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It is shown that a recently reported realization of trapping in a two-level system with frequency-modulated
fields in quantum optics is intimately related to an earlier demonstration of dynamic localization of charges
moving in a crystal under the action of a time-periodic electric field. Size effects on the phenomenon are
explored.@S1050-2947~96!50609-8#

PACS number~s!: 42.50.Gy, 71.38.1i, 72.10.2d, 72.20.Ht

Agarwal and Harshawardhan~AH! @1# have recently com-
mented on the existence of population-trapping states in a
two-level system driven by a field that varies in time sinu-
soidally. Those authors analyze, numerically and analyti-
cally, the phenomenon of localization of the population on
one state for a substantially long time, followed by an abrupt
jump to the other state, if the ratio of the exciting field am-
plitude to the frequency of the field equals one of the zeros
of the J0 Bessel function.

We show here that this phenomenon is closely related to
dynamic localization, i.e., the localization of a moving
charged particle under the action of a time-periodic field,
reported earlier by Dunlap and Kenkre~DK! @2–4#. Related
effects have also been observed in the nonlinear context
@5–8#.

The crystal Hamiltonian for the transport system consid-
ered in Refs.@2–4# is given by
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`
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where um& represents a Wannier state localized on a lattice
sitem, the position operatorx̂ has been assumed to be diag-
onal in the Wannier basis,a is the lattice constant,E is the
applied electric field,f (t) describes the time variation of the
electric field,e is the particle charge, andV is a ~nearest-
neighbor! matrix element. The analysis of DK gives exact
results for arbitrary time dependence of the field@2#, speci-
fies the explicit connection of the new phenomenon to Bloch
oscillations by exploring the system in momentum space@3#,
and treats the effects of scattering of the particle due to lat-
tice imperfections by using the stochastic Liouville equation
@4#. The key finding of DK was the localization of the par-
ticle that occurs when the ratio of the strength of the imposed
time-periodic electric field to its frequency becomes equal to
certain discrete values, one of the results they obtained being
that these discrete values are related to the zeros of the ordi-

nary Bessel function of order 0 when the field is sinusoidal.
This dynamic localization phenomenon was studied in the
nonlinear context by Konotopet al. @5# and by Caiet al.
@6–8#. Similar effects have also appeared in the work of
Holthaus@9#, Ignatov and Romanov@10#, and Epifanovet al.
@11#, and in the context of avalanches in laser damage in the
work of Kenkreet al. @12#. In quantum optics, related work
on the two-level atom subject to a time-dependent field is
due to Eberly and co-workers@13#, an early reference being
by Shirley @14#.

In order to appreciate the connection between the quan-
tum optics treatment of AH@1# and the two-site case of the
transport analysis of DK@2–4#, note that Eq.~1! above,
which is Eq.~1.1! of Ref. @2#, has as its special case for two
sites (m51,2 rather thanm52` to `! and sinusoidal field
variation,

H5\V~ u1&^2u1u2&^1u!1
\E
2

cos~vt !~ u1&^1u2u2&^2u!,

~2!

whereE5eaE. Equation~2! is precisely Eq.~7! of Ref. @1#.
The parametersV, v, and E in Eq. ~2! correspond respec-
tively to g, V, andMV in Ref. @1#. The condition for trap-
ping derived in Ref.@1#, viz., J0(M )50, is identical to the
condition derived in Ref.@2# for dynamic localization, i.e.,
J0~E/v!50. Furthermore, the two-level atom treatment@1# of
the effect of spontaneous emission on the probabilities of the
two atomic levels should be compared to the analysis of the
effect of scattering on dynamic localization@4#. For instance,
the ‘‘ladderlike’’ formations observed in Fig. 4 of Ref.@1#
for the probability p of excitation for different values of
spontaneous emissiong appear to correspond to the ‘‘stair-
cases’’ shown for the mean-square displacement for various
values of scattering strengtha in Fig. 3 of Ref. @4#. It is
tempting to conclude that the AH trapping is identical to the
DK dynamic localization; however, this is not true. They are,
indeed, very closely linked, but describe different aspects of
the phenomenon. We will make this important point clear
below but first focus on the treatment of finite chains.
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The explicit calculation presented in DK was for an infi-
nite chain. The AH treatment addresses the two-state system.
Of interest in the crystal context is the analysis of the inter-
mediate case lying between these two extremes, viz., a chain
of N sites. The primary element introduced in finite chains is
boundaries. We will take them to be purely reflecting here.
This results in a competition between two characteristic
length scales of the system: the confinement length due to
the oscillating electric field and the reflection length due to
the finiteness of the chain. There are two consequences of
this competition, which are apparent when the size of the
lattice is not much larger than the confinement length. The
first is the return of the particle to its initially localized site
after encountering the ends of the lattice. This results in re-
currences. The second is that the ratio of the confinement
length introduced by dynamic localization~Bessel root con-
dition! to the chain length is not zero, in contrast to the
infinite chain case. This results in a slow delocalization even
when the Bessel root condition is obeyed. We illustrate both
these effects in Fig. 1: the first in the main figure, and the
second in the inset. We plot^m2&, the dimensionless mean-
squared displacement for a five-site chain as a function of
dimensionless timeVt. The solid line denotes the case where
E/v is a root ofJ0 . The dashed line shows the case where
J0~E/v!Þ0. The main figure shows the short-time features of
the mean-squared displacement: as the dashed line shows,
owing to the fact that the chain is finite, the mean-square
displacement grows with time but remains bounded, in con-
trast to the infinite chain.@cf. Fig. 3~b! of Ref. @2#.# The inset
shows the occurrence of imperfect localization at long times.

We analyze the effects of scattering through the simple
incorporation of a dephasing rate in the density matrix equa-
tions, as in Ref.@4#. We treat a finite chain. Its extreme limits
correspond to the analysis of the DK system~infinite chain!

@4# on one hand and that of AH~two-state system! @1# on the
other. We have constructed time evolution plots of^m2& for
finite chains for various values of the dephasing~scattering!
rate and seen that, for low and intermediate values of the
rate, the ‘‘staircase’’ structure seen in Fig. 3 of Ref.@4# is
essentially reproduced. Finite-size effects visible clearly in
Fig. 4 of Ref.@11# are also recovered. For space reasons we
do not exhibit these plots here.

It has been shown in Fig. 1 of Ref.@4# that theeffective
diffusion constant in the presence of scattering, when plotted
as a function ofE/v, exhibits interesting oscillations. In order
to stress the connection to the two-level atom case, we plot
in Fig. 2~b! the quantityW5[* 0

`dtp(t)]21, wherep(t) is
the probability difference between the two atomic levels,
which represents the effective diffusion constant for a two-
state system. We have plotted the normalized quantity
Wnorm5W~E/v!/W~0! againstE/v for a/v50.2,1,2. Note the
sharp decrease in the transfer rate whenE/v equals one of the
roots of J0 , signifying dynamic localization. Note also the
fact that, as the scattering rate increases, the oscillations be-
come less noticeable, in agreement with the observation
made in Ref.@4# that scattering tends to reduce the effect of
dynamic localization.

An analysis of the extent of the overlap between the
eigenfunctions of the Hamiltonian with the maximum field
applied and those without the field applied results in a crite-
rion measuring the sensitivity to the Bessel root condition.
The essential conclusion is that the sensitivity is high when
V/NE, the ratio of the intersite transfer to the end-to-end
energy mismatch, is small. Figure 3 shows this aspect
clearly.

We have seen close similarities between the AH trapping
and the DK dynamic localization. We now show that the two
phenomena, while related closely, arenot identical. Figure 4
distinguishes between them. We takeV/E50.008 and plot
the evolution of the probability of the initially occupied site

FIG. 1. Dimensionless mean-squared displacement^m2& for a
five-site chain plotted as a function of dimensionless timeVt to
show two size effects. In the main figure, short-time behavior is
shown. The solid line shows the case whereJ0~E/v!50. The dashed
line shows the case whereJ0~E/v!Þ0. Only whenE/v equals the
root of J0 does the particle show localization. Finite-size effects
make the mean-square displacement bounded, even for the case
whenJ0~E/v!Þ0. The two curves in the inset show the evolution of
the maxima and minima, respectively, of the solid line in the main
figure. We see that, at long times in a finite chain,^m2& will grow
even forJ0~E/v!50.

FIG. 2. The quantityW that represents the effective diffusion
constant for a two-state system plotted as a function ofE/v for
various scattering ratesa/v. Plotted is the normalized transfer rate
Wnorm ~see text! as a function ofE/v for a/v50.2,1.0,2.0. Dynamic
localization causes the oscillations of the transfer rate. The oscilla-
tions are visible for small scattering but are washed out for large
scattering.
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in a two-site system for the resonance condition~E/v
530.635! ~solid curve! and a slightly off-resonance condi-
tion ~E/v531.635! ~dotted curve!. The fact that, in Fig. 4, the
solid curve lies essentially horizontally, while the dotted
curve oscillates, signifies dynamic localization. The appear-
ance of the substructure inboth curves represents the AH
trapping. We see little sensitivity of the AH substructure to
the Bessel root condition for the parameters considered. The
sensitivity of dynamic localization is, however, considerable.

The AH structure, whose source can be traced to Zener’s
analysis@15#, is absent in the DK analysis of the infinite
chain. Its gradual disappearance on increasing the size of the
chain is seen clearly through a comparison of Fig. 4 with
Figs. 5~a! and 5~b!. All these three representV/NE50.016,
the number of sitesN being 2, 4, and 16, respectively. The
solid ~dotted! curve in all three represents the on~off! reso-
nance condition. The substructure is difficult to recognize
already for the 16-site system.

We thank J. H. Eberly and C. K. Law for drawing our
attention to the article by Agarwal and Harshawardhan@1#.
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of the USDOE, and in part by Natural Sciences and Engi-
neering Research Council of Canada and the Ontario Center
for Materials Research.

FIG. 5. Disappearance of the AH substructure on increasing the
size of the system: The quantity plotted is the same as in Fig. 4,
except that the size of the system is increased to four sites in~a! and
to 16 sites in~b!. The solid~dotted! curves show the on~off! reso-
nance cases. The value ofV/NE is held constant at 0.016.

FIG. 3. Effect of the magnitude ofV/NE on the sensitivity to the
Bessel root condition seen through a plot of^m2& vsvt. Solid lines
correspond toJ0~E/v!50 and dashed lines toJ0~E/v!Þ0. In ~a!
V/E50.4 andN52. In ~b! V/E50.4 butN520. Comparison of~a!
and~b! shows size sensitivity. In~c! N52 butV/E50.01. Sensitiv-
ity is thus restored for the two-site system by reducingV/E.

FIG. 4. Coexistence of AH trapping and DK dynamic localiza-
tion in a two-site system. The probability of the initially occupied
site on resonance~solid curve! and off-resonance~dotted curve! is
plotted as a function of time. See text for details. The large differ-
ence between the two curves represents DK localization. The
smaller substructure present in both curves represents AH trapping.
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