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ABSTRACT

Aspects of dynamic disorder in charge transport in polymers are investigated. Basic issues such as polaron
formation, the validity of semiclassical arguments and the memory function method of mobility calculation are
studied.
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Charge transport in polymers is characterised by disorder. Of the two primary kinds of disorder, static disorder
is of special importance to polymers because the environment is not translationally invariant, the site energies
being inequivalent and the transfer interactions being dependent on the site locations. Dynamic disorder, on the
other hand, by which is meant the destruction of translational invariance that the charge carrier feels as a result of
strong interactions with the vibrations of the solid, is present in all solids including polymers. Its understanding
provides the theoretical underpinning for all considerations of tzansport in these systems. This talk is aimed at
issues of dynamic disorder which have come to the fore as a result of very recent work.

The most productive manner of envisaging carrier motion is in terms of relative values of the various energies
involved. The carrier bandwidth V describes the speed of the bare carrier motion in the absence of other effects.
Inmtem:mchudectmmmoﬁnginmetdlorinorgmicnmicondm V is of the order of an eV and
thus overwhelms all other energies. Bloch states provide a good description of transport and other interactions
are simply weak perturbations on V. In polymers this intellectually dull state of affairs does not exist. The
bandwidth is hundreds of times smaller than in metals and all energies compete with one another: the bandwidth
V, the phonon energy Aw , the polaron binding energy Ag?w, various dispersion quantities, and even the thermal
broadening kpT and the static broadening a. As a result of this fierce competition, perturbation methods fail
and entirely new theoretical concepts have to be developed. It is the difficulty, and therefore the interest, of the
problem that makes recent re-investigations into dynamic disorder, specifically polaron concepts, important.

Preceding the most recent work on these issues, three periods can be identified in the development of polaron
concepts. The first spans the 50’s and 60's and is represented by the original ideas of Landau,® Pekar,? Holstein,3
and Toyosawa.* In that period the basic concept was developed that a charge carrier in strong interaction
with vibrations surrounds itself with a lattice distortion, and thus makes itself heavier, impairing mobility and
sometimes causing selftrapping. The second period spanned the 70's: dressing transformations®™® and field
theoretic techniques!'%1? were developed, often in the context of excitonic polarons. One of the outcomes of
this period was the memory function approach (based on generalised master equations) which was successful
in providing a satisfactory explanation of carrier transport in aromatic hydrocarbons. The third period spans
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the 80’s and proceeded in large part without interaction with existing polaron studies, attention being focused
on the so-called Davydov solitons. Semiclassical equations of motion and the discrete nonlinear Schrédinger
equation?3~3! were used to explore a number of phenomena in biological systems.

The work that is being reported in this talk consists of the examination of the validity of previous polaron
and soliton ideas through an inspection of ezact solutions of a highly simplified system. The advantage of this
work lies in the fact that the solutions are free of the uncertainties of the validity of any approximation methods.
The disadvantage is that there is concern that the simplification that one needs to invoke to make possible exact
solutions might eliminate some of the essential features of the underlying physics. However, this is the normal
state of affairs in physics for any nontrivial problem, and progress is only possible by combining this kind of
analysis with approximation-based investigations. The work we report3*33 hag been strongly motivated by the
analysis of Grigolini et al.?*2*

The basic Hamiltonian in standard notation is
- 1
B =) emahom+ Y Vimnahan + 3 huy(blb, + ) +
m mn P

N=Y23 " hwygy exp(iq- Rem)(by + 8!, )at,am. (1)
m,e

Solutions to this problem have never been found except in extremes of V = 0 and g = 0. We simplify the problem
into that of a degenerate dimer interacting with one vibrational mode, and solve the problem to any desired
accuracy via well-defined numerical methods. The quantum mechanical solutions are then compared with various
approximations and conclusions drawn unambiguously about the validity of the latter.

Of the approximations we investigate, two are particularly important: the semiclassical approximation, and
the memory function approach. We begin with the former. The semiclassical approximation is the basis of an
enormous amount of soliton literature and is also representative of a great deal of “intuitive’ thinking in polaron
physics. Thus, the idea of selftrapping can be attained perfectly easily through semiclassical arguments and a key
ratio that is ubiquitous is Agw/V. If this ratio is large, the intuitive expectation is that polarons are the carriers
in question and selftrapping occurs. If it is small, free motion is supposed to occur.

Our exact calculations show that these expectations are not universally correct. It is easy to show that,
when the ratio Ag?w/V is large w.r.t. 1, the semiclassical arguments clearly predict selftrapping whereas the
enctevolntionisquite&egifthephononenergyillugerthan.ormofthewderof,theca.rrierbmdwidth.
Thedhaepanqﬁdrmﬂicmdnhow:withoutdoubtthedmgmofnmichnicdm This part of our
analysis agrees with and supports the conclusions drawn by Grigolini et al.2*8 and early remarks of Brown et
al.?*% Highly useful are several additional findings of our studies. We find the exact solutions characterised by
a time scale hierarchy. Features of the exact evolution include rapid oscillations and eavelope decay followed by
‘ailentmnl’inwhichcuﬁcrtrmportnoplinamuchmondruﬁcwthmunpmtedbynexniclntial
evolution, and repeated recurrences and eventual tunneling. The silent runs, the recurrences and the tunpeling
are completely beyond the reach of the semiclassical analysis. We also find not only that the semiclassical
approximation improves steadily as the vibrational frequency decreases but that an unambiguous limit exists in
which the semiclassical argument is exact. This limit corresponds to an infinitely massive oscillator and represents
w—»O,g—ooo,g’u=corut.Ofthevuiou:timena.luinthehieruchyonlyone,vi:.theredprocalofg’wsurvivu
in this limit and thus all the other features of the exact evolution are eliminated.

The memory function approach”™® consists of the use of a dressing transformation and a perturbation resulting
in evolution in terms of a memory function. The approach has been successful in the past? in explaining the
mobility of charge carriers in naphthalene. Its validity can be studied clearly in the context of the simplified
model explained above. It is found that the approach is surprisingly accurate in & wide variety of parameter
ranges. It is almost always preferable to the semiclassical approximation, it is valid both for large 93w and for
small g, and it represents several realistic systems excellently. They include thermal polarons, charge carriers,
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and vibrational excitations. Highly important is the fact that the memory approach correctly addresses all the
features of the exact evolution including the silent runs, recurrences, and tunneling. Furthermore, the time scale
hierarchy in the exact evolution can be understood easily in terms of the memory both from a mathematical and
a physical point of view. The range of situations in which the memory approach breaks down (certain initial
conditions and an intermediate Ag?w/V) is also made clear by our analysis. We also find that a semiclassical
symmetrisation procedure suggested by Brown et al.3! ag a better alternative to our original memory function®
is actually always worse and sometimes severely so. Extension of our study to finite temperature and bath effects
and to realistically extended systems and many modes is under way. It is a pleuure to thank my collaborators
in this work: A. Bishop, S. Raghavan and M. Salkola.
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