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Memory-function approach to interacting quasiparticle-boson systems
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The fundamental problem of the effects of strong interactions with lattice vibrations on quasiparticle trans-
port is analyzed with the help of the memory-function approach introduced many years ago in the context of
exciton and charge transport in molecular aggregates. Comparison is made among the exact evolution in a
simplified system, the predictions of the memory approach, and evolution based on semiclassical arguments. It
is shown that, for a number of physically relevant parameter ranges, the memory approach provides an
excellent representation of the exact evolution while the semiclassical approach does not. A quantum vyield
experiment appropriate to sensitized luminescence is examined in the light of the exact evolution and the
various approximations. Three physical systems are also discussed. They involve charge transport in aromatic
hydrocarbon crystals, thermal conduction in refractory materials, and vibrational energy transfer in biological
systems.

[. INTRODUCTION are discussed in comparison to the memory approach in Sec.
lll. An application of the memory approach to observations
Strong electron-phonon interactions constitute one of th@f the quantum yield is made in Sec. IV, parameters of the
central areas in condensed-matter physics. Many basic agemory functions in three experimental systems are dis-
pects of the effects of these interactions on quasiparticle dycussed in Sec. V, and concluding remarks form Sec. VI.
namics are not understood despite much work that has been

carri(_ed out. The effects are of interest in such widely giﬁer— Il. MEMORY-EUNCTION APPROACH
ent fields as charge transport in narrow-band matetidls,
Frenkel exciton transport in molecular crystét§,hydrogen The system of interest is a quasiparticle moving among

diffusion in metals, and muon spin relaxatichVarious  the sites of a latticécrystal or molecular aggregatevhile
theoretical approaches have been developed. They involugteracting strongly with the vibrations of a lattice. Specifi-
polaron concepts®® stochastic methods!® dressing cally, the Hamiltonian is

transformationg;>*1112 and, more recently, semiclassical

methods and the discrete nonlinear Sclimger . 1
equation:>~*" The latter two have come under criticism in ~ H=2, enalam+ >, Vmndhan+ >, hwq(bgqur =
the light of careful studi¢§=?°of their range of validity, and m m.n a 2
the question has been raised whether they are real conse-

quer}ces_of guantum mechanics or merely artifacts of ap- +N‘1’22 fiogq expigq-Ry)(bg+ biq)a:rnam.
proximation scheme¥ Recent work by the present authSrs m.g
has shown that, while the semiclassical approximation can be (2.2

often inaccurate as has been shown in Refs. 18-21, it is an

exact consequence of the quantum evolution in a clearly dejerea. creates a quasiparticle with energy at sitem in a
fmed. limit. The work has also .fsho_wn that the memory-system ofN sites,b! creates a phonon with wave vecipr
function approach developed earlier in the context of excitorn, g frequencyo, \‘} is the intersite matrix element be-
and charge transp8rt"*? can be remarkably accurate in (yeen sitesm and n. and g, is the dimensionless
dealing with quasiparticle transport in systems for whose deémasiparticle-phonon céupling cgnstant. The quantijiesd
scription the semiclassical approximation and the discrelgy are vectors in the reciprocal and direct lattices, respec-
nonlinear Schrdinger equation have been used recentlyyely R being the lattice vector which locates site For
This second finding has motivated the study to be reporteghq sake of simplicity, we restrict our analysis in the present
here. The purpose of the present paper is to reintroduce the,ner 1 5 quasiparticle moving between the sites of a degen-
memory-function approach in the modern context, and Qyate two-site systerta dimej with interaction matrix ele-
discuss physical issues of quasiparticle transport within it$hent Vv, while being in strong interaction with a single vi-
framework. brational mode of frequenay with coupling constang. The

The paper is set out as follows. The essence of thesmiitonian of(2.1) simplifies, for this system, &

memory-function approach, the agreement its predictions
show with numerically obtained solutions of arbitrary accu- 1
racy, and a physical understanding of quasiparticle evolution H=Vi+gowUd+ = w(V2+ 52 29
in its terms form Sec. Il. Two other approximation methods goypT 3 o(y™+my), 2.2
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where the quasiparticle operatopsq,i are defined ag ) .

=ala;—ala,, q=-i(ala,—aja;), and r=ala,+ala;. h(t)=22, galexp—iwgt) +2ng cogwgt)]. (2.12

The operatorsy and 7, obey the commutation relation a

[9,%y] =i and describe a harmonic oscillator of frequeacy The effects of temperaturE are reflected in the Bose occu-

Here and henceforthi, has been set equal to 1. pation numberan=[exp(,8wq)—1]‘1, with B=1/kgT. At
The memory-function approach to dynamics wasT=0, and if there is only one mode of vibratiof®.12) re-

developef'!?to address quasiparticle transport in the re-duces to

gime of strong coupling with vibrations. While memory

functions and the relevant analysis have also been i%en h(t)=2g? exp(—iwt). (213

for spatially extended systems, we will present the detail

here only for the two-site dimer of2.2). The well-known

transformatiofr*'?*?°defined by the prescription,

¥or the simple zerd-, single-mode dimer studied in this pa-
per, the point of departure of the memory-function approach
is thus the evolution equation

Azexp(—ig%yf))é exp(igmyp), (2.3 dp

where, corresponding to any operafgrthe transformed op-  dt
erator isA, leads to

t
+4V2f dse 2071~ cosat=9)]cod 292 sin w(t—s)]p(s)
0

=0. (2.19
p=P, (2.9 . .
That this memory approach can give a rather accurate
P SN D o - description of the evolution can be seen through a compari-
4=Q cog2glly) =R sin(2gIly), 2.9 son (see Fig. 1 of exact calculations ofp(t) obtained
A oA A ~ numerically’®?? The exact calculational procedure consists
r=Q sin(2glly) + R cog 2glly), (2.6 of the numerical diagonalization of the Hamiltoni&h in
A . (2.2) expressed as a finite-dimensional matrix whose size is
y=Y-gP, (27 increased until convergence to any desired accuracy is ob-
. tained in the results. The parameter valuesgrs, w=2V
my=1ly. (2.9  inFig. 1@ andg=1, ®=15V in Fig. 1(b). In both cases, the

memory approackisolid line) approximates the exact evolu-
aflon (dashed ling rather well. The characteristic features of
the exact evolution as seen (a) and (b) are rapid oscilla-
A i A A A o - . tions followed by “silent runs” and revivals, and an overall
H=V[R cog2gIly)+Q sin(2gIl,)]+ > (Y2+112) long-time osglllano_n representing tunnelmg from one site to
the other. This oscillation signifies the obvious fact that self-
trapping cannot occur except on short-time scales. All these
(2.9  features are reproduced by the memory approach. By con-
trast, the well-known semiclassical approximati@otted
line), which forms the foundation of a large body of recent

1.2 The application of projection operatd?$” that diago- literature, including Refs. 13-17, fails on two counts: it pre-

nalize in the site representation of the quasiparticle and tracdicts true self-trapping and is thus markedly different from

over the phonons, leads to the following equation of evolu€ €xact evolution on the long-time scale as is cleabjn

tion for the probability difference(t): and it is unable to reproduce the characteristic silent runs
P y ® () [evolution with little change ofp(t)] in between the rapid

In terms of these transformed operators, the Hamiltonian c
be expressed as

2
goq
2

with the help of the fact tha? equals the identity operator

dp(t) t oscillation regions observed on the short-time scale as seen
T+2f ds 7(t—s)p(s)=7(t). (210 in (a), the semiclassical prediction being a structureless
0 oscillation8-20:22

Although the memory approach is obviously not exact,
we have seen in our studies of various parameter cases of
physical interest that the approach is able to reproduce many

f the essential features of the exact evolution. The extent of

outer product of quasiparticle and vibrational states. With thdn€ quantitative agree(rjnevr:/t |shdeper:dent on thhe Chﬁ'ce of pa-
help of a perturbation expansion in the transfer, specificallyj2Meters, as expected. We have also seen that the memory
in the first of the three terms ¢2.9), an approximate expres- approach can be vastly superior to the semiclassical approach

sion for the memory functiorZ (t) is then obtained. For an for realistic choices of parameters. This conclusion will be
initial vibrational condition that is thermal in the transformed remforg:ed In Sec. Vyvhere we W'”. examine charge, heat, and
oscillator states. one obtains excitation transport in three physical systems.

The exact evolution exhibits a hierarchy of time scafes.
7(t)=2V? Re(eh®~h(0)), (2.1 It is easy to understand the origin of the hierarchy in terms of

the memory function irf2.14) since four of the characteristic
The result forh(t) in (2.11), valid for the case when the times in the hierarchy are simply linked to corresponding
number of vibrational modes is arbitrary rather than 1 as irtimes in the memory function itself. For appropriate param-
(2.2), istt eters, the probability evolution exhibits rapid oscillations on

Equation (2.10 involves no approximations. Flexibility in
the choice of projection operatéfsallows one to make
Z(t)=0 identically provided the initial state of the system is
diagonal in the site representation of quasiparticle and a
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5 dictions of (i) the memory-
8 IS function approactisolid line), (ii)
2 o974 " ' an exact numerical analysis of ar-
ES Aln !‘ r i ' bitrary accuracydashed ling and
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8 0.996 - J it Iy o )
2 i LI the probability differencep as a
! ' function of the dimensionless time
0.995 ;' Vt for two parameter sets(a)
3 0w=2V, g=3, (b) =15V, g=1.
In (a), there is qualitative agree-
oogad ¥ T b b RN _ ment among all three in that the
Pt LI I B [ T LN R A A A R self-trapping feature predicted by
T T T T 1 the semiclassical approximation is
0 1 2 3 4 5 also shared, on the time scale
Vi shown, by the exact evolution and
1.000 — the memory approach. Itb), ex-

cellent agreement is obtained be-
tween the memory approach and
the exact evolution, both of which
show free motion represented by
oscillations of p between 1 and
—1, while the semiclassical ap-
p——— proximation predicts self-trapping
—— memory and is quite off the mark. Quanti-
""""""" semiclassical tatively, the semiclassical approxi-
mation is completely unable to re-
produce the “silent runs” and
related features of the exact evo-
lution, while the memory function
describes them adequatelfput
not completely. The inset in(b)
describes long time evolution.
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the time scaler,, a decay on the scalg,, a revival on the a frequencyw. In this limit, it is thus possible to identify, ,
scalery, and an overall oscillation on the scale. The first 7, and 7, with the reciprocals ot®w, gw, and w, respec-
three of these times are immediately apparent in the timevely. It is also easy to see that the reciprocal of the tunnel-
evolution of the memory itself, the fourth being related to theing time = is simply related to the square root of the average
average value of the memory. The four time scales can bg,) e of77(1), i.e., tove %, Figure 2a) shows the memory
appreciated easily in the limit of smail. The memory func- function (normalized to its initial valugfor two parameter

tion in (2.14 then reduces to sets as shown. Figure(t® shows the consequence of the
P — O\ 2 PRt 2 memory function on the probability evolution for one of the
7=2vie s cos2g7wt). (.19 sets, viz.w=3V, g=1.8, along with the exact evolution. The

The first factor of77(t) decays in a time characterized by various characteristics of the evolution, viz., the oscillation,

the reciprocal ofjw. Inside this decaying envelope, there arethe decay, the silent run and the revival, are clear from Fig.

rapid oscillations whose period is characterized by the recip2(a). The analytic form of the memory if2.14 also makes

rocal of g%w. The silent runs occur from the time the enve- transparent the source of the silent run{t).

lope decays to the time when the argument of the exponent The primary features of the exact evolutidr®are easily

in the first factor reaches near-zero values again, and posseassderstood in terms of the evolution of a dimer whose inter-
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action with the vibrations is represented entirely b{irae- lll. COMPARISON TO SEMICLASSICAL
dependentenergy mismatchy(t) and intersite interaction APPROXIMATION SCHEMES
V(t). The semiclassical approximatidor the discrete non- hi . h f :
linear Schrdinger equationcaptures the effects of(t) and In this section, we compare the memory-function ap-

is thus able to predict the transition from free to self-trapped?roach to two of the approximation schemes that have been
behavior. However, it does not capture W) effect. Dur-  Put forward to describe the evolution governed (@y1) or

ing the vibrational oscillations, the overlap between the wavdZ2.2). Notable among such schemes are the semiclassical ap-
functions on the two sites repeatedly becomes near-vanishirfoximation and the discrete nonlinear Satinger equation.
(provided the couplingy is large enough This interaction  The relation of the latter to the former is well knowir*®
mismatch caused/(t) to become effectively very small We focus here only on the former which, for the dimer, is

(bandwidth narrowing represented Me‘gz). The absence

of intersite interaction means that the motion of the quasipar- d_p —_ov 3.1)
ticle is suppressed. This state of affairs persists for some time dt E '
until the vibrational oscillation unmakes the mismatch. The

wave function overlaps return to their original high values, dq

and revival occurs. This happens repeatedly with period a=2vp—29wyr, (3.2
27w and is the source of the silent runs. The success of the

memory approach versus the semiclassical approximation

lies in the presence of the effective time dependence of the ﬂ:z ® 3.3
intersite interaction in the memory approach. dt  99Ya '
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dy ranges, pointed out earlier by Grigolini and co-work&ré’
dat @7y 3.9 is confirmed by our results. However, in the limit
g—»,w—0g°w=const, the semiclassical approximation
d approaches the exact result. Mathematically, this limit bears
i _ 2 limi 31
—Z=—owy—gom,. (3.5 resemblance to the well-knownt limit of van Hove:
dt Physically, it represents an infinitely massive oscill&for.
This is clear from the fact that the interaction energy term

corresponding operators have been replaced here by thelf” 'S p[? zorthnal o the oscillator displacement which goes
expectation values. This semiclassical approximation con‘:"s;(l'fé“’) while the phonon frequenay is proportional to
sists, as is well known, of replacing the expectation value or.‘ L /,L/L/_bemg the oscnlato_r mass. In this massive oscillator
the products of operators by the product of expectation valimit 7(t) takes on the simple form

ues of the operators. In addition to thitandardsemiclassi- 7(t)=2V? cod xt) 3.7)

cal approximation, another classical approximation has ap-

peared in the literature. Introduced by Brown, Lindenbergthe single time scale that survives ig, equivalently the
and West® a few years ago as a better alternative to whateciprocal ofy=2g%w, and the tunneling time becomes infi-
they termed the Kenkre-Rahman memory funcfibit, re-  nite, giving true self-trapping. Whereas the validity of the
places the complex quantity(t) by its classical counterpart. standard semiclassical approximation improves in this mas-
For the =zeroF single-mode case this means thatsive oscillator limit, the symmetrized approximation of Ref.
29 exp(—iwt) is replaced by B%cos (wt). Since this pro- 29 improves asyj—0,0—0, which merely signifies weak
cedure employs a classichl(t), we compare its conse- coupling. We have also analyzed semiclassical approxima-
guences to the standard semiclassical results as well as to ttiens other than the two analyzed above and will comment
predictions of our memory approach. We will refer to this on them elsewhere.

approximation as the “symmetrized” memory approach be-

cause it involves the replacement of the autocorrelation func- |v. APPLICATION TO SENSITIZED LUMINESCENCE

tion (x(t)x) of the oscillator displacement operator by the ) ]
symmetrized classical counterpapt(t)x+xx(t))/2. Such We now apply the memory-function approach to a simple
approximations are well-known in the classical limit of experiment that brings out the essential features of the dy-

linear-response theof.The evolution equation for the sym- Nnamics of the problem. Let the quasiparticle moving between
metrized memory approximation?fs the sites of the dimer be an electronic excitation which de-

cays radiatively. Assume that a trap extracts the excitation

p t , from one of the sites. The trap probability may be monitored

a+4V2J ds g 20°1-cose(t=9)p(g)=0.  (3.6) by measuring the quantum yield, i.e., the ratio of the number
0 of photons emittedradiatively by the trap to the number of

Shown in Fig. 3 is a comparison between the memory- e!ectronic excitations put i'nitially inFo the system. This is a

function result as given by2.14, the numerically obtained dimer case of the sensitized luminescence experiment in

exact result and the symmetrized approximation as given b rystals ~“which has been explained in detail elsevyh%re.

(3.6). It is clear that, contrary to the suggestion in Ref. 29, The monitored quantum yield or luminescence intensity con-

the symmetrized approximation is not a better alternative td&ins information about the dynamics of the quasiparticle.

the memory approach. Instead, it fails significantly for the 1€ probabilitiesP; (t) that the excitation resides on the

parameters shown. While the symmetrized memory does déwo Sites of the dimer obey

cay to a very small value in the same time as the Kenkre- dPy(t) P

Rahman memory, it lacks the key ingredient needed to pro- RIS

duce the silent runs observed in the exact evolutiompfay. dt T

As the direct result of the symmetrization procedure, the 4P,(0

memory used in Ref. 29 lacks the secofudsing factor, Pa(t)  P» L

consequently does not oscillate, and does not give an integral ¢t + r +I'Py= Jods?// (t=8)[P1(s) = Pa(s)],

that is approximately zero by the time the decay has oc- (4.2

curred. The inset in Fig. (3 showing the comparison be-

tween the two memory functions should make this point dP,(t) P,

quite clear. The fact that the time dependenceh(t) is a9t 7 P2 (4.3

complex(rather than realis a manifestation of the quantum-

mechanical nature of the vibrations. Its neglect seriously diswhereP 4(t) denotes the probability of occupation at the trap

torts the probability evolution except at elevated temperawhich extracts the excitation from site 2 at rdteand r is

tures where the Bose occupation factors considerably excedble radiative lifetime. As shown elsewherethe quantity

1. It is important to realize that, although the symmetrized?”(t) appearing in4.1) and(4.2) equals the product of the

approximation improves in its validity as the temperaturememory7/(t) and the factoe V",

increases, ineverbecomes preferable t®.14), i.e., to the We denote the Laplace variable ey and use tildes to

use of the original memory function of Refs. 6, 11, and 12.represent the Laplace transforms. The quantum vyield of lu-
In Fig. 3(b) we show the comparison of the memory ap- minescence, defined as the ratio of the number of photons

proach to the standard semiclassical approach. The failure @merging radiatively from the trap to the number of photons

the semiclassical approximatiai3.5) for many parameter put into the dimer, is

The absence of circumflexes oygq,r,y, =, means that the

f;ds%/"(t—s)[Pz(s)— Pi(s)], (4.1
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and is given explicitly by

- The observablep is directly related to77(1/7), the key
U'r77(1l7) (4.5 uantity in our memory approach. The yield is sensitive to
(1+T7)+ 77 (U (2+T1)’ ' different features of the motion according to which time
scale of the memory function is comparable to the experi-
Since our interest is in examining the effect of the quasiparmental probe timer. The quantum yield probe is thus par-
ticle motion within the dimer on the yield observable, we ticularly appropriate in the context of our memory approach.
take the limit of infiniteI", which is appropriate to some For comparison, the memory (e) corresponding toany
realistic systems. The limit makes the trap paramEteiis-  calculational approach, e.g., the exact or the semiclassical
appear from the yield expression and allows us to concermethod, can be obtained from the probability differep¢e)
trate on the effects of motion alone: through

p=TP,(0)=
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0.30
0.25 |
;o.zo— FIG. 4. The energy-transfer
& rate .77, for sensitized lumines-
X cence is plotted logarithmically
g 0.15+ againstVr for the parameters of
% Fig. 2: g=1.8, »=3V, calculated
3 with the memory approach oa.
“ 0104 The inset shows the quantum
yield ¢.
0.05 |
0.00 - — T — Ty R ——— T
0.01 0.1 1 10 100
V1
. 1 follows from the assumption that the radiative decay rates
27 (€)= ———€. (4.77  are the same for the hosts and the guests. Fi#® and
p(e) (4.9), it is clear that the energy-transfer rate is identical to the

o Laplace transform of the memory functio (t) evaluated
The overall features of the yield i#.6), asVr changes, gt 1/r,
are a rise and saturation to 1. Closely related to the quantum
yield is the energy-transfer raté?33 1
.

K= - (4.9

¢
l_
_1ds 1 & ¢
%trz; ¢_H T T &’ (4.9 Figure 4 shows the energy-transfer ratg, plotted logarith-
mically againstV 7. Shown in the inset is the corresponding
which exhibits more detailed features of the motion(4rB) behavior of the yieldp. The rapid rise in the transfer rate for
the subscriptG refers to the guestor trap site and the small values ofr stems from the fact that, in the time do-

subscriptH refers to the host sites. The last equality4n8  main, the memory function drops rapidly initially. In particu-

' --~- exact
' —— memory

e =05V FIG. 5. Dependence of the
S energy-transfer rate?,(7) on the
3] “ coupling constant for various val-
\ V1= 1000 ues of the oscillator frequency as
Y calculated from the memory ap-
: proach (solid line) and the exact

- » calculation (dashed ling Note

N that, for the parameters chosen,
the rates computed from the
memory-function approach for
»=0.5V,V,2V all practically co-
incide.

Energy Transter Rate K,

2.6 2.8
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lar, the peak of the energy-transfer rate occurs awvery simply by realizing that the memory functios(t)

Vr~1/(2g°w) which, in the massive oscillator limit, is the behaves in its gross characteristics as the sum of a constant

frequency of the rapid oscillations of the memory function.and a repeated damped exponential:

The slope of the energy-transfer rate for large value¥ of

gives the average value of the memory functif{t) which . ) ~ .

is equal to 3/2e~29°, If the radiative lifetimer were a quan- 7 (D=f(t)=2V HZO e-tm2nme) cog Ot) f(t—2n 7/ w)

tity under experimental control, the essential parameters of

the system could thus be extracted from the dependence of +2V2e‘292, (4.10

the yield observable on the lifetime. Unfortunately, in real

systems,r cannot be varied in this fashion. The purpose ofwhered(t) is the Heaviside step function. For large values of

the above analysis is largely illustrative and the rolerof g and small values o, the illustrative parameters dé{t),

should be regarded as that of a time probe. viz., « and(), are, respectively, of the order gy andg?w.
The variation of %, seen in Fig. 4 can be understood The Laplace transform df(t) can be trivially calculated:

a{l—e “'" cogQ/w)}+ Qe 1'® sin(Q/w)

— 292
[1-exp— Uwn)][al+ 07 te ), (4.1

f(1r)=2Vv2

where w=w/27, ay=a+1/7. The transform possesses the lattice2 Values of the system parameters have been extracted
essential feature af?;,, viz., an initial rise followed by a earlier® The coupling constant ig=1.8, the carrier band-
drop to zero, and an eventual linear increase for large valuegidth is 10.5 meV, and the librational phonon energy is 16
of Vr. meV. From these we find that, in the notation of the present
The energy-transfer rate as predicted by the memory funcgpaper,g=1.8, V=60 K, andw/V=3.2. Within this section,

tion is particularly sensitive tg and almost completely in- e write  explicitly to facilitate comparison with experi-
sensitive tow for the parameters shown in Fig. 5, which mental values. Although the dimer studied in the present pa-
displays the dependence of the energy-transfer ra@ fon e cannot completely represent a crystal, we will assume, as
various values ot. We show both the memory resutolid 5 \yorking hypothesigfor simplicity), that the essential phys-
line) and the consequences of the exact evolufidashed jcs hehind the effects of strong interaction between a quasi-
line), the latter obtained through the use(4f7). One notices particle and phonons is captured by this comparison to the
that the transfer rate drops sharply as one changes the valygner. This assumption will be made for all the three systems
of g from 2 to 3, for a range of values af One also notices gy, gied in this section. Figuré® shows a comparison of the
that the memory function appearing i@.14 predicts an  reqits due to the exact quantum-mechanical calculation,
energy-transfer rate that approaches the true energy-transiggmic|assical approximation, and memory-function analysis.
rate coming from the exact evolution as one incre@sest |t s clear that, whereas the semiclassical approximation fails
differs from the true energy-transfer rate for small The  qyite badly, the memory function recovers all the salient fea-
agreement also improves as one increasks Both these  yres of the exact evolution. In particular, the short-time evo-
trends are in keeping with the expectation that the memoryyiion at a frequency of%w, the decay of the initial oscilla-
function treatment improves in accuracy as the rgfi@/V tions at a time of o, the revival of the oscillations at a
increases. The value &fr that we have chosen here corre- frequency ofw, and the tunneling to the other site at a time

sponds to a normal experimental system in whichnd r are f aporoximately %6-9° are all shown by the memory analv-
of the order of a few wave numbers and a few nanosecondég15 PP y y y y

respectively. The independence of the memory function re- The second phenomenon we analyze is anomalous ther-

SU|t. onw seen in Fig. 5 is not a general consequence foF’nal conduction observed in boron carbides at high
arbitrary parameters.

temperatured*3® One of the observed features is that, while
in B,C thermal diffusivity displays “normal” behavior in
that it decreases with increasing temperatureB¢c it is
nearly temperature independent. This feature was addressed
In this section, we present an examination of three physiin Ref. 35 by assuming the heat current to be due to carrier
cal systems with the help of the memory-function formalismphonons whose frequency is modulated by lower-frequency
and the semiclassical approximation. The experimental obphonons that “dress” the carrier phonons through strong in-
servables are charge mobility in aromatic hydrocarbons, thetteractions. One finds that the ratio between the intersite
mal diffusivity in high-temperature thermoelectrics, and vi- matrix element to the phonon ener§4/ wp is 0.06, the
brational energy transfer in biological systems like proteinscoupling constantg is 0.6, and the phonon energy
The first of the three phenomena involves observations of wp=kgTp=1300 K. In the above, the subscriptrefers to
the mobility of photoinjected charge carriers in naphthalenethe fact that the frequency of the dressing phonons has been
The moving quasiparticle is generally a hole or an electrontaken to be the Debye frequency. In the notation of the
and it interacts strongly with librational phonons of the present paper, the system parametergya+8.6,V=83.2 K,

V. THREE PHYSICAL SYSTEMS
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FIG. 6. Evolution in three
physically relevant systems(a)
charge carrier transport in aro-
matic hydrocarbon crystals(b)
thermal diffusion in  high-
temperature thermoelectrics, and
(c) vibrational energy transfer in
biological systems. Exa¢tdashed
line), memory (solid ling), and
semiclassicaldotted ling results
for the evolution of the quasiparti-
cle probability in a representative
two-site system are compared. All

) three curves in(c) are almost
Boron Carbide: identical to one another and are
9=06 practically indistinguishable from
the result for zero interaction be-
0.0 02 04 06 0.8 10 tween the quasiparticle and vibra-
Vit tions.
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and w/V=15.6. Figure @) shows a comparison between classical approximation departs from both very early. In
the numerically exact calculatiqashed ling the memory-  particular, sinceg<1, the quasiparticle tunnels out quickly.
function result(solid line), and the semiclassical resqtiot-  The semiclassical approximation fails to capture this feature,
ted ling. The first two are in agreement whereas the semiand erroneously predicts self-trapping.
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The third system we address is the Davydov soffton TABLE I. Parameters of the three systems.
which provides a mechanism for the localization and trans >
port of vibrational energy in protein. In this mechanism, vi- System g hwlV hgowlV  hg wlV

bratlc_)nal energy of thg Cco _stretch|(n_1r Awdg—l)_oscﬂlators Naphthalene 18 32 59 107
localized on thea-helix region of the protein is supposed, .

through a phonon coupling effect, to act to distort the heIixBOhrolri‘xc"’lrb'OIe 0 0350'2 084 11 125'6133 8 0 498'40 94 0 0157'60 079
structure. The helical distortion reacts, also through phonofi™"< R e R
coupling, to prevent Amide-l oscillation energy dispersion,
causing self-localization. The parameters involved in this

hardl istinguishable f h |
field have been a subject of some debate. We take thos(jaurveS are hardly distinguishable from the ple(t)

. ) : ) ; =cos(2/t) characteristic of evolution in which the
given in the review of Scott who describes a model involv- (/)

: o : . quasiparticle-vibration interactiois zera
ing longitudinal compression waves and one representativ We see that in all three cases considered above. the
mode of vibration. The Hamiltonian is ’

memory-function approach fares rather well in representing
the actual evolution. The semiclassical approach does poorly
in two of the three cases. In the third, i.e., vibrational transfer
in protein, where it represents the exact evolution well, the
ﬁexzz EoBEBn—J(B;BnHJF B;anl), (5.1b interaction with vibration_s is too small to haeay effect on
n the quasiparticle evolution. We certainly cannot claim to
have established the shortcomings of the semiclassical ap-
R . proach for any of these physical systems since the actual
+W(Un+1—Un)2), (5.10  systems are extended crystals or aggregates in interaction
with a large number of modes. Our model, by contrast, is
merely a dimer in interaction with a single mode. It is not
P'int:XE (Uns1—0n)BIB,. (5.19  inconceivable that the introduction of the additional degrees
n of freedom will change some of the quantitative conclusions.
) . However, within the confines of the simplified model, the
The coupling par:;1mete1 has bee_n estlmatgd to be 35 pN jngication is unmistakable: the semiclassical approach tends
(Ref. 13 and 62 pN’’ The symboly in this section has been g pe inadequate or of little use, while the memory approach

reserved for the quasiparticle-phonon coupling parameter igpnroximates the exact evolution satisfactorily. We summa-

polaron binding energy (2g%») mentioned elsewhere in
this paper. The longitudinal spring constais three times
that for a single hydrogen bond, which in turn, is estimated
from experiments to be 13 N/itiRef. 38, and fromab initio We have seen that the memory-function approach intro-
calculations to be 19.5 N/Af. The massM of the lattice  duced many years ago for charge and excitation
oscillator is three times the average mass of an amino acittansporit'*!'?provides an excellent approximation to the ex-
molecule in myosirf? which in turn is 1.%<10 ® kg. The  act evolution of the standard quasiparticle-phonon system
transfer interaction) has been calculated from electromag- (2.1) underlying many recent polaron, exciton, and quantum
netic theory° to be 1.55¢10 ?? J. The interaction term in soliton discussions, at least for the single-mode zero-
(5.19 Hjy is given by temperature dimer system analyzed in this paper. An exami-
nation of its validity for many modes, arbitrary temperature,
and extended systems is important but difficult to undertake.
Work along those lines is in progress. The starting point for
our memory approach is generall®.10, which is an exact
wherel is the lattice spacingthe distance between peptide consequence of the dynamics, and specificdl4), which
groups and the frequency, of the oscillator is given by the is the result of the initial condition we assume and the per-
dispersion relationu,=2(a/M)|sin(ql/2)|. In the notation turbation scheme we employ for the analysis of the single-
of the present paper, the phonon frequengyhus varies mode zero-temperature dimer @.2). We have seen that the
between 1.610" and 2.0<10™ rad/s, the intersite matrix memory approach is able to describe adequately a number of
elementV is 11.2 K, and the quasiparticle-phonon couplingfeatures carrying the signature of the exact evolution. An
energyfigo= xVi/l2Mw, varies between 0.7510 22 and additional advantage of the approach is that the source of the
1.5X10 %% J. Thusg varies between 0.035 to 0.084, and thefeatures is made transparent. The quantum yield experiment
ratio of the phonon energy to the intersite matrix elementhat we have described in Sec. IV is particularly amenable to
hwl/V varies between 11.2 and 13.8. Figurée)6shows a analysis through the memory approach.

comparison between the exact result, the memory-function The memory approachi'!? specifically the evolution
prediction, and the semiclassical approximation result, all okquation(2.14), appears to be closely relatédr all practi-
which show fregnot self-trappeflevolution, and agree with cal purposes identicato the more recent noninteracting blip
one another. Close inspection of the values obtained reveaépproximation(NBA) treatmerft! given on the basis of a
two features:(i) the memory approach is slightly better in quite different and considerably more complex formalism.
representing the exact evolution than the semiclassical afFhe work of Grigolini and co-worket$?° has made it clear
proximation but the difference is not significafit) all three  that their approach, in one of its simplified forms, is equiva-
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FIG. 7. Breakdown of the
memory-function approach.(a)
Comparison between the exact re-
sult, the semiclassical approxima-
tion, and the memory-function ap-
proach in a regime where the

1 semiclassical approach is better
0 1 2 8 4 5 6 7 than the memory approach. The
Vi parameters ar@&=V, g=0.5. (b)
1.00 - Comparison of the memory result
\ (b) with exact results for two different
R initial conditions. The initial state

for the memory result is the same
as that for the exact resut) but
different from that for (ii). See
text. The parameters ate=0.1V,
o g=>5.5 as in Fig. {c) of Ref. 22.
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lent to the NBA analysis. It is easy to appreciate that thethe form presented here, attention has also been focused on
simplified equation used by Grigolini and co-workers to ana-the evolution of the quasiparticle probabilities, thus making
lyze the dimet®?°is a short-time expansion of our memory it easy to obtairp(t) andq(t) but notr(t) directly. This is
equation(2.14. It is remarkable that this connection betweeneasily remedied by excluding the diagonalizing feature of the
the memory approaéf'? and the noninteracting blip projection operators as might be done to obtain the so-called
approximatioi! has remained undiscovered for so long. stochastic Liouville equatiofi®'i.e., a density matrix equa-
Given the considerable ease of derivation involved in theion (rather than a probability equatipfor the quasiparticle.
memory method, and the great deal of interest that the NBA-urther work requires to be done on the memory approach in
has stimulated in the literature, it seems likely that usefukwo important directions(i) study of the precise domain of
insights into the general problem of quasiparticle-boson inthe validity of the approachji) the initial condition prob-
teraction will be gained with the help of this connection. lem. We comment on each in turn.

The essential components of the memory approach are the The Hamiltonian of2.2) [generally of(2.1)] is character-
use of projections to concentrate on the quasiparticle dynamzed by three energies: the transfer interachgrihe oscilla-
ics by tracing over the phonons, a perturbation expansion itor energyw, and the interaction energyw. When we focus
orders of the transfer interaction after the dressing transforattention on quasiparticle dynami@sther than phonon dy-
mation, and the use of a certain class of initial conditions. Imamicg, we see that two of the phenomena, viz., transfer and
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interaction with phonons, compete for domination of theresponds to the exact evolution in the absence of
evolution. The problem can be solved analytically in the twoquasiparticle-vibration coupling. This fact, that the memory
limits g—0 andV—0, the respective characteristic energiesfunction becomes trivially exact in the limit of vanishimg

of the quasiparticle being andg?w. It is important to notice s indicated in Fig. ).

that the latter is nojw. The perturbation parameter whose  We now turn to the initial condition term. The derivation
smallness may be said to mark the validity domain of theof (2.14), in the more general form of Refs. 11 and 12 re-
memory approach i8/g%w. If this parameter is not too quires that the initial phonon state be thermal in the unper-
small, it is possiblgbut tediou$ to develop memory func- turbed transformed Hamiltonian eigenstates. For the Zero-
tions which involve higher terms in the perturbation expan-single-mode case, this means that the initial phonon state is
sion. In order to show a regime in which the memory ap-the ground state of the displaced oscillator basis. The exact
proach does not do as well as the semiclassicahumerical solutions we have shown here so far, with the
approximation, we choosg<1 andw comparable td/. This  exception of Fig. 7a), are based on the assumption that the
allows us to approximate the massive oscillator limit whichinitial state is a one-site projection of the ground state of the
validates the semiclassical approximation and at the sanmetal Hamiltonian. These two initial states are identical to

time violate the perturbation scheme based/eag®w. Fig-
ure 7@ shows a comparison betweg@ft) as predicted by
the exact resultdashed ling by the memory-function ap-
proach(solid line) and the semiclassical approximatiot-
ted line for such a casew=V, g=0.5. The initial condition

each other for largg’s. However, for smallg’s, they can
differ considerably. The corresponding time evolutions also
differ, as Fig. Tb) shows. The validity of the assumption
involved in this replacement of the actual initial state by the
approximate counterpart has to be investigated. Work is in

used is that the quasipatrticle is localized on one site, and thgrogress on an extension of the memory approach to arbi-
phonons are in the ground state of the displaced oscillatarary initial conditions through a modification of the projec-
basis. In this weak-coupling, intermediate phonon frequencyion operator.

(w=V) regime, we see that, as expected, the semiclassical In summary, our present study supports the conclusions
approximation is better than the memory-function approxi-drawn by Grigolini and co-worket&=2° that semiclassical
mation. This regime doesot correspond to polaron forma- equations of motion for the Hamiltonian ¢2.1) could be
tion, however(Note thatg<1.) The advantage of employing questionable in many physically relevant cases. It agrees
the semiclassical approximation over the memory-functiorwith the recent analysi&2°as well as early concerfisthat
approach appears thus to be limited to nonpolaronic and reldad been raised regarding the semiclassical approximation.
tively uninteresting regimes. It is interesting that the memoryOur study also goes further in showing a clear limit in which
approach for the dimer provides a good approximation foithe semiclassical approximation is valid, and in suggesting a
bothlargeg and smallg. The first of these results is easily simple and well-tested alternative for approximate analysis:

understandable since the perturbation paramefgfw is
small. In the opposite(weak-coupling limit g—0, the
memory function tends to the constant valué2vhich cor-

Our memory approaéit**?should complement other meth-
ods put forward recently such as the Wigner-distribution
method®
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