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An approximation technique for the calculation of pulsed-gradient experiment. We have also recently initiated a study of the
NMR signals in confined spaces is introduced on the basis of a theoretical description of these issues with the help of a new
memory-function formalism and compared to the well-known cumu- approach based on equations which are nonlocal in time.
lant expansion technique. The validity of the technique is investi- We begin a report on this study in the present paper by
gated for the cases of a time-independent field gradient and a gradi- analyzing two typical experiments. The first involves the use
ent consisting of two pulses of finite duration. It is found that the

of a time-independent applied magnetic-field gradient andvalidity is governed by the ratio of two characteristic times: the time
the second involves the use of two gradient pulses.for the spins to traverse the dimensions of the confining space

Our approach, which may be called the memory approach,through diffusion and the reciprocal of the extreme difference be-
is based on the application of projection operators (14, 15)tween values of the precession frequency of the spin. Oscillations in

the time evolution of the signal for the constant gradient, as well to the evolution equation of the system density matrix. Al-
as oscillations in the (gradient) field dependence for the two-pulse though projection operators have been applied to the problem
gradient, which are both characteristic of the exact signals, are pre- of spins diffusing in a constant magnetic-field gradient pre-
dicted by the new technique but not by the cumulant technique. The viously (16) , a Markoffian approximation, which destroys
cumulant results are shown to arise as an approximate consequence the memory-function nature of the equation, has been made.
of the memory results. q 1996 Academic Press, Inc.

Retaining the memory-function character of evolution equa-
tions has been found to be very useful in a number of other
contexts such as in exciton dynamics (17) , vibrational relax-

INTRODUCTION
ation (18) , and polaron evolution (19) . Because of the con-
siderable practical success of the memory technique in theseThe diffusion of particles possessing a nuclear spin in
other contexts, we introduce it in this paper for NMR calcula-confined geometries as studied with pulsed-gradient spin-
tions. We compare the validity of the memory techniqueecho NMR has been reviewed in (1) and reconsidered in
with that of another common approximation procedure(2–6) . Many of these studies make use of short gradient
(11, 12) by comparing the approximate results to numeri-pulses (SGP) during which the diffusion of the particles can
cally exact calculations. The paper is outlined as follows. Inbe taken to be negligible. The signal in the SGP experiment
the remainder of this section, we set out the evolution equa-can be shown to be given by the modulus of a structure
tions for the system and indicate the exact starting point offactor for the confining geometry. However, the SGP limit
the calculations. In the next sections, we introduce the mem-is not always physically realizable in practice. A few recent
ory-function approach, mention the cumulant expansionarticles have been concerned with extending our understand-
technique and show that it can be obtained from our memorying of the use of NMR as a confining geometry probe in the
result through a partial time-local approximation, considercase of finite-width pulses (1, 7–12) .
a simple example of constrained geometry and compare theThe fact that, during such finite-width pulses, the diffusion
various results for the time-independent gradient as well asof the particles cannot be neglected introduces considerable
for the two-pulse gradient, and present concluding remarks.complication in analytical investigations. Blees and others

The system comprises a large number of particles, each(8–10) have performed numerical calculations which take
possessing a nuclear spin diffusing in the presence of ainto account the effect of the finite-width pulse on the typical
strong homogeneous static magnetic field B0 and a weakNMR microscopy experiment. Mitra and Halperin (7) ,
inhomogeneous static magnetic field. Both the homogeneousWang et al. (12) , and Caprihan et al. (13) have proposed
and inhomogeneous fields are taken to point along the z axis.and studied the use of various approximation schemes to

study the finite-pulse width effects on the NMR microscopy The inhomogeneous field is due to a linear gradient g( t) Å
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127MEMORY-FUNCTION TECHNIQUE

gxx̂ f ( t) , where x̂ is the unit vector in the x direction. The PROJECTION OPERATORS AND THE MEMORY-
FUNCTION TECHNIQUEspins are excited at t Å 0 by a p /2 pulse about the y axis.

The equation of motion for the spin and spatial variables
of a single diffusing particle is given by The application of the projection-operator approach

(14, 15) to the NMR problem (16) proceeds as follows. One
defines a projection operator P throughÌr( t)

Ìt
Å 0i[Hr / HI / HxI , r( t)] , [1]

PO(r) Å s(r , 0) * dr *3O(r) , [5]
where

HI Å v0Iz where s(r , 0) is the initial spatial distribution of the spins
and O(r) is an arbitrary operator. As an exact consequenceHxI Å 0 f ( t)ggxIz . [2]
of the Liouville Eq. [3] , one obtains:

Here v0 Å 0gB0 , g is the gyromagnetic ratio of the particle,
f ( t) is a shape function for the gradient pulse, and Hr is the dPr(r , t)

dtHamiltonian for the spatial coordinates in the absence of
coupling to the spin variables. While Hr will generally con-
tain the complexities of the kinetic energy of the particles Å0iPL( t)Pr(r , t)0*

`

0`
*

t

0

PL( t)(10 P)
and the collisional potential energy due to interactions
among particles and interactions between particles and the 1U(r , t , r *, t *)(10 P)L( t *)Pr(r , t *)dr *3dt*, [6]
confining walls, its essential effects are taken into account
in the standard manner through the introduction of a stochas- L( t) Å LI / LIx / Lr ,
tic term to the Liouville equation,

LIO(r) Å [HI , O(r)]Ìr(r , t)
Ìt

Å 0i[HI / HIx , r(r , t)] / DÇ2r(r , t) , [3]
LIx Å [HIx , O(r)]

Lr Å iDÇ2O(r) [7]
where D is the diffusion coefficient. To take account of
the particle interactions with the walls, one must include

and U(r , t , r*t *) satisfiesappropriate boundary conditions for r(r , t) . Notice that r
is now a function of r as well as t , the operator r having
been replaced by the c-number parameter r . The validity of ÌU(r , t , r*, t*)

Ìt
Å 0i(1 0 P)L( t)U(r , t , r *, t*) [8]the replacement of the fully quantum-mechanical starting

point by Eq. [3] requires study. However, we will not com-
ment on that issue in the present paper and will take, along along with the boundary conditions of the confining geome-
with most workers in this area (8, 12, 13, 16) , Eq. [3] to try and the initial condition U(r , t *, r *, t *) Å d(r 0 r *) .
be the starting point. In writing Eq. [6] , use has been made of the fact (see Eq.

A conversion to the interaction picture and use of »I/ … Å [5]) that Pr(r0 , 0) Å r(r0 , 0) . This property is obvious
»Ix / iIy … Å Tr{I/r(r , t)} leads one from Eq. [3] to since initially the gradient is off and the spatial and spin

variables are uncorrelated with r(r , 0) Å s(r , 0)sI(0) ,
Ì»I/(r , t) …

Ìt
where s(r , t) Å * dr 3r(r , t) is the reduced density operator
for the spin variables.

Å 0iggx f ( t) »I/(r , t) … / DÇ2
»I/(r , t) … . [4] To obtain useful results from Eqs. [7] and [8] it is usually

necessary to perform an expansion in LxI . The lowest order
Equation [4], known as the Torrey–Bloch equation (20) in or Born approximation is obtained by neglecting a compara-
the magnetic resonance literature, can be solved numerically tively small LxI in Eq. [8] . In this case U(r , t , r*, t*) satisfies
through standard discretization procedures. Those solutions
of Eq. [4] integrated over the confining geometry will be ÌU(r , t , r*, t*)

Ìt
referred to as the numerically exact solutions in this paper,
in keeping with standard usage in the recent NMR literature
(8, 12, 13) . Å 0i{(1 0 P)LI( t) / Lr}U(r , t , r*, t*) . [9]
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128 SHELTRAW AND KENKRE

Working in the interaction picture and using M( t) Å »I/( t) …
a( t) Å 1

2
g 2g 2 *

t

0
*

t

0

f ( t1) f ( t2)Å Tr{I/s( t)}, we obtain, with the Liouville superoperator
given by Eq. [7] ,

1 »x( t1)x( t2) …dt1dt2 0
1
2
»w( t) … 2 [15]

Mg ( t)

»w( t) … Å gg *
t

0

f ( t *) »x( t *) …dt *. [16]Å 0igg f ( t) »x0 …M( t) 0 g 2g 2 f ( t) *
t

0

dt * f ( t *)

Choosing the origin so that »x( t *) … Å 0, one obtains »w( t) …1 »xx( t 0 t *) …M( t) / g 2g 2 f ( t) »x0 …
2

Å 0, and
1 *

t

0

dt * f ( t *)M( t) , [10]

a( t)Å 1
2
g 2g 2 *

t

0
*

t

0

f ( t1) f ( t2) »x( t10 t2)x …dt1dt2 . [17]

where the dot denotes a time derivative, »x0 … and »xx( t 0
t *) … are given by The cumulant expansion result for the signal M( t) is

»x0 … Å * xU(r0 , t0)dr 3 M( t) Å expH0 1
2
g 2g 2 *

t

0
*

t

0

f ( t1) f ( t2)

»xx(t) … Å ** x0xU(r0 , t0)U(r , t, r0 , t0) 1 »x( t1 0 t2)x …dt1dt2J . [18]

1 dr 3
0dr 3 , [11]

We now show that Eq. [18], which is well known in the
NMR literature, can be obtained as a particular case of theand U(r0 , 0) is the probability of the particle being between
memory result, Eq. [13]. If the memory function f( t) inr0 and r0 / dr0 at t Å 0. U(r , t , r0 , 0) is the solution to
Eq. [13] decays very rapidly, M( t) may be removed from
the integral, yielding

DÇ2U(r , t , r0 , 0) Å ÌU(r , t , r0 , 0)
Ìt

[12]

Mg ( t)Å0g 2g 2 f ( t)M( t) *
t

0

dt * f ( t *) »x( t0 t *)x … . [19]

with the initial condition U(r , 0, r0 , 0) Å d(r 0 r0) and
Integrating Eq. [19] results inboundary condition appropriate to the confining walls.

The origin of the coordinate system can always be chosen
in such a way that »x0 … Å 0. Equation [10] then becomes M( t) Å expH0g 2g 2 *

t

0

dt 9 *
t 0

0

dt * f ( t 9) f ( t *)

M
g

( t) / f ( t) *
t

0

dt * f ( t *)f( t 0 t *)M( t *) Å 0, [13] 1 »x( t 9 0 t *)x …J . [20]

For a stationary process, f ( t 9) f ( t *) »x( t 90 t *)x … is symmet-where f( t)Å g 2g 2
»xx( t) … is the memory function. Equation

ric under an exchange of t* and t 9. One may, therefore,[13] is the primary result of the memory technique we intro-
replace the double integral of Eq. [20] over a triangularduce and whose validity we study in the following.
region in t* and t 9 by 1

2 the double integral over the corre-
sponding square region. Then Eq. [20] becomes identicalCUMULANT EXPANSION TECHNIQUE
to the cumulant result Eq. [18].

This demonstration shows explicitly that the ( trun-
The (truncated) cumulant expansion technique, whose va- cated) cumulant expansion result is a further approxima-

lidity we will investigate along with that of the memory tion to the memory result, and that it tends to the latter
result of Eq. [13], is well known in the NMR literature for those situations in which the memory function decays
(1, 12, 13) . Its results can be summarized as follows: rapidly in time. Similar connections between the cumulant

technique and memory functions have been given in Ref.
(18 ) in the context of vibrational relaxation. It is im-M( t) Å exp{ i »w( t) …}exp{0a( t)} [14]
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129MEMORY-FUNCTION TECHNIQUE

portant to understand that a significant difference exists where e is the Laplace variable and the tilde denotes the
transform. The Laplace inversion of this result can be donebetween Robertson’s earlier projection technique analysis

in the NMR context (16 ) and our present treatment. Rob- only numerically. However, it is possible to use an excellent
approximation to represent the sum of exponentials in Eq.ertson made the partial time-local approximation referred

to above, his results being consequently identical to those [23] as a single exponential term whose initial value and
time integral (from 0 to `) are respectively equal to theof the truncated cumulant technique. By contrast, our in-

terest in introducing the memory technique into NMR cal- corresponding quantities calculated from Eq. [22]. Using
culations is precisely to refrain from making the time- the relationship between sums of the form (`

nÅ1 (2n 0 1)02k

local approximation so that one can go beyond the cumu- and Bernoulli numbers B2k , specifically the results (`
nÅ1 (2n

lant results. This is in keeping with the philosophy pursued 0 1)04 Å p 4 /96 and (`
nÅ1 (2n 0 1)06 Å p 6 /960, we obtain

in the contexts of exciton dynamics and vibrational relax- the memory function f( t) Å g 2g 2
»x( t)x … in Eq. [13] as

ation (17, 18 ) .
f( t) Å C 2e02l t , [24]

TIME-INDEPENDENT GRADIENT
where C 2 Å (gga)2 /12 and l Å 5D /a 2 . Equation [23] now
becomesThe essential features of the applicability of the memory

and cumulant techniques can be understood from the rela-
tively simple case of a time-independent gradient which we M(e) Å M(0)(e / 2l)

e 2 / 2le / C 2 [25]
treat in this section. We start with the simplest possible
case of confining geometry: a line segment of length a . We

and leads, in the time domain, tomention generalizations to cylindrical and spherical confin-
ing geometries in the concluding section. If the particle dif-
fuses between x Å 0a /2 and x Å a /2, we have M( t) Å exp(0lt)Fcosh( t

√
l 2 0 C 2)

U(x , tÉx0 , 0)
/ l√

l 2 0 C 2
sinh( t

√
l 2 0 C 2)G . [26]

Å 1
a
/ 2

a
∑
`

nÅ1

cosS np

a Fx0 /
a

2GD
This is the NMR signal predicted by our memory technique
for the case of the time-independent gradient. We notice

1 cosS np

a Fx / a

2GDexpH0 n 2p 2DÉtÉ

a 2 J [21] that the signal is formally identical to the displacement of a
damped harmonic oscillator, the damping being controlled
by the diffusion time a 2 /D required to cover the extent of
the confining space.so that, with »x0 … Å 0, the autocorrelation of x is

Numerical Comparison
»x( t)x …

The cumulant result corresponding to the memory result
Eq. [26] is obtained from Eqs. [18] and [22],Å 8a 2

p 4 ∑
`

nÅ1

1
(2n0 1)4 expH0 (2n0 1)2p 2Dt

a 2 J . [22]

ln M( t) Å 0SKgga 3

D D2

Memory-Function Results

The memory result is obtained in the Laplace domain
1 ∑

`

nÅ1

(2n 0 1)2p 2tDa02

/ exp[0(2n 0 1)2p 2tDa02] 0 1
(2n 0 1)8 ,from Eq. [13] as

[27]

MH (e) Å M(0)

e / 8Sgga

p 2 D2

(`
nÅ1 (2n 0 1)04

[e / (2n 0 1)2p 2Da02]01

, [23] where K is the numerical constant 192
√
2/p8 . We plot the

cumulant result along with the memory result, as well as the
exact result, in Fig. 1 for a number of values of the characteristic
parameter z Å C/l: (a) 0.5, (b) 1, (c) 2, (d) 10. The signifi-
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130 SHELTRAW AND KENKRE

FIG. 1. The NMR signal M( t) as a function of the dimensionless time tD /a 2 in the continual-gradient case showing a comparison of the numerically
obtained exact result (solid line) , the memory result (dashed line) , and the cumulant result (dotted line) . The value of z (see text) is taken to be (a)
0.5, (b) 1, (c) 2, and (d) 10, respectively.

it would take the spin particle to diffuse from one end of thecance of this parameter z , which equals gga3/10
√
3D , is that,

confining segment to the other, viz., D/a2 .except for a numerical proportionality constant, it is the ratio
For small values of z , the memory-function results areof the extreme difference between the precessional frequencies

in the confining space, viz., gga , to the reciprocal of the time seen to be quantitatively better than the cumulant results
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131MEMORY-FUNCTION TECHNIQUE

FIG. 1—Continued

as Figs. 1a and 1b show. As z is increased further, we see dicted are overly pronounced. This seen in Fig. 1d. The
comparison thus establishes that the memory techniquefrom Fig. 1c that a qualitative feature of the exact results,

viz., the oscillations with respect to time, are reproduced is generally preferable to the cumulant technique, that it
produces oscillations characteristic of the exact evolutionby the memory technique but not by the cumulant result.

As z is increased still further, this qualitative superiority unlike the cumulant result, and that its quantitative differ-
ence from the exact result becomes larger as z increases.of the memory technique persists but the oscillations pre-
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132 SHELTRAW AND KENKRE

Larger z corresponds to larger field strengths, larger con- M( t) Å 1
finement lengths, and smaller diffusion constants.

Mg ( t) Å 0, [31]

TWO-PULSE GRADIENT whereas, in the region D£ tõ d / D, the initial conditions
become

While the constant-gradient case treated above facilitates
the analysis of the applicability of the approximation tech- M(D) Å M(d)
nique, it is of interest to examine also a realistic case encoun-
tered in NMR observations, viz., the two-pulse experiment Mg (D) Å 0 *

d

0

f(D 0 t *)M( t *)dt *. [32]
known commonly as PGSE (pulsed-gradient spin echo) (1) .

Memory-Function Results These initial conditions are found by solution of the problem
in region 1 and by using Eq. [29]. The final memory result

The two-pulse experiment consists of the application of for the signal strength at the echo is
two gradient pulses of strength g and duration d, and sepa-
rated by an interval of time D. The second pulse is preceded M(2D)
by a p pulse about the x axis. This is, however, mathemati-
cally equivalent to changing the direction of the field associ- Å e02ldcos2(d

√
C 20 l 2)/ e02ld l√

C 20 l 2ated with the second pulse and omitting the rotation due to
the p pulse. The gradient shape function f ( t) is then given
by 1 sin(2d

√
C 20 l 2)/ 1

C 20 l 2 (l 2e02ld/ C 2e02lD)

f ( t) Å Q( t) 0 Q( t 0 d) 0 Q( t 0 D) 1 sin2(d
√
C 20 l 2) . [33]

/ Q( t 0 [D / d]) , [28]

Numerical Comparison
where Q( t) is the Heaviside step function. In this case the

The memory result of Eq. [33] relevant to the two-pulsemagnetization is measured at the peak of the echo produced
case has as its cumulant counterpart the following (11) :by the p /2 radiofrequency pulse. The general memory equa-

tion now becomes

ln M(2D)Å0 8
p 8 Sgga

D D2

M
g

( t)

1 ∑
`

nÅ1

1
(2n0 1)8 {2[(2n0 1)2p 2Dda02

/ exp[0(2n0 1)2p 2Dda02]]

/ exp[0(2n0 1)2p 2DDa02]
Å

0*
t

0

dt *f( t 0 t *)M( t *) 0 £ t õ d

0 d £ t õ D

*
d

0

dt *f( t 0 t *)M( t *) 0 *
t

D

dt *f( t 0 t *)M( t *)

D £ t õ d / D

0 d / D £ t .

1 {exp[0(2n0 1)2p 2Dda02]0 1}

1 {exp[(2n0 1)2p 2Dda02]0 1}}. [34]

The PGSE experiment often allowsD to be sufficiently large
for the diffusing particles to interact with the boundaries of[29]
a confining geometry (DD /a 2 § 1) and strives to make the
pulse short (dD /a 2 ! 1). A diffraction pattern then results

The exponential form of the memory function f( t 0 t *)
when the echo strength is plotted as a function of the gradient

allows the simplification of the above evolution into
strength, the location of the minima of the diffraction pattern
being simply related to the characteristic length of the con-

ME ( t) / 2lMg ( t) / C 2M( t) Å 0. [30] fining geometry (1) . One of the serious shortcomings of the
(truncated) cumulant technique is that it is unable to predict
such diffraction patterns. Our memory result, however, doesFor the region 0 £ t õ d, we use the solution of Eq. [30]

with the initial conditions show the existence of these patterns and is thus particularly
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133MEMORY-FUNCTION TECHNIQUE

suited to the investigation of the effect of pulses during Refs. (15–17) , and is represented by Eq. [13]. Through a
comparison of numerically obtained exact results (8) fromwhich significant diffusion occurs.

The times 1/l and 1/C introduced above for the case of the Torrey–Bloch evolution (see Eq. [4]) , we have found
that the new technique is generally preferable to the trun-the time-independent gradient are also important for this

case. They appear here in comparison to the duration d and cated cumulant technique used in the NMR field and repre-
sented by Eq. [18]. Indeed, we have shown that the cumulantthe interval D. The relevant quantities are thus ld Å dD /a 2

and lD Å DD /a 2 as well as Cd and CD. The quantity DD / result can be obtained from the memory result through a
partial time-local approximation. We have seen that oscilla-a 2 , which is a measure of how much the particle diffuses

during the interval between the pulses relative to the confin- tions in the signal, whether as a function of time for the
constant gradient case (see Fig. 1) or as a function of theing length, has been taken to equal 1.0 in (a) , (b) , and (c)

and 0.2 in (d) of Fig. 2. The confinement is thus sampled gradient field strength for PGSE, more precisely of the di-
mensionless wavevector ggda (see Fig. 2) , are denied tomuch less in (d) than in the other cases. The quantity dD /a 2 ,

which measures the extent of diffusion during the duration of the cumulant technique but are reproduced by the memory
technique. On the other hand, we have seen that the memorythe pulse, also relative to the confining length, is taken to

be 0.001 in Fig. 2a, increased by a factor of 50 to the value technique loses in validity whenever the confinement is not
very effective. Thus, for instance, it is inadvisable to use the0.05 in Fig. 2b, and increased further to 0.25 in Fig. 2c, and

to 0.001 in Fig. 2d. The pulses thus become progressively memory technique near the limit of no confinement. We
longer as one goes from (a) to (d) . have discussed the dimensionless ratios z Å gga 3 /10

√
3D ,

Wang et al. (12) introduced the two-parameter space as well as dD /a 2 and DD /a 2 , in delineating the various
spanned by dD/a2 and DD/a2 into the analysis of the two- limits of validity. Figures 1 and 2 make our findings clear
pulse experiment, and clarified with its help a number of fea- in this context.
tures of the NMR signal. They also mentioned an extension The single-exponential approximation in our memory treat-
of their two-parameter space into a third dimension spanned ment has been made only for simplicity but is indeed excellent
by ggda and examined the attenuation behavior for nonzero as can be seen by plotting the actual memory function f(t) as
ggda at specific points of interest in the dD/a2–DD/a2 plane. given by the right-hand side of Eq. [22], and comparing it to
Our analysis in the present paper is not restricted to vanishing the approximate single-exponential form. Indeed, a monoexpo-
ggda but has a different domain of validity. Roughly stated, nential approximation which is simpler than the one we have
our treatment is valid for DD/a2 ú 1 and thus covers only used above is also excellent. It consists of dropping all but
part of the vanishing ggda region that the cumulant analysis the first term in the summation in Eq. [22]. The second and
is able to treat. However, unlike the cumulant technique, our successive terms are at least a factor of 80 smaller than the
analysis can provide a description of the diffraction patterns first one independently of system parameters.
referred to above, which arise for nonzero ggda . Although While we have based our analysis above on confinement
experimental observation of these patterns is difficult except at in a one-dimensional linear segment, it is straightforward to
high gradients, they have been attracting attention recently in show that, in the case of cylindrical and spherical confining
the NMR community (2, 3, 7). geometries, the analysis is unchanged in essentials. As in

Our prediction of the patterns is clear in Fig. 2, where we Eq. [22], the autocorrelation function »x( t)x … has the form
see that increasing the field g yields minima in the signal. In of a sum of exponentials,
addition to the fact that the very existence of the minima is a
feature of the exact result that the memory technique does,

»x( t)x … Å (gga)2

2
∑
`

kÅ1

1
b 2

k (b 2
k 0 1)

exp(0b 2
k D /a 2) ,

while the cumulant technique cannot, reproduce, we see that
the memory result is more accurate than the cumulant technique

[35]below the first minimum. This is more apparent as the pulse
is made wider. Figure 2 also shows that, as DD/a2 is made the first term in the k summation being considerably larger
small so that the particle has insufficient time to sample the than subsequent terms as in Eq. [22]. Approximating the
boundaries of the confining geometry, a shortcoming of the sum by the first term, we find that the memory function f( t)
memory technique emerges: it predicts an exaggerated lifting is given once again by Eq. [24] with the modification that
of the minima from the horizontal axis. C and l are now

CONCLUDING REMARKS
C 2 Å (gga)2

2b 2
1(b 2

1 0 1)
[36]

The purpose of the present paper has been to introduce a
new technique for the computation of NMR signals in con- l Å b

2
1D

2a 2 . [37]
fining geometries. It is based on a memory formalism as in
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134 SHELTRAW AND KENKRE

FIG. 2. The normalized NMR signal M(2D) /M(0) as a function of the dimensionless wavevector ggda for the PGSE experiment showing a
comparison of the exact (solid line) , memory (dashed line) , and cumulant results (dotted line) . The value of the quantities dD /a 2 and DD /a 2 are
respectively (a) 0.001, 1.0; (b) 0.05, 1.0; (c) 0.25, 1.0; and (d) 0.001, 0.2.

The primary virtue of the memory technique is that, unlikeHere b1 is the smallest zero determined from J*1 (b) Å 0 for
the cumulant technique, it predicts oscillations (w.r.t. timethe cylinder and bJ *3/2 (b) 0 (1/2)J3/2 (b) Å 0 for the
and w.r.t. field strength) present in the exact evolution. Itssphere, and a is the radius of the cylinder or sphere. Specifi-

cally, b1 equals 1.84 for the cylinder and 2.08 for the sphere. primary shortcoming is that for large gradient strengths,
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FIG. 2—Continued

potentials of physical interest carried out with the help oflarge confining lengths, and small diffusion constants, the
the memory and cumulant techniques.oscillations it predicts have larger amplitudes than in the

exact evolution. We also point out that neither the memory
function nor the cumulant expansion approach gives the ACKNOWLEDGMENTS
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