ratio of the nonlinear-
ity parameter to the inter-site transfer interaction, and
Po. o, Fo are the initial values of p, g, r respectively.

The case of (2.3) where go = rg =0, pg = 1, was
studied in Ref. {3]. The case g =0,pp # 0,rp # 0,
was studied in Ref. [7]. As explained there, for the
latter case of gy = 0, overall probability conservation
in a system in a pure state expressed by p3 + g +73 =
1 results in

1000
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Fig. 1. The critical value of nonlinearity xc. i.e. the value required
for self-trapping, is plotted loganthmically in units of 4V as a
function of the initial population difference pg (see Eq. (2.6)).
The dashed line y. = | represeats the critical nonlinearity for the
complefely localized initial condition pp = 1. In this figure go = 0.
In (a} ro >0 and tn (b} ro < 0.

ro = £(1 - ph)y'/2, (2.4)

Of the two roots in {(2.4), the negative root corre-
sponds to particularly interesting behaviour in that, in
addition to the free-trapped transition, an “amplitude
transition” occurs. For the case of g¢ = 0, the general
solution (2.3} becomes

p(t) = podn(poxt/2[1/k},

K = kipt/ (1 + 2koro). (2.5)
When the system undergoes the “free-trapped” transi-
tion, the elliptic modulus & appearing in {2.5) equals
1. We study the dependence of y., the nonlinearity

needed to trap the system, on the initial population
difference py, by noting that (2.5) implies

£_1+ro_1:!:(1—pg)1/2
v pp Pé '

(2.6)

This dependence of y./4V on pg is shown in Fig. 1
for the (a) positive and (b) negative roots, respec-
tively. There is a profound difference in the two cases,
arising from a difference in the initial phases. The pos-
itive rp case is understood easily. Self-trapping cor-
responds to unequal population on the two sites in a
stationary state, and initial inhomogeneity assists trap-
ping. This is why the amount of nonlinearity needed
to trap decreases with increasing py. The negative rg
case is more complex. A larger amount of nonlinear-
ity is needed to trap the system as one increases the
initial population difference. While perhaps counter-
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intuitive, this behaviour can be understood easily: re-
versing the sign of rp is synonymous with reversing
the sign of y with respect to the inter-site mairix ele-
ment V, equivalent to reversing the sign of the popu-
lation difference. Thus, an enhanced initial population
difference counters the trapping tendency of nonlin-
earity for the negative ry case. Similar considerations
have appeared elsewhere [ 17], especially in the con-
text of the different effects that a reversal of the sign
of y has in discrete (as opposed to spatiaily continu-
ous) nonlinear systems,

The above effects can be shown to arise quite simply
from (2.6). Differentiating (2.6) with respect to p%,
we get

dX c 2v 2 2
S = F (/1 = pg £ 1)7,
A pdv/1- b ’

where the upper signs are to be taken for positive rp,
and the lower signs for negative ry. Since the right

2.7

~ hand side is a posilive quantity except for the T sign,

it is clear that for positive (negative) rg, as pg is in-
creased, one needs less (more) nonlinearity to trap
the quasiparticle.

A study of the stationary states of the system helps
one to understand the trapping dependence shown in
Fig. 1. In Eq. (2.1}, r is the population difference of
the stationary states of the system with rno nonlinear-
ity. Negative r implies that the eigenstate of energy
-~V is more populated than the eigenstate of energy V.
it can be shown that, in the presence of nonlinearity,
the state that evolves from the -V state is the self-
trapped state. For rp < 0, greater initial population in
this state leads to trapping. Increasing pp leads to a
decrease in the population in the —V state. Therefore,
self-trapping requires greater nonlinearity when py is
increased. This behaviour is intimately related to the
existence, in a linear disordered system, of a mobility

- edge [18] which separates higher-energy delocalized

k-states from lower energy trapped states. In our two-
site system, the -+(—) state, in which the site ampli-
tudes have identical (opposite) phases, is the higher
(lower) energy k-state.

3. Effect of complex initial site amplitudes

The above considerations apply to the case of real

. _.,initial site amplitudes. We now relax that constraint,

Fig. 2. yc plotted logarithmically in units of 4V as a function of
po (see Eq. (3.2)). Treated here is the case of rg < 0 and general
go # 0. Values of gy considered are 0.3, 0.2, 0.1 and 0. The last
case {go = 0) shown here by the dashed line, corresponds to Fig.
1b.

and replace (2.4) by
ro = (1 — pi — g2)\/2, (3.1)

The condition for the particle to be trapped is that the
elliptic parameter %, defined in (2.3}, must exceed 1.
The critical value of the nonlinearity is given by

Xe/4V = (1 +70) /p}
=[1:+(1 - p§ — g)'/*1/p}. (3.2)

If ¥ < x., the particle executes periodic motion, and
p(t) follows the dn function, When y exceeds y.,
the particle is trapped. Eq. (3.2) reduces to {2.6) for
the case (gg = 0) of real initial site amplitudes. As in
the gg = 0 case, the negative root in (3.2) corresponds
to particularly interesting behaviour. We restrict our
analysis to that case and plot the dependence of the
critical nonlinearity y. on initial inhomogeneity in
Fig. 2. The existence of a minimum y, for nonzero
go implies that, for small values of pg, if the system
starts out free, an increase in py causes self-trapping,.

The gy = 0 analysis reported in Ref. [7] has shown
that, for rp < 0, the initial state can become a station-
ary state for a certain vatue of the nonlinearity, viz.
for x/4V = 1(1 — p2)!/2_ At that value, the elliptic
modulus & becomes infinite. Further increase in the
nonlinearity makes k% negative, and the imaginary ar-
gument transformation [ 16] shows the appearance of
the “amplitude transition” [7]. Qur present analysis
shows that when g # 0, there is no possibility of
an occurrence of the stationary state discussed above.
The plot of the elliptic parameter k> as a function of
x/4V in Fig. 3 shows that, for g # 0, the elliptic pa-
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Fig. 3. The elliptic parameter 2 as a function of the nonlinearity
ratio y/4V for pp = 0.5 and two values of gy as shown. As in
Fig. 2, ro < (.

rameter never becomes infinite. However, it exhibits
the characteristic discontinuity observed for g5 = 0,
signalling the change of p(¢) from evolution given by
the dn function to one given by

p(t)y=C
s nd(Cx (1 + KD 2 /24K |(1 + [K2]) =172
(3.3)

where C is given by (2.3). In Fig. 3, the dashed line
represents gg = 0 and the solid line represents gy =
0.1. For go = 0, the evolution changes markedly in
character at' the transition across the stationary state,
On the other hand, for g9 # 0, there is no dramatic
change in character in the evolution across the transi-
tion. This corresponds to the the absence of a station-
ary state, and to the fact that the derivative of p(¢)
initially is nonzerc,

Potential plots can facilitate the present analysis. It
is straightforward [ 3] to write down a closed equation
in p from (2.2},

p*+U(p) =1, (3.4a)
U(p) = 3Bp* — Ap?, (3.45)
Up = LBpt — Ap + (2V)?42, (34¢)
A=Ly?pt —4v? —2Vyry, B=1ix% (344d)

Eq. (3.4} is the equation of motion for a fictitious
oscillator whose displacement is described by p(r)

and whose potential is given by U(p). Fig. 4 shows -

the plot of U( p) defined in (3.4b) with the horizontal
line showing Uy of (3.4¢). The dot (a) marks the
value of pp for negative rp and the dot (b) denotes the

,potential U(p) in arbitrary units

Fig. 4. Potential plot to explain the “amplitude transition” of
Ref. [7]. The dashed line represents Uy defined in (3.4). Initial
locations at (a) and (b} correspond to rg < 0 and o > 0
respectively. The arrows depict the initial motion of the fictitious
oscillator.

value of py for positive rg. One sees that for positive
ro, the displacement of the fictitious particle can only
have values less than the jnitial value py, whereas for
negative rp, it always has values greater than pg. One
can associate this behaviour with the observation that
in the former case, the slope of U(p) with respect to
p near pg is positive, whereas in the latter case, it is
negative. Combining (2.2) and (3.4) one has

U'(po) = Vo (2V + xro), (3.5)

which implies that, if rg is positive, the slope is always
positive (for positive py} whereas, if ry is negative,
the sign of the slope reverses once rg < —2V y. We
have given here an explanation, based on the “effec-
tive potential” method, of the “amplitude transition™
observed in Ref. [7], wherein it was seen that for
go =0,rp <0, once rg < -2V y, the population dif-
ference p{¢) never decreased below the initial popu-
lation difference pg and that this behavionr was absent
for positive rp. k

‘We have found it instructive to study the behaviour
of the amplitude of the oscillations of p(r) as a func-
tion of nonlinearity. The amplitude a of the oscilla-
tions is given by

o A

f=VAY+2Bm, m=1Bp}— Apt+ (V)4
(3.6b)
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Fig. 5. The amplitude of oscillations for the nonlinear dimer as a
function of )y /4V {see Eq. (3.6)) for rg < 0 and pp = 0.8, for two
values of gg: 0 and 0.1, respectively. The inset shows the amplitude
of oscillations for a linear non-degenerate dimer plotted as a
function of 4/4V, where the energy difference (non-degeneracy)
between the two sites is 4 (see BEq. {3.7)) . We also take ry < 0,
po =08 and gp = 0, 0.1 in the inset. '

and A and B are given by (3.4). The plot of the am-
plitude as a function of nonlinearity is displayed in the
main figure in Fig. 5. The main figure shows the case
when gy = 0,0.1. The sharp fall in amplitude at the
stationary state should be noted when gp = 0. When
go = 0.1, there is no stationary state, and consequently
the amplitude never drops to zero. Instead, it smoothly
approaches a local minimum. In terms of the fictitious
p oscillator, this corresponds to the energy of the p
particle being a minimum.

It is useful to compare the amplitude plots with
those of the linear non-degenerate dimer. In the latter
situation, the amplitude a between the two sites is
given by

1/2

2 b \?
o= 7 | + (E) . (3.7a)
mo = (2V)2g3 + Pp3 + bpy,
b=2(2VAry — 4%pg), (3.7b)
2=+/A% 4+ (2V)2, (3.7c)

where A1is the energy difference between the two sites.
The comparison of the amplitude for the nonlinear
dimer (3.6a) with that of the Hnear non-degencrate

dimer (3.7a) is made clear in Fig. 5. The inset refers-

to the linear non-degenerate dimer. The similarity be-
tween the linear non-degenerale dimer and the non-

linear, degenerate dimer suggests that we may able
to understand many aspects of the behaviour of the
nonlinear dimer by replacing the nonlinearity y by an
energy difference or on-site disorder 4 in a linear de-
generate dimer. Thus presence or absence of the dis-
continuity lies not so much in the nonlinear nature of
the dimer but in the fact that a nonlinearity produces
an effective energy mismatch, and, that by appropri-
ate adjustments in the initial conditions or the amount
of energy mismatch, it is possible or not to arrive at
a stationary state according as whether gg is zero or
not. In particular, the similarity can be understood in -
the following fashion. For small oscillations, once the
particle is trapped, the potential U{p) in which p (1)
moves is approximately the same as a harmonic oscil-
lator potential, which is the potential for a linear non-
degenerate dimer with appropriate energy disorder. At
the stationary state (when gg = 0}, the potentials are
practically identical. Thus, the amplitude plots are very
similar especially in the region arcund the stationary
state where the amplitude of oscillations is smail.

4. Summary

We have examined the effects of the interplay of
quantum phases and nonlinearity in small quanfum
systems. We find that the initial phases have a strong
influence on the dependence of self-trapping on the
initial population difference between the two sites of
the quantum nonlinear dimer. In studying the analogy
between the degenerate nonlinear dimer and the non-
degenerate dimer, we find that many of the nonlinear
effects can be understood as originating from an ef-
fective disorder in a linear system [7,19]. Ongoing
work includes investigation of spatially extended sys-
tems, focussing on the analogy with mobility edges in
linear disordered systems [18].
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