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Using the general result that the mobilitym of charge carriers driven in a spatially correlated rand
potential by an electric fieldE can be expressed in terms of the Laplace transform of a partic
correlation function related to the random potential, we demonstrate that the exponential depend
m on

p
E universally observed in molecularly doped polymers arises naturally from the interactio

charge carriers with randomly distributed permanent dipoles. [S0031-9007(96)00689-8]

PACS numbers: 72.10.Bg, 72.80.Le
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High-field time-of-flight experiments have been us
for over two decades to characterize carrier mobilities
photoexcited molecularly doped polymers and amorph
molecular glasses [1–3]. Numerous measurements ov
large range of fieldsE and temperaturesT have established
that, in many materials, the carrier mobilitym exhibits a
universal Poole-Frenkel behavior [4]

m  m0 exp

∑
2

Q

kT

∏
expfg

p
E g , (1)

wherem0 is a temperature independent prefactor andk is
Boltzmann’s constant. In a particular form of this ph
nomenological expression proposed by Gill [5], the a
tivation energyQ is temperature independent, and t
Poole-Frenkel factor is writteng  Bsb 2 b0d, where
b  1ykT , andB andb0  1ykT0 are constants. In a sec
ond form, motivated by extensive numerical simulatio
on the Gaussian disorder model (GDM) of Bässler and
workers [2], QykT  s2sy3kTd2, and g  Csb2s2 2

S2d, wheres is the width of the energetic disorder, an
C andS are constants. Many recent theoretical attem
to explain this observed proportionality between lnm andp

E have focused on the role played by spatial and en
getic disorder [2,6–8]. The GDM, for example, describ
transport as a biased random walk among dopant molec
with Gaussian-distributed random site energies [2]. Of
various mechanisms proposed as the source of this d
der, it has been shown that the interaction of charge carr
with permanent dipoles (located on either dopant or h
molecules) can give rise to a Gaussian-like density of st
of the type assumed in the GDM [9,10]. Considerable d
establishing a relationship between carrier mobilities a
group dipole moments of molecular constituents supp
this view of charge-dipole interactions as the source of
ergetic disorder in these systems [9,11–15].

Unfortunately, although the standard GDM satisfac
rily explains many features of experiment, such as
time-of-flight transients, it displays a field dependen
similar to (1) only in a relatively narrow range and only
large fields (E . 105 Vycm). Indeed, a general feature
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Monte Carlo simulations [2,6] and other numerical wo
[8] on this problem is a significant regime at low field
in which the field dependence is much weaker than t
described by (1). In experiments, by contrast, the line
dependence of lnm on

p
E often [16] persists down to the

lowest fields probed (8 3 103 Vycm).
In this Letter we develop an analytical theory for th

field dependence based upon an idea introduced recentl
Gartstein and Conwell [17]. We show, using a relation f
the drift velocity that is exact for motion in one dimensio
how the mobility for charge carriers moving in a spatial
correlated random potential can be expressed in term
the Laplace transform of a particular correlation functio
related to the random energy field in which the carrie
move. Using this relationship we then demonstrate t
an exponential dependence of the mobility on

p
E at low

fields arises naturally from fluctuations in site energi
that arise from the interaction of charge carriers with fix
permanent dipoles. As such, our calculation represents
first analytical theory of transport in disordered systems
explain in a simple way the ubiquitous behavior observ
in this class of materials.

As pointed out by a number of workers [15,17], th
charge-dipole interactions often identified as the sou
of energetic disorder are of sufficient range to lead
significant positive correlations among the energies
neighboring hopping sites. Gartstein and Conwell [1
showed that finite-range correlations imposed upon
standard GDM can push the regime over which the fie
dependence is described by (1) to lower fields, in bet
agreement with experiment. Physically, a strong fie
dependence should occur [17] when the potential dropF 
eE, across a relevant length of the system is compara
to kT . With uncorrelated energies the only length sca
in the problem is the mean interdopant spacing,  r.
Correlations introduce a new length scale, namely,
correlation length associated with the energetic disord
thereby decreasing the critical field.

To analytically pursue this idea we consider a ca
rier migrating across a sample of widthL  Nr in the
© 1996 The American Physical Society
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presence of an electric fieldE. We assume this motion
can be described by a biased random walk through nea
neighbor rates among dopant molecules having random
correlated Gaussian energiesun of zero mean and width
s . kT . Focusing only on those molecules along whi
the particle drifts, we write

dPn

dt
 2 sWn21,n 1 Wn11,ndPn

1 Wn,n21Pn21 1 Wn,n11Pn11 , (2)

for the probabilityPnstd of finding the particle at thenth
site along this path. For simplicity we assume a symme
detailed balance relationWn61,n  n0 expf2 1

2 bsun61 2

un 7 Fdg, whereF  eEr is the energy change induce
between two sites by the field [18]. The steady-state d
velocity can be written exactly using a general solution d
to Derrida [19], which for the hopping rates assumed abo
takes the form

y 
n0rebFy2s1 2 e2bNFd

1
N

PN21
m0 e2mbF

PN
n1 e2bun ebun1m ebdn1m

, (3)

where2dn  un11 2 un. The exponentiale2bNF in the
numerator is negligible, sincebNF is the ratio of the
potential drop across the sample to the mean ther
energy. In the limit that the site-energy difference
small compared tokT (as occurs when the energies
neighboring sites are strongly correlated) we ignore fact
involving dn1m, so that

y 
n0rebFy2PN21

m0 e2mbFke2bun ebun1m l
, (4)

where we have identified the sum

ke2bun ebun1m l 
1
N

NX
n1

e2bun ebun1m (5)

over the macroscopic crystalsN ! `d with the ensemble
average of the associated exponentials. ForbF , 1, we
can approximateebFy2 by unity, the remaining sum in the
denominator can be replaced by an integral, and the fi
dependent mobility

m  yyE 
m0

e
R`

0 dy e2eyke2bUs0debUs ydl
(6)

involves the Laplace transform of the correlation functi
(5), in whichUs yd represents the zero-field energy of a s
at y, the Laplace variablee  beE represents the applied
field, and m0  bn0er2. For dn, F , kT , Eq. (6) is
independent of the particular way in which the detail
balance condition for the hopping rates is implement
We note in passing that (6) has considerable genera
and applicability and can be derived from the Fokke
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Planck equation [20] for a particle diffusing in a continuou
random potentialUs yd.

We now address the correlation functionke2bUs0d 3

ebUs ydl  kebDy l appearing in (6), whereDy  Us yd 2

Us0d represents the spatially fluctuating energy differen
between two sites separated by a displacementy. This
quantity will display a characteristicy dependence tha
depends upon the correlations. Making the same Gaus
approximation which forms the basis for the GDM [2], w
take the energy differenceDy to have zero mean, and th
required correlation function to have the form

kebDy l  e
1

2
b2kD2

yl (7)

involving the variancekD2
yl. Note that, asy ! 0, the

quantity D2
y vanishes, andkebDy l ! 1. Moreover, for

large y, the quantitiesUs0d and Us yd become indepen-
dent, andkD2

yl ! 2s2, wheres2 is the variance ofU.
The correlation function (7) is, therefore, bounded by t
relation1 # kebDy l # eb2s2

. This bound can be used to
determine limiting forms for the mobility predicted by (6)
For example, using Tauberian theorems for the Lapla
transform we find a low field mobility, lime!0 m 
m0e2b2s2

, which is exponentially suppressed by th
energetic disorder. On the other hand, because (6)
been derived under the assumption of low electric fiel
its high-field limit, lime!` m  m0, displays the behavior
of a system with no disorder, rather than that appropri
to (2). These bounds are useful, however, in that th
determine the maximum variation ofm with E which can
be attributed to correlated Gaussian disorder. The la
changes observed experimentally in the mobility, e.
suggests considerable energetic disorder,b2s2 ¿ 1.

To determine the actual field dependence we now p
form an explicit calculation ofkD2

yl. To this end we con-
sider the potential energy

Us$r0d  2
X
m

$pm ? $E$r0 s$rmd  2
Z

d3r $ps$r d ? $E$r0 s$r d

(8)

of a chargee located at a point$r0 in a medium containing
a distribution of randomly oriented but identical poin
dipoles $pm. In this expression,

$E$r0 s$r d 
e

4pe

$r 2 $r0

j $r 2 $r0j3
(9)

is the field at $r due to the charge at$r0, and $ps$rd P
m $pmds$r 2 $rmd is a fluctuating polarization density. We

exclude the interaction energy of the charge with t
molecule on which it is sitting, which will be the same fo
all similar dopant molecules, by excluding from the regio
of integration a volume of some radiusa comparable to the
size of a molecule. Equivalently, we can view the field
(9) as arising from a uniformly charged sphere of radiusa,
inside of which the field vanishes. The energy differen
543
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Dy  Us $y d 2 Us0d between two points separated by a
arbitrary displacement$y then becomes

Dy 
Z

d3r $ps$r d ? $Es$r d , (10)

where $Es$r d  $E0s$r d 2 Eys$r d can be interpreted as th
field due to a positive sphere of radiusa located at
the origin and a negative sphere located at$y. This
interpretation is useful for evaluatingkD2

yl, which may now
be written as the double integral,

kD2
yl 

Z
d3r

Z
d3r 0 $Es$r d ? k $ps$r d $ps$r 0 dl ? Es$r 0 d .

(11)

Evaluation of the average in (11) over the random o
entations and positions of the independently distribu
dipoles is straightforward, and yieldsk $ps$r d $ps$r 0 dl 
1
3 p2n0ds$r 2 $r 0 d1, where p  j $pmj, n0 is the average
dipole density, and1 represents the unit tensor of secon
rank. With this result, (11) can be expressed in the for

kD2
yl 

2p2n0

3e

Z
d3r

1
2

ej $Es$r dj2. (12)

The integral in (12) is the energy required to set up t
field $Es$r d  $E$r0 s$r d 2 E$ys$r d of two oppositely charged
spheres separated by a distancey. Provided the two
spheres do not overlap,

kD2
yl 

2p2n0

3e

µ
e2

4pea
2

e2

4pey

∂
 2s2

µ
1 2

a
y

∂
,

(13)

wheres  se2p2n0y12pe2ad1y2. Thus, fory . 2a, the
correlation function (7) takes the form

kebDy l  exp

∑
b2s2

µ
1 2

a
y

∂∏
. (14)

We now substitute (14) into (6), evaluate the integral [2
and obtain the mobility

m 
m0e2b2s2

2bssbeEad1y2K1f2bssbeEad1y2g
, (15)

where K1szd is the first-order modified Bessel functio
of the third kind. In writing (15) we have neglected
correction term which accounts for the domainy , 2a
in which the function (14) should be set equal to ze
(to avoid contributions from overlapping molecules). F
the large values of disorder required, i.e.,b2s2 ¿ 1, the
correlation function (14) drops exponentially to zero
this region, making the correction negligible, independe
of E. Finally, we note that in the limit of sufficiently
large disorder,2bssbeEad1y2 . 1, the Bessel function
in (15) is well represented by its asymptotic expansi
544
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[21] K1szd ,
p

py2z exps2zd, leaving a mobility

m  m0sEd exps2b2s2d exps2bs
p

beEa d , (16)

which displays the field dependence commonly observe
in molecularly doped polymers. In this expression
m0sEd  m0spbs

p
beEa d1y2 is a prefactor which is

algebraic in the field and is, therefore, slowly varying
relative to the exponential factors. The field independen
factor exps2b2s2d supports the quadratic temperature
dependence associated with the GDM, but omits th
factor2y3 that appears in that model.

Equations (15) and (16) are exact asymptotic results fo
transport in one dimension for low fields (beEr , 1) and
large disorder and constitute the main formal results of th
present Letter. Observation of such a regime requires, a
cording to this result, enough energetic disorder so th
2bs . sbeEad21y2. At higher fields, the mobility will
depend more critically on the actual form of the micro-
scopic hopping rate, and on the way in which detailed ba
ance is implemented [18]. Our derivation emphasizes th
fact that site-energy correlations associated with charg
dipole interactions in three dimensions are algebraic [15
and thus do not have a well-defined correlation length o
the type numerically investigated by Gartstein and Con
well [17]. It is this algebraic structure that is responsi
ble for the observed (algebraic) universal field dependen
of the mobility. Similarly, one can show that a corre-
lation function which decays with distance asy2p leads
to an exponential dependence of the mobility onEn with
n  pysp 1 1d. Calculations show, e.g., that aninduced
charge-dipole interactions,1yr4d should lead to an expo-
nential dependence ofm on E5y6. There are good reasons
to believe that (16) will remain valid in higher dimensions
In the absence of energetic disorder, the percolating tran
port path followed by a carrier will be determined largely
by spatial fluctuations. When smoothly varying energeti
disorder is superimposed upon this structure, this low d
mensional path need not change. A carrier will then tra
verse all barriers on this predetermined path, a tenden
which is reflected in the structure of our result (6).

The functional form (16) is in obvious agreement re
garding the field dependence of the mobility. We now
ask whether reasonable choices for the parameters
the charge-dipole model lead to empirical coefficients i
agreement with those measured experimentally. To che
for quantitative agreement, we have fit our full expres
sion (15) to the field dependent mobility of 50% DEH-
doped polycarbonate [16], which exhibits Poole-Frenke
behavior over a wide range of field from8 3 103 Vycm
to 2 3 106 Vycm. Over this range the mobility increases
at room temperature by 3 orders of magnitude. To obta
this variation, it follows from the high- and low-field limits
already established that the quantity expsb2s2d must be at
least of order103, and therefore the widths of the ener-
getic disorder must be at leasts  kT

p
3 ln10  70 meV.
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FIG. 1. Solid curve is a fit of Eq. (15) to measured fiel
dependent mobilitymsEd for 50% DEH-doped polycarbonat
(solid symbols), taken from Ref. [16]. See text for descripti
and values of fitting parameters.

An excellent fit, shown in Fig. 1, was obtained withm0 
7.2 3 1023 cm2yV s, a  2.1 Å, ands  80 meV.

We can relate these values to the parametersQ, T0,
and B obtained in fits with the Gill form of (1) by ex-
panding the exponents of Eq. (16) about a typical te
peratureTR lying in the rangeT . 200 350 K probed
experimentally. ChoosingTR  300 K  1ykbR and ex-
panding in powers ofb 2 bR we find Q  2bRs2 
0.5 eV, T0  3TR  900 K, andB  3s

p
bRea  3 3

1024 se2 V cmd1y2. While the inferred compensation tem
peratureT0 is too large by about a factor of 2, values i
ferred for Q and B are close to those measured [16] f
DEH, and typical of molcularly doped polymers [3].

A similar analysis can be performed to relate the valu
obtained in our fit to the parameterssGDM andC which
appear in the form of Eq. (1) that arises in the GD
of Bässler and co-workers. Since we have neglec
effects due to geometrical or off-diagonal disorder
our derivation of (16), we compare our results with t
simplied form of Bässler’s expression in whichS2  0.
An analysis using the standard GDM expression with
correlations would lead to an estimate of the energ
disorder sGDM  3sy2  120 meV. Using this value
and performing another Taylor series expansion, this t
in powers of b2 2 b

2
R, we obtain the estimateC p

4eakTRy9s2  2 3 1024 scmyV sd1y2. Both of these
values are typical of those inferred using the GDM [1].

Finally, it is also straightforward from our expressio
to extract information about the microscopic dipolar d
order through the variances, as given by the expres
sion following (13). Takings  80 meV, a  2.1 Å,
n0  1021 cm23, and e  3e0, we obtain an estimate
p 

p
12payn0 sseyed  0.4 e Å  2 D, of the dipole

moment necessary to generate this level of disorder. T
-

n

-

-
-
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n
e

o
tic

e

-

his

value is typical of an organic polar molecule and consi
tent with earlier studies of the charge-dipole model [9].

In summary, we have analytically confirmed the ide
that correlations arising from charge-dipole interaction
should cause a significant field dependence of the mobi
at lower fields, obtaining a mobility in quantitative agree
ment with what is observed in experiment. Ongoing wo
includes an investigation of the effects of general corre
tions on disordered transport, the consequences of hig
dimensionality, and dispersive characteristics of time-o
flight transients in the presence of correlated disorder [2

*Permanent address: Department of Physics, University
Missouri-Rolla, Rolla, MO 65401.
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