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The fundamental problem of the effects of strong interactions with lattice vibrations on quasiparticle trans-
port is analyzed with the help of the memory-function approach introduced many years ago in the context of
exciton and charge transport in molecular aggregates. Comparison is made among the exact evolution in a
simplified system, the predictions of the memory approach, and evolution based on semiclassical arguments. It
is shown that, for a number of physically relevant parameter ranges, the memory approach provides an
excellent representation of the exact evolution while the semiclassical approach does not. A quantum yield
experiment appropriate to sensitized luminescence is examined in the light of the exact evolution and the
various approximations. Three physical systems are also discussed. They involve charge transport in aromatic
hydrocarbon crystals, thermal conduction in refractory materials, and vibrational energy transfer in biological
systems.

I. INTRODUCTION

Strong electron-phonon interactions constitute one of the
central areas in condensed-matter physics. Many basic as-
pects of the effects of these interactions on quasiparticle dy-
namics are not understood despite much work that has been
carried out. The effects are of interest in such widely differ-
ent fields as charge transport in narrow-band materials,1–3

Frenkel exciton transport in molecular crystals,4–6 hydrogen
diffusion in metals,7 and muon spin relaxation.8 Various
theoretical approaches have been developed. They involve
polaron concepts,1,3,9 stochastic methods,5,10 dressing
transformations,1,3,4,11,12 and, more recently, semiclassical
methods and the discrete nonlinear Schro¨dinger
equation.13–17 The latter two have come under criticism in
the light of careful studies18–20of their range of validity, and
the question has been raised whether they are real conse-
quences of quantum mechanics or merely artifacts of ap-
proximation schemes.18 Recent work by the present authors22

has shown that, while the semiclassical approximation can be
often inaccurate as has been shown in Refs. 18–21, it is an
exact consequence of the quantum evolution in a clearly de-
fined limit. The work has also shown that the memory-
function approach developed earlier in the context of exciton
and charge transport6,11,12 can be remarkably accurate in
dealing with quasiparticle transport in systems for whose de-
scription the semiclassical approximation and the discrete
nonlinear Schro¨dinger equation have been used recently.
This second finding has motivated the study to be reported
here. The purpose of the present paper is to reintroduce the
memory-function approach in the modern context, and to
discuss physical issues of quasiparticle transport within its
framework.

The paper is set out as follows. The essence of the
memory-function approach, the agreement its predictions
show with numerically obtained solutions of arbitrary accu-
racy, and a physical understanding of quasiparticle evolution
in its terms form Sec. II. Two other approximation methods

are discussed in comparison to the memory approach in Sec.
III. An application of the memory approach to observations
of the quantum yield is made in Sec. IV, parameters of the
memory functions in three experimental systems are dis-
cussed in Sec. V, and concluding remarks form Sec. VI.

II. MEMORY-FUNCTION APPROACH

The system of interest is a quasiparticle moving among
the sites of a lattice~crystal or molecular aggregate! while
interacting strongly with the vibrations of a lattice. Specifi-
cally, the Hamiltonian is

Ĥ5(
m

emam
† am1(

m,n
Vmnam

† an1(
q

\vqS bq†bq1 1

2D
1N21/2(

m,q
\vqgq exp~ iq•Rm!~bq1b2q

† !am
† am .

~2.1!

Heream
† creates a quasiparticle with energyem at sitem in a

system ofN sites,bq
† creates a phonon with wave vectorq

and frequencyvq , Vmn is the intersite matrix element be-
tween sites m and n, and gq is the dimensionless
quasiparticle-phonon coupling constant. The quantitiesq and
Rm are vectors in the reciprocal and direct lattices, respec-
tively, Rm being the lattice vector which locates sitem. For
the sake of simplicity, we restrict our analysis in the present
paper to a quasiparticle moving between the sites of a degen-
erate two-site system~a dimer! with interaction matrix ele-
mentV, while being in strong interaction with a single vi-
brational mode of frequencyv with coupling constantg. The
Hamiltonian of~2.1! simplifies, for this system, to23

Ĥ5Vr̂1gv ŷp̂1
1

2
v~ ŷ21p̂y

2!, ~2.2!
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where the quasiparticle operatorsp̂,q̂, r̂ are defined asp̂
5a1

†a12a2
†a2, q̂52 i (a1

†a22a2
†a1), and r̄5a1

†a21a2
†a1.

The operatorsŷ and p̂y , obey the commutation relation
[ ŷ,p̂y]5 i and describe a harmonic oscillator of frequencyv.
Here and henceforth,\ has been set equal to 1.

The memory-function approach to dynamics was
developed6,11,12 to address quasiparticle transport in the re-
gime of strong coupling with vibrations. While memory
functions and the relevant analysis have also been given6,12

for spatially extended systems, we will present the details
here only for the two-site dimer of~2.2!. The well-known
transformation1,11,24,25defined by the prescription,

Â5exp~2 igp̂yp̂!â exp~ igp̂yp̂!, ~2.3!

where, corresponding to any operatorâ, the transformed op-
erator isÂ, leads to

p̂5 P̂, ~2.4!

q̂5Q̂ cos~2gP̂Y!2R̂ sin~2gP̂Y!, ~2.5!

r̂5Q̂ sin~2gP̂Y!1R̂ cos~2gP̂Y!, ~2.6!

ŷ5Ŷ2gP̂, ~2.7!

p̂y5P̂Y . ~2.8!

In terms of these transformed operators, the Hamiltonian can
be expressed as

Ĥ5V@R̂ cos~2gP̂Y!1Q̂ sin~2gP̂Y!#1
v

2
~Ŷ21P̂Y

2 !

2
g2v

2
1̂ ~2.9!

with the help of the fact thatP̂2 equals the identity operator
1̂.26 The application of projection operators12,27 that diago-
nalize in the site representation of the quasiparticle and trace
over the phonons, leads to the following equation of evolu-
tion for the probability differencep(t):

dp~ t !

dt
12E

0

t

dsW ~ t2s!p~s!5I ~ t !. ~2.10!

Equation ~2.10! involves no approximations. Flexibility in
the choice of projection operators28 allows one to make
I (t)50 identically provided the initial state of the system is
diagonal in the site representation of quasiparticle and an
outer product of quasiparticle and vibrational states. With the
help of a perturbation expansion in the transfer, specifically
in the first of the three terms of~2.9!, an approximate expres-
sion for the memory functionW (t) is then obtained. For an
initial vibrational condition that is thermal in the transformed
oscillator states, one obtains

W ~ t !52V2 Re~eh~ t !2h~0!!. ~2.11!

The result forh(t) in ~2.11!, valid for the case when the
number of vibrational modes is arbitrary rather than 1 as in
~2.2!, is11

h~ t !52(
q

gq
2@exp~2 ivqt !12nq cos~vqt !#. ~2.12!

The effects of temperatureT are reflected in the Bose occu-
pation numbersnq5@exp~bvq!21#21, with b51/kBT. At
T50, and if there is only one mode of vibration,~2.12! re-
duces to

h~ t !52g2 exp~2 ivt !. ~2.13!

For the simple zero-T, single-mode dimer studied in this pa-
per, the point of departure of the memory-function approach
is thus the evolution equation

dp

dt
14V2E

0

t

dse22g2@12cosv~ t2s!#cos@2g2 sin v~ t2s!#p~s!

50. ~2.14!

That this memory approach can give a rather accurate
description of the evolution can be seen through a compari-
son ~see Fig. 1! of exact calculations ofp(t) obtained
numerically.19,22 The exact calculational procedure consists
of the numerical diagonalization of the HamiltonianĤ in
~2.2! expressed as a finite-dimensional matrix whose size is
increased until convergence to any desired accuracy is ob-
tained in the results. The parameter values areg53, v52V
in Fig. 1~a! andg51,v515V in Fig. 1~b!. In both cases, the
memory approach~solid line! approximates the exact evolu-
tion ~dashed line! rather well. The characteristic features of
the exact evolution as seen in~a! and ~b! are rapid oscilla-
tions followed by ‘‘silent runs’’ and revivals, and an overall
long-time oscillation representing tunneling from one site to
the other. This oscillation signifies the obvious fact that self-
trapping cannot occur except on short-time scales. All these
features are reproduced by the memory approach. By con-
trast, the well-known semiclassical approximation~dotted
line!, which forms the foundation of a large body of recent
literature, including Refs. 13–17, fails on two counts: it pre-
dicts true self-trapping and is thus markedly different from
the exact evolution on the long-time scale as is clear in~b!,
and it is unable to reproduce the characteristic silent runs
@evolution with little change ofp(t)# in between the rapid
oscillation regions observed on the short-time scale as seen
in ~a!, the semiclassical prediction being a structureless
oscillation.18–20,22

Although the memory approach is obviously not exact,
we have seen in our studies of various parameter cases of
physical interest that the approach is able to reproduce many
of the essential features of the exact evolution. The extent of
the quantitative agreement is dependent on the choice of pa-
rameters, as expected. We have also seen that the memory
approach can be vastly superior to the semiclassical approach
for realistic choices of parameters. This conclusion will be
reinforced in Sec. V where we will examine charge, heat, and
excitation transport in three physical systems.

The exact evolution exhibits a hierarchy of time scales.22

It is easy to understand the origin of the hierarchy in terms of
the memory function in~2.14! since four of the characteristic
times in the hierarchy are simply linked to corresponding
times in the memory function itself. For appropriate param-
eters, the probability evolution exhibits rapid oscillations on
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the time scaletx , a decay on the scaletg , a revival on the
scaletD , and an overall oscillation on the scaletT . The first
three of these times are immediately apparent in the time
evolution of the memory itself, the fourth being related to the
average value of the memory. The four time scales can be
appreciated easily in the limit of smallv. The memory func-
tion in ~2.14! then reduces to

W ~ t !52V2e2g2v2t2 cos~2g2vt !. ~2.15!

The first factor ofW (t) decays in a time characterized by
the reciprocal ofgv. Inside this decaying envelope, there are
rapid oscillations whose period is characterized by the recip-
rocal of g2v. The silent runs occur from the time the enve-
lope decays to the time when the argument of the exponent
in the first factor reaches near-zero values again, and possess

a frequencyv. In this limit, it is thus possible to identifytx ,
tg , andtD with the reciprocals ofg2v, gv, andv, respec-
tively. It is also easy to see that the reciprocal of the tunnel-
ing timetT is simply related to the square root of the average

value ofW (t), i.e., toVe2g2. Figure 2~a! shows the memory
function ~normalized to its initial value! for two parameter
sets as shown. Figure 2~b! shows the consequence of the
memory function on the probability evolution for one of the
sets, viz.,v53V, g51.8, along with the exact evolution. The
various characteristics of the evolution, viz., the oscillation,
the decay, the silent run and the revival, are clear from Fig.
2~a!. The analytic form of the memory in~2.14! also makes
transparent the source of the silent runs inp(t).

The primary features of the exact evolution19,22are easily
understood in terms of the evolution of a dimer whose inter-

FIG. 1. Comparison of the pre-
dictions of ~i! the memory-
function approach~solid line!, ~ii !
an exact numerical analysis of ar-
bitrary accuracy~dashed line!, and
~iii ! the standard semiclassical
treatment~dotted line!. Plotted is
the probability differencep as a
function of the dimensionless time
Vt for two parameter sets:~a!
v52V, g53, ~b! v515V, g51.
In ~a!, there is qualitative agree-
ment among all three in that the
self-trapping feature predicted by
the semiclassical approximation is
also shared, on the time scale
shown, by the exact evolution and
the memory approach. In~b!, ex-
cellent agreement is obtained be-
tween the memory approach and
the exact evolution, both of which
show free motion represented by
oscillations of p between 1 and
21, while the semiclassical ap-
proximation predicts self-trapping
and is quite off the mark. Quanti-
tatively, the semiclassical approxi-
mation is completely unable to re-
produce the ‘‘silent runs’’ and
related features of the exact evo-
lution, while the memory function
describes them adequately~but
not completely!. The inset in~b!
describes long time evolution.
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action with the vibrations is represented entirely by atime-
dependentenergy mismatchx(t) and intersite interaction
V(t). The semiclassical approximation~or the discrete non-
linear Schro¨dinger equation! captures the effects ofx(t) and
is thus able to predict the transition from free to self-trapped
behavior. However, it does not capture theV(t) effect. Dur-
ing the vibrational oscillations, the overlap between the wave
functions on the two sites repeatedly becomes near-vanishing
~provided the couplingg is large enough!. This interaction
mismatch causesV(t) to become effectively very small
~bandwidth narrowing represented byVe2g2!. The absence
of intersite interaction means that the motion of the quasipar-
ticle is suppressed. This state of affairs persists for some time
until the vibrational oscillation unmakes the mismatch. The
wave function overlaps return to their original high values,
and revival occurs. This happens repeatedly with period
2p/v and is the source of the silent runs. The success of the
memory approach versus the semiclassical approximation
lies in the presence of the effective time dependence of the
intersite interaction in the memory approach.

III. COMPARISON TO SEMICLASSICAL
APPROXIMATION SCHEMES

In this section, we compare the memory-function ap-
proach to two of the approximation schemes that have been
put forward to describe the evolution governed by~2.1! or
~2.2!. Notable among such schemes are the semiclassical ap-
proximation and the discrete nonlinear Schro¨dinger equation.
The relation of the latter to the former is well known.13,14,16

We focus here only on the former which, for the dimer, is

dp

dt
522Vq, ~3.1!

dq

dt
52Vp22gvyr, ~3.2!

dr

dt
52gvyq, ~3.3!

FIG. 2. Features of the
memory function showing a hier-
archy of time scales which are
also reflected in the evolution of
the probability difference. Shown
in ~a! are the memory functions.
Parameters arev53V, g51.8 and
v52V, g55. The high-frequency
oscillations of the memory func-
tion are exhibited clearly for the
latter case. Shown in~b! is evolu-
tion of the probability difference
corresponding to the parameters
v53V, g51.8.
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dy

dt
5vpy , ~3.4!

dpy

dt
52vy2gvpy . ~3.5!

The absence of circumflexes overp,q,r ,y,py means that the
corresponding operators have been replaced here by their
expectation values. This semiclassical approximation con-
sists, as is well known, of replacing the expectation value of
the products of operators by the product of expectation val-
ues of the operators. In addition to thisstandardsemiclassi-
cal approximation, another classical approximation has ap-
peared in the literature. Introduced by Brown, Lindenberg,
and West29 a few years ago as a better alternative to what
they termed the Kenkre-Rahman memory function,11 it re-
places the complex quantityh(t) by its classical counterpart.
For the zero-T single-mode case this means that
2g2 exp~2ivt! is replaced by 2g2cos (vt). Since this pro-
cedure employs a classicalh(t), we compare its conse-
quences to the standard semiclassical results as well as to the
predictions of our memory approach. We will refer to this
approximation as the ‘‘symmetrized’’ memory approach be-
cause it involves the replacement of the autocorrelation func-
tion ^x(t)x& of the oscillator displacement operator by the
symmetrized classical counterpart^x(t)x1xx(t)&/2. Such
approximations are well-known in the classical limit of
linear-response theory.30 The evolution equation for the sym-
metrized memory approximation is29

dp

dt
14V2E

0

t

ds e22g2@12cosv~ t2s!#p~s!50. ~3.6!

Shown in Fig. 3~a! is a comparison between the memory-
function result as given by~2.14!, the numerically obtained
exact result and the symmetrized approximation as given by
~3.6!. It is clear that, contrary to the suggestion in Ref. 29,
the symmetrized approximation is not a better alternative to
the memory approach. Instead, it fails significantly for the
parameters shown. While the symmetrized memory does de-
cay to a very small value in the same time as the Kenkre-
Rahman memory, it lacks the key ingredient needed to pro-
duce the silent runs observed in the exact evolution forp(t).
As the direct result of the symmetrization procedure, the
memory used in Ref. 29 lacks the second~cosine! factor,
consequently does not oscillate, and does not give an integral
that is approximately zero by the time the decay has oc-
curred. The inset in Fig. 3~a! showing the comparison be-
tween the two memory functions should make this point
quite clear. The fact that the time dependence ofh(t) is
complex~rather than real! is a manifestation of the quantum-
mechanical nature of the vibrations. Its neglect seriously dis-
torts the probability evolution except at elevated tempera-
tures where the Bose occupation factors considerably exceed
1. It is important to realize that, although the symmetrized
approximation improves in its validity as the temperature
increases, itneverbecomes preferable to~2.14!, i.e., to the
use of the original memory function of Refs. 6, 11, and 12.

In Fig. 3~b! we show the comparison of the memory ap-
proach to the standard semiclassical approach. The failure of
the semiclassical approximation~3.5! for many parameter

ranges, pointed out earlier by Grigolini and co-workers18–20

is confirmed by our results. However, in the limit
g→`,v→0,g2v5const, the semiclassical approximation
approaches the exact result. Mathematically, this limit bears
resemblance to the well-knownl2t limit of van Hove.31

Physically, it represents an infinitely massive oscillator.22

This is clear from the fact that the interaction energy term
gv is proportional to the oscillator displacement which goes
as~mv!21/2 while the phonon frequencyv is proportional to
m21/2, m being the oscillator mass. In this massive oscillator
limit, W (t) takes on the simple form

W ~ t !52V2 cos~xt ! ~3.7!

the single time scale that survives istx , equivalently the
reciprocal ofx52g2v, and the tunneling time becomes infi-
nite, giving true self-trapping. Whereas the validity of the
standard semiclassical approximation improves in this mas-
sive oscillator limit, the symmetrized approximation of Ref.
29 improves asg→0,v→0, which merely signifies weak
coupling. We have also analyzed semiclassical approxima-
tions other than the two analyzed above and will comment
on them elsewhere.

IV. APPLICATION TO SENSITIZED LUMINESCENCE

We now apply the memory-function approach to a simple
experiment that brings out the essential features of the dy-
namics of the problem. Let the quasiparticle moving between
the sites of the dimer be an electronic excitation which de-
cays radiatively. Assume that a trap extracts the excitation
from one of the sites. The trap probability may be monitored
by measuring the quantum yield, i.e., the ratio of the number
of photons emitted~radiatively! by the trap to the number of
electronic excitations put initially into the system. This is a
dimer case of the sensitized luminescence experiment in
crystals32,33 which has been explained in detail elsewhere.6

The monitored quantum yield or luminescence intensity con-
tains information about the dynamics of the quasiparticle.

The probabilitiesP1,2(t) that the excitation resides on the
two sites of the dimer obey

dP1~ t !

dt
1
P1

t
5E

0

t

dsW 8~ t2s!@P2~s!2P1~s!#, ~4.1!

dP2~ t !

dt
1
P2

t
1GP25E

0

t

dsW 8~ t2s!@P1~s!2P2~s!#,

~4.2!

dPu~ t !

dt
1
Pu

t
5GP2 , ~4.3!

wherePu(t) denotes the probability of occupation at the trap
which extracts the excitation from site 2 at rateG, andt is
the radiative lifetime. As shown elsewhere,33 the quantity
W 8(t) appearing in~4.1! and~4.2! equals the product of the
memoryW (t) and the factore2t/t.

We denote the Laplace variable bye, and use tildes to
represent the Laplace transforms. The quantum yield of lu-
minescence, defined as the ratio of the number of photons
emerging radiatively from the trap to the number of photons
put into the dimer, is
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f5
1

t
P̃u~0! ~4.4!

and is given explicitly by

f5G P̃2~0!5
GtW̃ ~1/t!

~11Gt!1tW̃ ~1/t!~21Gt!
. ~4.5!

Since our interest is in examining the effect of the quasipar-
ticle motion within the dimer on the yield observable, we
take the limit of infiniteG, which is appropriate to some
realistic systems. The limit makes the trap parameterG dis-
appear from the yield expression and allows us to concen-
trate on the effects of motion alone:

f5
tW̃ ~1/t!

11tW̃ ~1/t!
~4.6!

The observablef is directly related toW̃ ~1/t!, the key
quantity in our memory approach. The yield is sensitive to
different features of the motion according to which time
scale of the memory function is comparable to the experi-
mental probe timet. The quantum yield probe is thus par-
ticularly appropriate in the context of our memory approach.
For comparison, the memoryW̃ ~e! corresponding toany
calculational approach, e.g., the exact or the semiclassical
method, can be obtained from the probability differencep( ẽ)
through

FIG. 3. Comparison of the
memory function results to those
of two semiclassical approxima-
tions. In ~a!, the symmetrized
memory approximation~see text!
is compared to the memory-
function result and the exact result
for parameter valuesv55V,
g51.5. For the same parameter
values, ~b! shows the exact and
memory results, respectively,
compared to the standard semi-
classical approximation. Both
semiclassical approximations are
found to be quite poor for the pa-
rameters chosen.
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2W̃ ~e!5
1

p~ ẽ !
2e. ~4.7!

The overall features of the yield in~4.6!, asVt changes,
are a rise and saturation to 1. Closely related to the quantum
yield is the energy-transfer rate,6,32,33

K tr5
1

t

fG

fH
5
1

t

f

12f
, ~4.8!

which exhibits more detailed features of the motion. In~4.8!
the subscriptG refers to the guest~or trap! site and the
subscriptH refers to the host sites. The last equality in~4.8!

follows from the assumption that the radiative decay rates
are the same for the hosts and the guests. From~4.6! and
~4.8!, it is clear that the energy-transfer rate is identical to the
Laplace transform of the memory functionW (t) evaluated
at 1/t,

K tr5
1

t

f

12f
5W̃ . ~4.9!

Figure 4 shows the energy-transfer rateK tr plotted logarith-
mically againstVt. Shown in the inset is the corresponding
behavior of the yieldf. The rapid rise in the transfer rate for
small values oft stems from the fact that, in the time do-
main, the memory function drops rapidly initially. In particu-

FIG. 5. Dependence of the
energy-transfer rateK tr~t! on the
coupling constant for various val-
ues of the oscillator frequency as
calculated from the memory ap-
proach ~solid line! and the exact
calculation ~dashed line!. Note
that, for the parameters chosen,
the rates computed from the
memory-function approach for
v50.5V,V,2V all practically co-
incide.

FIG. 4. The energy-transfer
rate K tr for sensitized lumines-
cence is plotted logarithmically
againstVt for the parameters of
Fig. 2: g51.8, v53V, calculated
with the memory approach onv.
The inset shows the quantum
yield f.
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lar, the peak of the energy-transfer rate occurs at
Vt'1/(2g2v) which, in the massive oscillator limit, is the
frequency of the rapid oscillations of the memory function.
The slope of the energy-transfer rate for large values ofVt
gives the average value of the memory functionW (t) which
is equal to 2V2e22g2. If the radiative lifetimet were a quan-
tity under experimental control, the essential parameters of
the system could thus be extracted from the dependence of
the yield observable on the lifetime. Unfortunately, in real
systems,t cannot be varied in this fashion. The purpose of
the above analysis is largely illustrative and the role oft
should be regarded as that of a time probe.

The variation ofK tr seen in Fig. 4 can be understood

very simply by realizing that the memory functionW (t)
behaves in its gross characteristics as the sum of a constant
and a repeated damped exponential:

W ~ t !' f ~ t !52V2(
n50

`

e2a~ t22np/v! cos~Vt !u~ t22np/v!

12V2e22g2, ~4.10!

whereu(t) is the Heaviside step function. For large values of
g and small values ofv, the illustrative parameters off (t),
viz., a andV, are, respectively, of the order ofgv andg2v.
The Laplace transform off (t) can be trivially calculated:

f̃ ~1/t!52V2S a1$12e2a1 /Ã cos~V/Ã!%1Ve2a1 /Ã sin~V/Ã!

@12exp~21/Ãt!#@a1
21V2#

1e22g2t D , ~4.11!

whereÃ5v/2p, a15a11/t. The transform possesses the
essential feature ofK tr , viz., an initial rise followed by a
drop to zero, and an eventual linear increase for large values
of Vt.

The energy-transfer rate as predicted by the memory func-
tion is particularly sensitive tog and almost completely in-
sensitive tov for the parameters shown in Fig. 5, which
displays the dependence of the energy-transfer rate ong for
various values ofv. We show both the memory results~solid
line! and the consequences of the exact evolution~dashed
line!, the latter obtained through the use of~4.7!. One notices
that the transfer rate drops sharply as one changes the value
of g from 2 to 3, for a range of values ofv. One also notices
that the memory function appearing in~2.14! predicts an
energy-transfer rate that approaches the true energy-transfer
rate coming from the exact evolution as one increasesg but
differs from the true energy-transfer rate for smallg. The
agreement also improves as one increasesv/V. Both these
trends are in keeping with the expectation that the memory-
function treatment improves in accuracy as the ratiog2v/V
increases. The value ofVt that we have chosen here corre-
sponds to a normal experimental system in whichV andt are
of the order of a few wave numbers and a few nanoseconds,
respectively. The independence of the memory function re-
sult on v seen in Fig. 5 is not a general consequence for
arbitrary parameters.

V. THREE PHYSICAL SYSTEMS

In this section, we present an examination of three physi-
cal systems with the help of the memory-function formalism
and the semiclassical approximation. The experimental ob-
servables are charge mobility in aromatic hydrocarbons, ther-
mal diffusivity in high-temperature thermoelectrics, and vi-
brational energy transfer in biological systems like proteins.

The first of the three phenomena involves observations of
the mobility of photoinjected charge carriers in naphthalene.
The moving quasiparticle is generally a hole or an electron,
and it interacts strongly with librational phonons of the

lattice.3 Values of the system parameters have been extracted
earlier.3 The coupling constant isg51.8, the carrier band-
width is 10.5 meV, and the librational phonon energy is 16
meV. From these we find that, in the notation of the present
paper,g51.8,V560 K, andv/V53.2. Within this section,
we write \ explicitly to facilitate comparison with experi-
mental values. Although the dimer studied in the present pa-
per cannot completely represent a crystal, we will assume, as
a working hypothesis~for simplicity!, that the essential phys-
ics behind the effects of strong interaction between a quasi-
particle and phonons is captured by this comparison to the
dimer. This assumption will be made for all the three systems
studied in this section. Figure 6~a! shows a comparison of the
results due to the exact quantum-mechanical calculation,
semiclassical approximation, and memory-function analysis.
It is clear that, whereas the semiclassical approximation fails
quite badly, the memory function recovers all the salient fea-
tures of the exact evolution. In particular, the short-time evo-
lution at a frequency ofg2v, the decay of the initial oscilla-
tions at a time of 1/gv, the revival of the oscillations at a
frequency ofv, and the tunneling to the other site at a time
of approximately 1/e2g2 are all shown by the memory analy-
sis.

The second phenomenon we analyze is anomalous ther-
mal conduction observed in boron carbides at high
temperatures.34,35One of the observed features is that, while
in B4C thermal diffusivity displays ‘‘normal’’ behavior in
that it decreases with increasing temperature, inB9C it is
nearly temperature independent. This feature was addressed
in Ref. 35 by assuming the heat current to be due to carrier
phonons whose frequency is modulated by lower-frequency
phonons that ‘‘dress’’ the carrier phonons through strong in-
teractions. One finds35 that the ratio between the intersite
matrix element to the phonon energyV/vD is 0.06, the
coupling constantg is 0.6, and the phonon energy
\vD5kBTD51300 K. In the above, the subscriptD refers to
the fact that the frequency of the dressing phonons has been
taken to be the Debye frequency. In the notation of the
present paper, the system parameters areg50.6,V583.2 K,
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andv/V515.6. Figure 6~b! shows a comparison between
the numerically exact calculation~dashed line!, the memory-
function result~solid line!, and the semiclassical result~dot-
ted line!. The first two are in agreement whereas the semi-

classical approximation departs from both very early. In
particular, sinceg,1, the quasiparticle tunnels out quickly.
The semiclassical approximation fails to capture this feature,
and erroneously predicts self-trapping.

FIG. 6. Evolution in three
physically relevant systems:~a!
charge carrier transport in aro-
matic hydrocarbon crystals,~b!
thermal diffusion in high-
temperature thermoelectrics, and
~c! vibrational energy transfer in
biological systems. Exact~dashed
line!, memory ~solid line!, and
semiclassical~dotted line! results
for the evolution of the quasiparti-
cle probability in a representative
two-site system are compared. All
three curves in~c! are almost
identical to one another and are
practically indistinguishable from
the result for zero interaction be-
tween the quasiparticle and vibra-
tions.
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The third system we address is the Davydov soliton36

which provides a mechanism for the localization and trans-
port of vibrational energy in protein. In this mechanism, vi-
brational energy of the CO stretching~or Amide-I! oscillators
localized on thea-helix region of the protein is supposed,
through a phonon coupling effect, to act to distort the helix
structure. The helical distortion reacts, also through phonon
coupling, to prevent Amide-I oscillation energy dispersion,
causing self-localization. The parameters involved in this
field have been a subject of some debate. We take those
given in the review of Scott13 who describes a model involv-
ing longitudinal compression waves and one representative
mode of vibration. The Hamiltonian is

Ĥ5Ĥex1Ĥph1Ĥ int , ~5.1a!

Ĥex5(
n

E0Bn
†Bn2J~Bn

†Bn111Bn
†Bn21!, ~5.1b!

Ĥph5
1

2
(
n

S p̂n2
M̃

1w̃~ ûn112ûn!
2D , ~5.1c!

Ĥ int5x(
n

~ ûn112ûn!Bn
†Bn . ~5.1d!

The coupling parameterx has been estimated to be 35 pN
~Ref. 13! and 62 pN.37 The symbolx in this section has been
reserved for the quasiparticle-phonon coupling parameter in
conformity with Ref. 13 and should not be confused with the
polaron binding energyx ~2g2v! mentioned elsewhere in
this paper. The longitudinal spring constantṽ is three times
that for a single hydrogen bond, which in turn, is estimated
from experiments to be 13 N/m~Ref. 38!, and fromab initio
calculations to be 19.5 N/m.13 The massM̃ of the lattice
oscillator is three times the average mass of an amino acid
molecule in myosin,39 which in turn is 1.9310225 kg. The
transfer interactionJ has been calculated from electromag-
netic theory40 to be 1.55310222 J. The interaction term in
~5.1c! Ĥ int is given by

ûn5(
q

S \

2NM̃vq
D 1/2eiqnl~bq1b2q

† !, ~5.2!

where l is the lattice spacing~the distance between peptide
groups! and the frequencyvq of the oscillator is given by the
dispersion relationvq52~ṽ/M̃ ) usin~ql/2!u. In the notation
of the present paper, the phonon frequencyv thus varies
between 1.631013 and 2.031013 rad/s, the intersite matrix
elementV is 11.2 K, and the quasiparticle-phonon coupling
energy\gv5xA\/2M̃vq varies between 0.75310222 and
1.5310222 J. Thus,g varies between 0.035 to 0.084, and the
ratio of the phonon energy to the intersite matrix element
\v/V varies between 11.2 and 13.8. Figure 6~c! shows a
comparison between the exact result, the memory-function
prediction, and the semiclassical approximation result, all of
which show free~not self-trapped! evolution, and agree with
one another. Close inspection of the values obtained reveals
two features:~i! the memory approach is slightly better in
representing the exact evolution than the semiclassical ap-
proximation but the difference is not significant,~ii ! all three

curves are hardly distinguishable from the plotp(t)
5cos(2Vt) characteristic of evolution in which the
quasiparticle-vibration interactionis zero.

We see that in all three cases considered above, the
memory-function approach fares rather well in representing
the actual evolution. The semiclassical approach does poorly
in two of the three cases. In the third, i.e., vibrational transfer
in protein, where it represents the exact evolution well, the
interaction with vibrations is too small to haveanyeffect on
the quasiparticle evolution. We certainly cannot claim to
have established the shortcomings of the semiclassical ap-
proach for any of these physical systems since the actual
systems are extended crystals or aggregates in interaction
with a large number of modes. Our model, by contrast, is
merely a dimer in interaction with a single mode. It is not
inconceivable that the introduction of the additional degrees
of freedom will change some of the quantitative conclusions.
However, within the confines of the simplified model, the
indication is unmistakable: the semiclassical approach tends
to be inadequate or of little use, while the memory approach
approximates the exact evolution satisfactorily. We summa-
rize the parameters of the three systems in Table I.

VI. DISCUSSION

We have seen that the memory-function approach intro-
duced many years ago for charge and excitation
transport6,11,12provides an excellent approximation to the ex-
act evolution of the standard quasiparticle-phonon system
~2.1! underlying many recent polaron, exciton, and quantum
soliton discussions, at least for the single-mode zero-
temperature dimer system analyzed in this paper. An exami-
nation of its validity for many modes, arbitrary temperature,
and extended systems is important but difficult to undertake.
Work along those lines is in progress. The starting point for
our memory approach is generally~2.10!, which is an exact
consequence of the dynamics, and specifically~2.14!, which
is the result of the initial condition we assume and the per-
turbation scheme we employ for the analysis of the single-
mode zero-temperature dimer of~2.2!. We have seen that the
memory approach is able to describe adequately a number of
features carrying the signature of the exact evolution. An
additional advantage of the approach is that the source of the
features is made transparent. The quantum yield experiment
that we have described in Sec. IV is particularly amenable to
analysis through the memory approach.

The memory approach,6,11,12 specifically the evolution
equation~2.14!, appears to be closely related~for all practi-
cal purposes identical! to the more recent noninteracting blip
approximation~NBA! treatment41 given on the basis of a
quite different and considerably more complex formalism.
The work of Grigolini and co-workers19,20 has made it clear
that their approach, in one of its simplified forms, is equiva-

TABLE I. Parameters of the three systems.

System g \v/V \gv/V \g2v/V

Naphthalene 1.8 3.2 5.9 10.7
Boron carbide 0.6 15.6 9.4 5.6
a-helix 0.035–0.084 11.2–13.8 0.48–0.94 0.017–0.079
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lent to the NBA analysis. It is easy to appreciate that the
simplified equation used by Grigolini and co-workers to ana-
lyze the dimer19,20 is a short-time expansion of our memory
equation~2.14!. It is remarkable that this connection between
the memory approach6,11,12 and the noninteracting blip
approximation41 has remained undiscovered for so long.
Given the considerable ease of derivation involved in the
memory method, and the great deal of interest that the NBA
has stimulated in the literature, it seems likely that useful
insights into the general problem of quasiparticle-boson in-
teraction will be gained with the help of this connection.

The essential components of the memory approach are the
use of projections to concentrate on the quasiparticle dynam-
ics by tracing over the phonons, a perturbation expansion in
orders of the transfer interaction after the dressing transfor-
mation, and the use of a certain class of initial conditions. In

the form presented here, attention has also been focused on
the evolution of the quasiparticle probabilities, thus making
it easy to obtainp(t) andq(t) but not r (t) directly. This is
easily remedied by excluding the diagonalizing feature of the
projection operators as might be done to obtain the so-called
stochastic Liouville equation,4,5,10i.e., a density matrix equa-
tion ~rather than a probability equation! for the quasiparticle.
Further work requires to be done on the memory approach in
two important directions:~i! study of the precise domain of
the validity of the approach,~ii ! the initial condition prob-
lem. We comment on each in turn.

The Hamiltonian of~2.2! @generally of~2.1!# is character-
ized by three energies: the transfer interactionV, the oscilla-
tor energyv, and the interaction energygv. When we focus
attention on quasiparticle dynamics~rather than phonon dy-
namics!, we see that two of the phenomena, viz., transfer and

FIG. 7. Breakdown of the
memory-function approach.~a!
Comparison between the exact re-
sult, the semiclassical approxima-
tion, and the memory-function ap-
proach in a regime where the
semiclassical approach is better
than the memory approach. The
parameters arev5V, g50.5. ~b!
Comparison of the memory result
with exact results for two different
initial conditions. The initial state
for the memory result is the same
as that for the exact result~i! but
different from that for ~ii !. See
text. The parameters arev50.1V,
g55.5 as in Fig. 1~c! of Ref. 22.
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interaction with phonons, compete for domination of the
evolution. The problem can be solved analytically in the two
limits g→0 andV→0, the respective characteristic energies
of the quasiparticle beingV andg2v. It is important to notice
that the latter is notgv. The perturbation parameter whose
smallness may be said to mark the validity domain of the
memory approach isV/g2v. If this parameter is not too
small, it is possible~but tedious! to develop memory func-
tions which involve higher terms in the perturbation expan-
sion. In order to show a regime in which the memory ap-
proach does not do as well as the semiclassical
approximation, we chooseg,1 andv comparable toV. This
allows us to approximate the massive oscillator limit which
validates the semiclassical approximation and at the same
time violate the perturbation scheme based onV<g2v. Fig-
ure 7~a! shows a comparison betweenp(t) as predicted by
the exact result~dashed line!, by the memory-function ap-
proach~solid line! and the semiclassical approximation~dot-
ted line! for such a case:v5V, g50.5. The initial condition
used is that the quasiparticle is localized on one site, and the
phonons are in the ground state of the displaced oscillator
basis. In this weak-coupling, intermediate phonon frequency
~v'V! regime, we see that, as expected, the semiclassical
approximation is better than the memory-function approxi-
mation. This regime doesnot correspond to polaron forma-
tion, however.~Note thatg,1.! The advantage of employing
the semiclassical approximation over the memory-function
approach appears thus to be limited to nonpolaronic and rela-
tively uninteresting regimes. It is interesting that the memory
approach for the dimer provides a good approximation for
both largeg and smallg. The first of these results is easily
understandable since the perturbation parameterV/g2v is
small. In the opposite~weak-coupling! limit g→0, the
memory function tends to the constant value 2V2 which cor-

responds to the exact evolution in the absence of
quasiparticle-vibration coupling. This fact, that the memory
function becomes trivially exact in the limit of vanishingg,
is indicated in Fig. 6~c!.

We now turn to the initial condition term. The derivation
of ~2.14!, in the more general form of Refs. 11 and 12 re-
quires that the initial phonon state be thermal in the unper-
turbed transformed Hamiltonian eigenstates. For the zero-T
single-mode case, this means that the initial phonon state is
the ground state of the displaced oscillator basis. The exact
numerical solutions we have shown here so far, with the
exception of Fig. 7~a!, are based on the assumption that the
initial state is a one-site projection of the ground state of the
total Hamiltonian. These two initial states are identical to
each other for largeg’s. However, for smallg’s, they can
differ considerably. The corresponding time evolutions also
differ, as Fig. 7~b! shows. The validity of the assumption
involved in this replacement of the actual initial state by the
approximate counterpart has to be investigated. Work is in
progress on an extension of the memory approach to arbi-
trary initial conditions through a modification of the projec-
tion operator.

In summary, our present study supports the conclusions
drawn by Grigolini and co-workers18–20 that semiclassical
equations of motion for the Hamiltonian of~2.1! could be
questionable in many physically relevant cases. It agrees
with the recent analysis18–20as well as early concerns21 that
had been raised regarding the semiclassical approximation.
Our study also goes further in showing a clear limit in which
the semiclassical approximation is valid, and in suggesting a
simple and well-tested alternative for approximate analysis:
Our memory approach6,11,12should complement other meth-
ods put forward recently such as the Wigner-distribution
method.18
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