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Coupled spin-boson systems far from equilibrium
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Nonequilibrium quantum dynamics of a system comprisingpseud® spin-% object coupled to a boson
degree of freedom is studied. It is shown that the time evolution of the system is described by a set of
elementary scattering processes. Through these processes the system approaches an equilibrium in which the
spin is in a mixed state that on average maximizes its entropy. However, the irregular behavior of the system
is unrelated to “quantum chaos” as the Hamiltonian is integral8€163-182(06)51042-§

In studies of systems describing quasiparticles moving omelation effects, and experimental observables in highly non-
a lattice and interacting with boson degrees of freedom, thénear and nonadiabatic systems. Because of the model’s im-
emphasis is, in general, on their low-energy properties, suchortance to many physically interesting cases, various
as polaron formation and dynamics. These model studieapproximative approaches are used for solving the problem,
provide important insights in many cases for an understandnost notably the semiclassical approximatichand the
ing of dynamic correlations near thermodynamic equilib-rotating-wave approximatioh® Recently, it has also been
rium. Equally important are situations where the system isstudied by exact diagonalizatidd;®focusing on the collec-
driven far from its equilibrium state. In particular, these situ-tive, multitime scale behavior of the coupled degrees of free-
ations provide useful information on many-body interactionsdom and the validity of approximative schemes.
and correlation effects that at low energies can be strongly The noninteracting problem\(&0) is characterized by
renormalized. While much of the interpretation of physically two time scales: the spin periatt= 7/V and the boson pe-
interesting and important systems relies on effective Hamilriod r5=27/¢;. At low energies, with increasing/e,, the
tonians at a specific energy scale, experimental probes cajuantum dynamics leads to the formation of a new compos-
now perturb these systems in a wide range of energies, asit& particle, the polaron, where the motion of the spin is
result of the advent of, e.g., intense laser sources. This pralaved to the boson dynamics. A characteristic signature of
vides a clear impetus for exploring the dynamics at highethis nonlinear dynamics is the appearance of a very long time
energies, because the behavior of the system and the expestaler= =/ ey, corresponding to the reduced polaron band-
mental manifestations can be strongly scale dependent.  width e; see Fig. 1. The questions concerning the coher-

Here, we consider the dynamics of the spin boson modeénce and particlelike nature of the polaronic excitations and
with spin4, described by the Hamiltonian

H=—Vo,+ Ao+ es(m+ p?), )

where o, (a=1,2,3) are the three Pauli operators,
[0.,0p]=2i0, (a,b,c cyclic). The two-site Holstein
Hamiltoniart can be cast into the above form by defining the
Pauli operators in terms of the quasiparticle operators
as oy=clc,+chey, op,=—i(clc,—cley), and o3=clc,
—clc,. Here, {c,,c[}=6 (k,/=1,2). The dimensionless
conjugate operatorg and, obeying the commutation rela-
tion [, 7]=i, describe a boson degree of freedom with en-
ergy €g. The spin tends to precess about theaxis with the ‘
rate determined by (>0). At the same time, it interacts " 00 0.5 1.0 15 2.0 2.5

with the boson mode, the interaction strength being speci- Coupling constant A (V)

fied by the coupling constannt.

This spin-boson model has been the subject of intensive F|G. 1. The energy spectrum relative to the ground state of the
attention because of its relevance to quasiparticle-phonogpin-boson Hamiltoniagl) as a function of\ for e,/V=1/2. The
system$ and to the interaction of light with mattérlt is  even and odd parity states are shown as dashed and solid lines,
capable of describing polaron formation and dynamics, correspectively.

Energy e, (V)
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the effect of quantum and thermal fluctuations is of great s
interest. Our goal is to explore these questions in terms of
Husimi distribution functions® These lead to a pictorial de-
scription of polaron dynamics which, for example, explains
the loss of coherence and composite nature of the polaronT
The quantum evolution of the spin-boson system is com- -5
puted based on accurate numerical diagonalizafbmof
Hamiltonian(1).

The Husimi distribution functiort§ are conveniently de-
fined in terms of reduced density operators:

pe(7)=Trgp(7), (2a) 5

ps(7)=Trgp(7); (2b)

whereB and S denote the boson and spin subsystems, re-
spectively. The density operator for the full system is

p(7)=[V()¥(7)], )

where |¥(7)) is the state of the system at time:
|W(7))=e 7| W,). Here, r=t/% is the scaled time and
| W) is the initial state at=0. Often, these reduced density
operators have a property thatpa(7))=Trpa(7)#1 S
(A=B,S): the dynamics leads to a mixed state for a sub- FIG. 2. The Husimi distributiort{g(,¢; 7) on the phase plane
system because of the coupling. For the spin subsysterh™¢) for times (@ 7=0, (b) 7=7g/2, (¢) 7=37g/2, and (d)
bounds can be establishelis(ps)<1. By virtue of the re- 7 71 Whererg=2/e; is the boson period andr=496.4rg is

. 0 L ) . the tunneling time. The constant-energy contours of,¢) and
lation, (ps)=((o)"+ 1)/2; complete T'X'ng also implies a e, (m,¢) are denoted by heavy solid and dashed lines, respectively.
vanishing Bloch vectoK o).}? Here, o is a vector whose

Here, ey /V=1/2 and\/V=23/2. The system is initially in the prod-
components are the Pauli matricag. In contrast, in the uct state(5) with o= —10.

semiclassical approximation, the degree of mixing, as mea-
sured by(ps) and the length of the Bloch vector, becomes awith z,= /2. Here, ¢, is the average initial displace-
constant of motion. We can also formally consider the Gibbsnent of the boson coordinate and the spherical coordinates

5

-15 -5 5 15 -5 -5 5 15

entropy for a subsystenf, defined asSy=—Trpalnpa
(A=B,S). For a closed system in a pure steig=0. While
in the absence of interactions to the environm@ng., with

(6y,90) give the average initial orientation of the spin. Since
here we are mostly interested in large negative values of
®o, We choosedy=7 and ¢o=0, yielding| 7o) =|3).** Fig-

the bath, the entropy of the coupled system is a constant olure 2 shows the Husimi distributicig at various times for

motion, the entropy of a subsystem usually is not. For ex-p,= —

ample,Sg will reflect the degree of mixing of the spilgua-
siparticle state.

We focus on the Husimi distribution because of its corre-

10, which corresponds to the energy 12.4V (rela-
tive to the ground stajeThe spread of{z in time indicates
a dispersing wave packébss of coherenge

In interpreting the above Husimi distributions, it is useful

spondence with the coarse-grained classical distributiofo generalize the result that applies for systems with one
function and because it does not share the well-known incordegree of freedomig is localized in the neighborhood of
venient characteristics of the Wigner distribution that it is notthe constant-energy contourgtwheree is the energy of the
positive-definite, rapidly oscillating, and can have largeinitial state’® Defining the adiabatic energy manifolds as

weight in a classically forbidden region. The Husimi distri-
bution function is obtained by smoothing the corresponding

€. (m,0)=3e0( T+ %) =V + (N p)?, (6)

Wigner distribution with a Gaussian. In the boson case, it has

a simple formula:

He(m,@;7)=(2Z|ps(7)|2), (4)

where |z>=ezatz*a|0) is the boson coherent state,

z=(p+im)/\2, anda=(p+im)/\/2. In our numerical ex-

we should expect that, in the adiabatic regime, the Husimi
distribution is localized in the neighborhood of the constant-
energy contoure=e_(m,¢). In the high energy regime,
where the initial wave packet has a large enesgyompared

to the tunneling barrier, nonadiabatic corrections are impor-
tant, and the problem reduces to that of rapid passage

amples, the initial state is chosen to be a direct product ofhrough a resonance, where the constant-energy contours of

spin and boson coherent states:

Vo) =70)®|20), 5
where the coherent state for the spin ikp)
=m0+ M- | 1) with o.=(oyxi0)/2 and 7,
=(6,/2)e"'%0. Note that G<fy<m and 0<¢p,<2m. The
boson is in the coherent statép|zo)=m~ Ve (¢~ 902

the Hamiltonian withV=0 are also important. These con-
tours are determined by the functions

)

The signature of the composite nature of the polaron is that
most of the density is localized for all times in phase space
characterized by the lowest-energy adiabatic manifold,

€. (me)=3€( T+ P £\ g.



54 COUPLED SPIN-BOSON SYSTEMS FAR FROM EQUILIBRIUM

(o,(m)

R12 647

0.8 T T 0.8 T T T T

0.6 | 06 L
T >
~% 04 | w04 | 1
n n

=1 (b) - M (b) ]

0.0 J . ! . I . 0.0 . ! L I I L

0 2 4 0 5 10 15 20 25 30

Time 7/7,

Time 7/7,

FIG. 3. The time evolution ofa) the spin componenfos(7)) FIG. 4. (a) The time evolution of the spin compongfat;(7)) as
and (b) the entropy S¢(7) for the spin-boson model with determined by the spin-boson Hamiltoniein(lower curvg and by
€0,/V=1/2 and\/V=23/2. The spin-boson system is initially in the the time-dependent spin Hamiltoniaklg (upper curve for
product state5) with o= —10. €0/V=10 and\/V=1.3800195. The spin-boson system is initially

in the product staté5) with ¢o= —20. Thus, 2\/¢, is the second
e_(m,¢). At low initial energies, the polaron mostly expe- Z€ro of the Bessel functiody. (b) Also shown is the entropy of the
riences processes in which part of it is transmitted throug$Pin subsystenss().
the tunneling barrier, and part is reflected, but which do not

transfer any weight away from the lower adiabatic manifold.eters used in Fig. 2. The steplike structure is clearly visible at
The increased initial energy leads to enhanced tunnelinghort times(a few phonon periodsand, for the first step, the
rates. In contrast, at much higher initial energies, the p°|ar°@stimate5<og):0.84 given by Eq(8) is close to the exact
begins to break down: each time the wave packet collidedmerical value. During the time when the spin experiences

with the resonance region/tunneling b_arriercpato, _it scat- 4 kick, the boson wave packet splits. For finitg the energy
ters .mostly to the phase space region determ|ned by th§tored in the boson degree of freedom is finite and its dy-
manifold e~ €, (7,¢) and leave only a small portion on the

adiabatic manifold. This behavior is illustrated in Fig. 2, namics is affected by the spin-boson interaction. After suffi-

ciently many splittings, the time evolution of the boson
where also the constant-energy contourg of 7, ¢) are de- deviates from that of a free oscillator. In the example studied
picted. The relative importance of these two scattering chan:- . ' pi€

ere, it happens already after a few phonon perigse

nels is determined by the energy of the initial state. This_.
behavior is in striking contrast with that found in the .Jaynes-F'g' 3. . . . .
Cummings model® which is obtained from the spin-boson  1he time-dependent spin Hamiltoniéf shows dynami-
Hamiltonian by the rotating-wave approximation. The differ- €2l localization whenever parameters are such that the con-
ence arises because the rotating-wave approximation d&lition Jo(2A/€q)=0 is fulfilled.™ Since the spin state be-
stroys the resonance regions that lead to the scatterifgPMes gradually mixed, we expect that dynamical
events. These regions are located in phase space about fR€alization will also eventually break down. This expecta-
points where the energy manifolds (7, ¢) intersect. How- tion is verified in Fig. 4. However, in the classical localiza-
ever, for the Jaynes-Cummings model, the correspondintjon regime, the mixing occurs at a much slower rate for the
functions are concentric circles. (,¢) = 1eo(m?+¢2)  spin(smaller rate of entropy productipnThis implies that,
N7+ 2. in the dynamical-localization regime, the qualitative dynam-
For large displacementg,, the boson component con- ics of the spin is described by s for longer times because
tains so much energy that it gains classical features. Mor#he tendency towards localization suppresses mixing of the
precisely, in the limit ¢o—— and A—O0 with  spin state. The dynamics given by the Hamiltonkagdevi-
A=—\gpy=const!® the dynamics of the spin variable is ates from that oH, once the entropy of the spin subsystem
mapped to a time-dependent Landau-Zener proBlemhich ~ becomes large enough, i.85~In2; see Figs. 3 and 4. In this
is described by the time-dependent spin Hamiltoniancontext, it is worth emphasizing that the semiclassical dy-
Hs=—Vo,— Aoscos,r. For A>V, the spin experiences Nnamics in general must eventually deviate from the full
kicks of the duration ofy=(V/7A) g, separated by half of quantum dynamics because the semiclassical dynamics gen-
a boson period. Fory< 7, kicks are short, which leads to a €rates no entropy per subsystem.
steplike structure ifo3(7)). It is easy to see that, after the ~ Our choice of the initial state, E¢5), guarantees that it is
first kick, (o3) is changed by an amount pure. When the main interest is in the low-energy phenom-
ena, the boson part of the initial state is chosen so that
<<}>~—>\/eo.9 On general grounds, we may expect that the
purity of the spin state is most susceptible to the spin-boson
Figure 3 showgo3) as a function of time with those param- interaction during the tunneling event. Indeed, the exact nu-

&og)=m*(10/79). 8
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merical calculation shows thdpg(7)) has its lowest value spacing$' and level curvaturé$ as a function of a noninte-
there. Furthermore, in cases where the tunneling timés  grability parameter. For example, for chaotic systems, the
the longest one, the degree of pureness of the spin state distribution for the nearest-neighbor level spaciigshould
already affected at much shorter time scales. This time scalgave the formP(A)~A”? (8=1,2,4), for smallA. The en-

is connected to the revival time,~ 7g. For instance, the ergy spectrum of the Hamiltoniail) has numerous avoided
fast oscillations of quantum recurrences signify a nearly pur¢aye| crossings, but there exists a nonzero energy stgle
state(small entropy.*® The incomplete revivals can be inter- pelow which no level spacings are found. This result is in
preted as a partial loss of information due to quantum oG ccordance with the fact that the Hamiltonian is quantum
thermal fluctuations. At nonzero tempe_ratures', mixing be'mtegrablez.3 In addition to energy conservation, the system
comes stronger and coheren@s associated with oscilla- has inversion symmetry. The Hamiltonian can therefore be

tions characteristic qf a pure _st}ates reduc_e(f. In other . block diagonalized in terms of the parity operator,
words, the boson-spin interaction causes incoherent motion ~—, +. i(ml2 24
=g magel(mo1tl)

of the polaron. This also implies a nearly vanishing Bloch
vector (o).

We note that not only a strongly interacting system lead
ing to a dynamic double well has interesting effects, but als

In summary, an excited spin-boson model is shown to
exhibit novel scattering processes that have a very intuitive
‘explanation. At high enough energies, they are described in
Yerms of Landau-Zener tunneling and eventually lead to the

in the strongly interacting system even if the motion of theHon is found to deteriorate due to the entropy-generating

\F’)Vr%\\//? dgascgentolilicnoena{lrnsgté% t(i)r:Ie of the wells because the we uantum corrections described by these scattering processes.
. ’ .. ... . These findings have clear, experimentally observable impli-
Even though the time-dependent Husimi distribution 9 P y P

.- cations regarding many physically interesting situations,

tion of “auantum chaos” on the basis of ideas from random %uch as small polarons in strongly-correlated systems and
q single atoms in microwave cavities.

matrix theory where universal features of quantum spectra
for classically chaotic systems are taken as evidence for This work was supported in part by Natural Sciences
complexity in the corresponding quantum systems. Thisand Engineering Research Council of Canada, the Ontario
complexity, often designated “quantum chaos,” is usually Center for Materials Research, and by the U.S. Department
analyzed in terms of distributions of nearest-neighbor levebf Energy.
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