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Nonequilibrium quantum dynamics of a system comprising a~pseudo! spin-12 object coupled to a boson
degree of freedom is studied. It is shown that the time evolution of the system is described by a set of
elementary scattering processes. Through these processes the system approaches an equilibrium in which the
spin is in a mixed state that on average maximizes its entropy. However, the irregular behavior of the system
is unrelated to ‘‘quantum chaos’’ as the Hamiltonian is integrable.@S0163-1829~96!51042-8#

In studies of systems describing quasiparticles moving on
a lattice and interacting with boson degrees of freedom, the
emphasis is, in general, on their low-energy properties, such
as polaron formation and dynamics. These model studies
provide important insights in many cases for an understand-
ing of dynamic correlations near thermodynamic equilib-
rium. Equally important are situations where the system is
driven far from its equilibrium state. In particular, these situ-
ations provide useful information on many-body interactions
and correlation effects that at low energies can be strongly
renormalized. While much of the interpretation of physically
interesting and important systems relies on effective Hamil-
tonians at a specific energy scale, experimental probes can
now perturb these systems in a wide range of energies, as a
result of the advent of, e.g., intense laser sources. This pro-
vides a clear impetus for exploring the dynamics at higher
energies, because the behavior of the system and the experi-
mental manifestations can be strongly scale dependent.

Here, we consider the dynamics of the spin boson model
with spin-12, described by the Hamiltonian

H52Vs11lŵs31
1
2 e0~p̂21ŵ2!, ~1!

where sa (a51,2,3) are the three Pauli operators,
@sa ,sb#52isc (a,b,c cyclic!. The two-site Holstein
Hamiltonian1 can be cast into the above form by defining the
Pauli operators in terms of the quasiparticle operators
as s15c1

†c21c2
†c1, s252 i (c1

†c22c2
†c1), and s35c1

†c1
2c2

†c2. Here, $ck ,cl
†%5dkl (k,l51,2). The dimensionless

conjugate operatorsw andp, obeying the commutation rela-
tion @ŵ,p̂#5 i , describe a boson degree of freedom with en-
ergye0. The spin tends to precess about thes1 axis with the
rate determined byV (.0). At the same time, it interacts
with the boson modew, the interaction strength being speci-
fied by the coupling constantl.

This spin-boson model has been the subject of intensive
attention because of its relevance to quasiparticle-phonon
systems1 and to the interaction of light with matter.2 It is
capable of describing polaron formation and dynamics, cor-

relation effects, and experimental observables in highly non-
linear and nonadiabatic systems. Because of the model’s im-
portance to many physically interesting cases, various
approximative approaches are used for solving the problem,
most notably the semiclassical approximation3–5 and the
rotating-wave approximation.2,6 Recently, it has also been
studied by exact diagonalization,3,7–9 focusing on the collec-
tive, multitime scale behavior of the coupled degrees of free-
dom and the validity of approximative schemes.

The noninteracting problem (l50) is characterized by
two time scales: the spin periodtS5p/V and the boson pe-
riod tB52p/e0. At low energies, with increasingl/e0, the
quantum dynamics leads to the formation of a new compos-
ite particle, the polaron, where the motion of the spin is
slaved to the boson dynamics. A characteristic signature of
this nonlinear dynamics is the appearance of a very long time
scaletT5p/eT , corresponding to the reduced polaron band-
width eT ; see Fig. 1. The questions concerning the coher-
ence and particlelike nature of the polaronic excitations and

FIG. 1. The energy spectrum relative to the ground state of the
spin-boson Hamiltonian~1! as a function ofl for e0 /V51/2. The
even and odd parity states are shown as dashed and solid lines,
respectively.
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the effect of quantum and thermal fluctuations is of great
interest. Our goal is to explore these questions in terms of
Husimi distribution functions.10 These lead to a pictorial de-
scription of polaron dynamics which, for example, explains
the loss of coherence and composite nature of the polaron.
The quantum evolution of the spin-boson system is com-
puted based on accurate numerical diagonalization9,11 of
Hamiltonian~1!.

The Husimi distribution functions10 are conveniently de-
fined in terms of reduced density operators:

rB~t!5TrSr~t!, ~2a!

rS~t!5TrBr~t!; ~2b!

whereB andS denote the boson and spin subsystems, re-
spectively. The density operator for the full system is

r~t!5uC~t!&^C~t!u, ~3!

where uC(t)& is the state of the system at timet:
uC(t)&5e2 iH tuC0&. Here, t5t/\ is the scaled time and
uC0& is the initial state att50. Often, these reduced density
operators have a property that̂rA(t)&[TrrA

2(t)Þ1
(A5B,S): the dynamics leads to a mixed state for a sub-
system because of the coupling. For the spin subsystem,
bounds can be established:1

2<^rS&<1. By virtue of the re-
lation, ^rS&5(^sW &211)/2, complete mixing also implies a
vanishing Bloch vector̂ sW &.12 Here, sW is a vector whose
components are the Pauli matricessa . In contrast, in the
semiclassical approximation, the degree of mixing, as mea-
sured bŷ rS& and the length of the Bloch vector, becomes a
constant of motion. We can also formally consider the Gibbs
entropy for a subsystemA, defined asSA52TrrAlnrA
(A5B,S). For a closed system in a pure state,SA[0. While
in the absence of interactions to the environment~e.g., with
the bath!, the entropy of the coupled system is a constant of
motion, the entropy of a subsystem usually is not. For ex-
ample,SS will reflect the degree of mixing of the spin~qua-
siparticle! state.

We focus on the Husimi distribution because of its corre-
spondence with the coarse-grained classical distribution
function and because it does not share the well-known incon-
venient characteristics of the Wigner distribution that it is not
positive-definite, rapidly oscillating, and can have large
weight in a classically forbidden region. The Husimi distri-
bution function is obtained by smoothing the corresponding
Wigner distribution with a Gaussian. In the boson case, it has
a simple formula:

HB~p,w;t!5^zurB~t!uz&, ~4!

where uz&5eza
†2z* au0& is the boson coherent state,

z5(w1 ip)/A2, anda5(ŵ1 i p̂)/A2. In our numerical ex-
amples, the initial state is chosen to be a direct product of
spin and boson coherent states:

uC0&5uh0& ^ uz0&, ~5!

where the coherent state for the spin isuh0&
5eh0s12h0* s2u2 1

2&, with s65(s16 is2)/2 and h0
5(u0/2)e

2 if0. Note that 0<u0<p and 0<f0,2p. The
boson is in the coherent state,^wuz0&5p21/4e2(w2w0)

2/2,

with z05w0 /A2. Here,w0 is the average initial displace-
ment of the boson coordinate and the spherical coordinates
(u0 ,f0) give the average initial orientation of the spin. Since
here we are mostly interested in large negative values of
w0, we chooseu05p andf050, yielding uh0&5u 12&.14 Fig-
ure 2 shows the Husimi distributionHB at various times for
w05210, which corresponds to the energye512.4V ~rela-
tive to the ground state!. The spread ofHB in time indicates
a dispersing wave packet~loss of coherence!.

In interpreting the above Husimi distributions, it is useful
to generalize the result that applies for systems with one
degree of freedom:HB is localized in the neighborhood of
the constant-energy contour ate, wheree is the energy of the
initial state.13 Defining the adiabatic energy manifolds as

e6~p,w!5 1
2 e0~p21w2!6AV21~lw!2, ~6!

we should expect that, in the adiabatic regime, the Husimi
distribution is localized in the neighborhood of the constant-
energy contoure5e2(p,w). In the high energy regime,
where the initial wave packet has a large energye compared
to the tunneling barrier, nonadiabatic corrections are impor-
tant, and the problem reduces to that of rapid passage
through a resonance, where the constant-energy contours of
the Hamiltonian withV50 are also important. These con-
tours are determined by the functions

ẽ6~p,w!5 1
2 e0~p21w2!6lw. ~7!

The signature of the composite nature of the polaron is that
most of the density is localized for all times in phase space
characterized by the lowest-energy adiabatic manifold,

FIG. 2. The Husimi distributionHB(p,w;t) on the phase plane
(p,w) for times ~a! t50, ~b! t5tB/2, ~c! t53tB/2, and ~d!
t5tT , wheretB52p/e0 is the boson period andtT.496.4tB is
the tunneling time. The constant-energy contours ofe2(p,w) and
e1(p,w) are denoted by heavy solid and dashed lines, respectively.
Here,e0 /V51/2 andl/V53/2. The system is initially in the prod-
uct state~5! with w05210.
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e2(p,w). At low initial energies, the polaron mostly expe-
riences processes in which part of it is transmitted through
the tunneling barrier, and part is reflected, but which do not
transfer any weight away from the lower adiabatic manifold.
The increased initial energy leads to enhanced tunneling
rates. In contrast, at much higher initial energies, the polaron
begins to break down: each time the wave packet collides
with the resonance region/tunneling barrier atw;0, it scat-
ters mostly to the phase space region determined by the
manifold e;e1(p,w) and leave only a small portion on the
adiabatic manifold. This behavior is illustrated in Fig. 2,
where also the constant-energy contours ofe6(p,w) are de-
picted. The relative importance of these two scattering chan-
nels is determined by the energy of the initial state. This
behavior is in striking contrast with that found in the Jaynes-
Cummings model,15 which is obtained from the spin-boson
Hamiltonian by the rotating-wave approximation. The differ-
ence arises because the rotating-wave approximation de-
stroys the resonance regions that lead to the scattering
events. These regions are located in phase space about the
points where the energy manifoldsẽ6(p,w) intersect. How-
ever, for the Jaynes-Cummings model, the corresponding
functions are concentric circles:ẽ6(p,w)5

1
2e0(p

21w2)
6lAp21w2.

For large displacementsw0, the boson component con-
tains so much energy that it gains classical features. More
precisely, in the limit w0→2` and l→0 with
L[2lw05const,16 the dynamics of the spin variable is
mapped to a time-dependent Landau-Zener problem,17 which
is described by the time-dependent spin Hamiltonian,
HS52Vs12Ls3cose0t. For L@V, the spin experiences
kicks of the duration oft0.(V/pL)tB , separated by half of
a boson period. Fort0!tS , kicks are short, which leads to a
steplike structure in̂s3(t)&. It is easy to see that, after the
first kick, ^s3& is changed by an amount

d^s3&.p2~t0 /tS!. ~8!

Figure 3 showŝs3& as a function of time with those param-

eters used in Fig. 2. The steplike structure is clearly visible at
short times~a few phonon periods!, and, for the first step, the
estimated^s3&.0.84 given by Eq.~8! is close to the exact
numerical value. During the time when the spin experiences
a kick, the boson wave packet splits. For finitew0, the energy
stored in the boson degree of freedom is finite and its dy-
namics is affected by the spin-boson interaction. After suffi-
ciently many splittings, the time evolution of the boson
deviates from that of a free oscillator. In the example studied
here, it happens already after a few phonon periods~see
Fig. 3!.

The time-dependent spin HamiltonianHS shows dynami-
cal localization whenever parameters are such that the con-
dition J0(2L/e0)50 is fulfilled.18 Since the spin state be-
comes gradually mixed, we expect that dynamical
localization will also eventually break down. This expecta-
tion is verified in Fig. 4. However, in the classical localiza-
tion regime, the mixing occurs at a much slower rate for the
spin ~smaller rate of entropy production!. This implies that,
in the dynamical-localization regime, the qualitative dynam-
ics of the spin is described byHS for longer times because
the tendency towards localization suppresses mixing of the
spin state. The dynamics given by the HamiltonianHS devi-
ates from that ofH, once the entropy of the spin subsystem
becomes large enough, i.e.,SS; ln2; see Figs. 3 and 4. In this
context, it is worth emphasizing that the semiclassical dy-
namics in general must eventually deviate from the full
quantum dynamics because the semiclassical dynamics gen-
erates no entropy per subsystem.

Our choice of the initial state, Eq.~5!, guarantees that it is
pure. When the main interest is in the low-energy phenom-
ena, the boson part of the initial state is chosen so that
^ŵ&;2l/e0.

9 On general grounds, we may expect that the
purity of the spin state is most susceptible to the spin-boson
interaction during the tunneling event. Indeed, the exact nu-

FIG. 3. The time evolution of~a! the spin component̂s3(t)&
and ~b! the entropy SS(t) for the spin-boson model with
e0 /V51/2 andl/V53/2. The spin-boson system is initially in the
product state~5! with w05210.

FIG. 4. ~a! The time evolution of the spin component^s3(t)& as
determined by the spin-boson HamiltonianH ~lower curve! and by
the time-dependent spin HamiltonianHS ~upper curve! for
e0 /V510 andl/V51.380 019 5. The spin-boson system is initially
in the product state~5! with w05220. Thus, 2L/e0 is the second
zero of the Bessel functionJ0. ~b! Also shown is the entropy of the
spin subsystemSS(t).
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merical calculation shows that^rS(t)& has its lowest value
there. Furthermore, in cases where the tunneling timetT is
the longest one, the degree of pureness of the spin state is
already affected at much shorter time scales. This time scale
is connected to the revival timetD;tB . For instance, the
fast oscillations of quantum recurrences signify a nearly pure
state~small entropy!.19 The incomplete revivals can be inter-
preted as a partial loss of information due to quantum or
thermal fluctuations. At nonzero temperatures, mixing be-
comes stronger and coherence~as associated with oscilla-
tions characteristic of a pure state! is reduced.20 In other
words, the boson-spin interaction causes incoherent motion
of the polaron. This also implies a nearly vanishing Bloch
vector ^sW &.

We note that not only a strongly interacting system lead-
ing to a dynamic double well has interesting effects, but also
that in a weakly interacting system a dispersing wave packet
is observed. This is a result of repeated spin-boson collisions.
Here, the boson propagation shows the loss of coherence due
to quantum fluctuations. A similar phenomenon also occurs
in the strongly interacting system even if the motion of the
wave packet is confined to one of the wells because the well
provides a nonlinear potential.

Even though the time-dependent Husimi distribution
shows complicated behavior, it cannot be taken as an indica-
tion of ‘‘quantum chaos’’ on the basis of ideas from random-
matrix theory where universal features of quantum spectra
for classically chaotic systems are taken as evidence for
complexity in the corresponding quantum systems. This
complexity, often designated ‘‘quantum chaos,’’ is usually
analyzed in terms of distributions of nearest-neighbor level

spacings21 and level curvatures22 as a function of a noninte-
grability parameter. For example, for chaotic systems, the
distribution for the nearest-neighbor level spacingD should
have the formP(D);Db (b51,2,4), for smallD. The en-
ergy spectrum of the Hamiltonian~1! has numerous avoided
level crossings, but there exists a nonzero energy scaleD0

below which no level spacings are found. This result is in
accordance with the fact that the Hamiltonian is quantum
integrable.23 In addition to energy conservation, the system
has inversion symmetry. The Hamiltonian can therefore be
block diagonalized in terms of the parity operator,
P5eipa

†a
^ei (p/2)(s111).24

In summary, an excited spin-boson model is shown to
exhibit novel scattering processes that have a very intuitive
explanation. At high enough energies, they are described in
terms of Landau-Zener tunneling and eventually lead to the
destruction of the composite nature of the polaron. Many
aspects of the full quantum-dynamical evolution are lost
upon employing the semiclassical or rotating-wave approxi-
mations. In particular, the phenomenon of dynamic localiza-
tion is found to deteriorate due to the entropy-generating
quantum corrections described by these scattering processes.
These findings have clear, experimentally observable impli-
cations regarding many physically interesting situations,
such as small polarons in strongly-correlated systems and
single atoms in microwave cavities.
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