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The standard discrete nonlinear Schrédinger equation results from an interaction between a moving
quasiparticle (such as an electron or an exciton) and lattice vibrations that is linear in the lattice dis-
placements, and a restoring force for the vibrations that is harmonic. We study the effects of nonlineari-
ty in interaction and of anharmonicities in the restoring force on the transport of the quasiparticle. We
obtain a generalized transport equation, construct a formalism to solve it, and find explicit solutions ap-
propriate to the evolution of rotational polarons. Rich behavior emerges including saturation of non-
linearities and destruction of self-trapping on increasing the nonlinearity.

I. INTRODUCTION

The discrete nonlinear Schrodinger equation, which
describes a number of phenomena in various fields of
physics, may be written as

dc,, )
i# =3 VyuCn—Xlcm % »

dr (1.1

where c,, is the amplitude for the system to be in state
|m), V,, are intersite transfer-matrix elements describ-
ing the linear evolution among the states |m ), and y is
the nonlinearity parameter. In the specific system of an
electron or exciton in a crystal interacting strongly with
phonons or vibrations, |m ) denotes the (localized) Wan-
nier state centered on site m, V,,,, are proportional to the
bandwidth of the bare electron or exciton, and Y is the
energy lowering due to polaronic effects, often written as
a sum of the products of the vibrational energies of the
participating modes and the square of their coupling con-
stants with the electron or exciton.

Equation (1.1) or similar equations have been written
down or derived by a variety of people in a variety of con-
texts.!”7 While the microscopic origin and the precise
extent of validity of (1.1) continue to be debated upon ac-
tively in the literature,® ™12 it is often assumed that (1.1)
may be written down as arising from the following cou-
pled equations of motion for the amplitude c,, of the
quasiparticle (electron/exciton), and for the displacement
x,, of the molecule which is in strong interaction with the
quasiparticle:

dc,,
ifi =3 Voucn tEox,nCp (1.2)
dt .
d’x
= +w*x,, +S|c, |2=0 . (1.3)

dt?

The frequency of the molecular vibrations is @, and the
last terms in the right-hand side of (1.2) and the left-hand
side of (1.3) describe the interaction of the vibrations with
the quasiparticle. In (1.2), the manifestation of the in-
teraction is in the dependence of the energy of the mth
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site on the displacement x,,, while in (1.3) it is in the
dependence of the force exerted on the molecular oscilla-
tor on the probability |c,, |? that the quasiparticle occu-
pies site m. Here, E, and S are appropriate constants.
The standard manner (see, e.g., Ref. 7) in which one
derives (1.1) from the coupled equations (1.2) and (1.3), is
through an argument of time-scale disparity which allows
one to neglect the first term in (1.3). On substituting a
‘term proportional to |c,, |2 for x,, in the last term of (1.2),
one then obtains (1.1), the nonlinearity parameter y being
equal to E,S /w?.

At a semimicroscopic level, the interaction terms in
(1.2) and (1.3) may be derived from an interaction term in
the Hamiltonian of the coupled system which is of the
form

6(x,yrem)=EoXplcm|? . (1.4)

The respective last two terms of (1.2) and (1.3) are ob-
tained from (1.4) by differentiating &(x,,,c,) with
respect to c,, and x,,, respectively. One then finds that S
is nothing other than E,/M, M being the mass of the os-
cillator.

We see that there are two assumptions of linearity in
the above standard procedure, both of which arise from a
Taylor series argument. The interaction term Eyx,, |c,, |
in (1.4) is linear in x,, and so is the restoring force which
is the product of the oscillator mass M and the term
»’x,, in (1.3). The purpose of the present paper is to in-
vestigate the consequences of relaxing these linearity as-
sumptions in the two terms. We are thus interested in
generally nonlinear restoring forces Mf(x,,) for the
molecular oscillator and in generally nonlinear potentials
E(x,,)lc,,|* for the interaction between the vibrations
and the quasiparticle. We will not consider nonlinearities
of 6(x,,,c,,) in |c,, |? in the present paper.

The physical origin of the nonlinearities in the restor-
ing force and the interaction potential which we investi-
gate here is quite evident. No molecular oscillator is tru-
ly Hookian and no interaction energy is truly linear in
the oscillator displacement. Indeed, the forms used in
(1.2) and (1.3) are simply the lowest terms in any realistic
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situation retained through a Taylor expansion. Systems in
which the nonlinearities might be particularly interesting
are ones in which x,, is a rotation rather than a vibration.
For notational purposes, we will therefore denote it by an
angle variable 0,. The system could thus be an
electron/exciton moving among the sites m of a chain,
there being a rotator (for instance, a dipole) at each site m
whose angle from a fixed direction is 6,,. Periodicity in
0,, being essential at least at every interval of 27, the
nonlinear effects could be quite important for rotations
which are not too small compared to 277. We will there-
fore investigate the consequences for quasiparticle trans-
port which arise on replacing the standard Hooke’s linear
restoring force by a general nonlinear force proportional
to a function f(6,,) of the rotational coordinate, and the
standard linear interaction potentlal (1.4) by the general

nonlinear potential
6(0,,,¢, ) =E(0,,)]c,, |? (1.5)

Equations (1.2) and (1.3) are to be replaced, therefore, by

cm
;= 2 Ve TEWO, )y, (1.6)

d?e,,
dr?

It should be clear that, for the rotational case, the con-
stant R is essentially the reciprocal of the moment of in-
ertia of the rotator.

Equations (1.6) and (1.7) are our starting point in this
paper. In Sec. II we obtain the discrete nonlinear
Schrodinger equation and the discrete nonlinear von
Neumann equation which correspond to (1.6) and (1.7),
study their form valid in a dimer, i.e., a two-site system,
and derive an explicit closed evolution equation for the
difference in the probabilities of the occupation of the
two sites by the quasiparticle. In Sec. III, this nonlinear
equation is solved explicitly, the solution being expressed
in quadrature form, and the reduction of the results to
earlier linear results is shown. In Secs. IV and V, we ex-
plore a specific case appropriate to the rotational pola-
ron, and in Sec. VI, we present concluding remarks.

~ +w*f(6,,)+RE'(8,,)|c,,|*=0 . (1.7)

II. EQUATIONS FOR THE TRANSPORT
OF THE QUASIPARTICLE

The application of the standard argument of time-scale
disparity to (1.6) and (1.7) yields the closed equation for
the amplitude ¢, of the electron/exciton:

ﬁdcm o v
dt _§

hle,1?e,, (2.1)

Here & (|c,,|?) is simply —E(8,,), the quantity 6,, being
expressed as a function of |c,, |? obtained as the solution
of

(6,

Henceforth in this paper, we put #=1.
leads to the density-matrix equation

)=—(R /o»E"(0,,)lc,, |2 (2.2)

Equation (2.1)
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dpmn

2 mspsn Vsnpms)_pmn[h (pmm)_h(pnn)] .

(2.3)

The generalized discrete nonlinear Schrodinger equation
(2.1) is our generalization of (1.1) to include restoring
forces and interaction potential which are nonlinear in
the rotational coordinate 6,,. Similarly, the generalized
von Neumann equation (2.3) is our corresponding gen-
eralization of the equation

.APmn
1

T=V(pm+1n +pm—1n “Pmn +l~pmn—1)

—Pun) (2.4)

introduced earlier.” Equation (2.4) represents the further
assumption of nearest-neighbor transfer interactions, i.e.,
Viin =V (8, +118,, »—1), which is often made for sim-
plicity. The linearity assumptions on the restoring force
and the interaction potential make the 4 function linear
in the probability as one may see through a comparison
of (2.3) and (2.4) or of (2.1) and (1.1).

We shall now specialize our investigation to the case of
a dimer, i.e., a two-site system in which m,n can take
only the values 1 and 2, and we shall derive an exact
closed equation for the difference p, defined through

~XPmn Prmm

P =P P2 (2.5)
between the probabilities of occupation of the two sites
by the quasiparticle.

If we define the function g (p) up to an arbitrary con-
stant through

dg(p) _

_ﬁdpL_h (py;)—
and notice that p;;=(1+p)/2 and p,, =(
mer case of (2.4) can be written as

dap _

h (Pzz) ’ (2.6)

1—p) /2, the di-

dt =2vq, 2.7)
49 — 5y +—§—(ﬂ (2.8)
dt dp

dr _ __dg(p)

it D 7 (2.9)

for the density-matrix element contributions defined
through g =i(p;,—pa), r =(p;,+p,), and (2.5). The
solution of (2.9), its substitution in (2.8) and the substitu-
tion of the result in the differential form of (2.7) yield the
desired closed equation for p. With the definition

d

¢(p)—5 —gz(p pP2Vro+gpy)]|,  (2.10

where p, is the initial value of the probability difference,
the dynamic equation for p (¢) is

7%+4V 'p +¢(p)=0

We see that the fictitious classical oscillator whose dis-

(2.11)
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placement represents the probability difference in the di-
mer sites is subjected to two forces. One is the linear
force 4V?p corresponding to the linear dimer. The other
is ¢(p). As will be seen explicitly below, the latter takes
on substantially different forms for the generalized non-
linearities discussed in the present paper but reduces, as
expected, to a difference of a cubic term and a linear term
in the standard case’ of cubic nonlinearity.

III. EXPLICIT SOLUTION
OF THE TIME-DEPENDENT DYNAMICS

The solution of (2.11) is straightforward. On multiply-
ing it by dp /dt and integrating, one obtains the solution
for p up to quadratures. With the definition of the
effective potential

Up)=2VXp*—p3)+ilg(p)—g(py)]?
—2Vrolg(p)—g(po)],

the solution of p to quadratures is

t—ty= ? ———-dz— = » —_— .

o=/, N ECE TN foFA—= 62
where we have written ¢, explicitly as the initial value of
the time ¢, and where we use the fact, evident from (3.1),
that U(p,) vanishes by construction. The “energy con-
servation equation” for the fictitious classical oscillator
whose motion obeys (2.11) is

2
A”2—+U(p)=T+U(p0>—pi

> (3.3)

Contact with earlier results for the case of linear harmon-
ic interactions® is made immediately on noticing that, in
that case,

hle,H=xle,1? (3.4)

g(p)——p (3.5)

#(p) —X—p —XP 2V"o+)2(Po , (3.6)
2

U(p)=%(p2—p%)2+V(2V——r0)()(p2—p%), 3.7)

and this reduces solution (3.2) to that given in Refs. 5 and
6. Thus, for the further simplified initial condition that
the quasiparticle is on one of the two sites, one recovers
the elliptic function solution for the probability

difference’
p(t)=cn(2Vt|x/4V) (3.8)

as expected.

IV. SINUSOIDAL RESTORING FORCE
AND SINUSOIDAL INTERACTION

While we are in a position to use our quadrature solu-
tion (3.2) to analyze any system with given restoring force
f(0) and given interaction energy E (0), we shall explicit-
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ly examine here the simplest nontrivial case, viz. on
wherein both these functions are sinusoidal functions of
0:

_ sin(A@)

flo)==E0 4.1)
E

E(@)=T°sin<Ae>. 4.2)

The limit A—0O gives the standard linear harmonic case.
Our interest is in examining our solution with (4.1) and
(4.2) for nonzero A. With the definitions

A E,  EgR @3
- A y X&T a)2 ’ .
straightforward calculations give
xle,n |?
h(le, )= - (4.4)

V1+(/a e, |t

The substitution of (4.4) in the generalized discrete non-
linear Schrodinger equation (GDNLSE), i.e., Eq. (2.1),
yields

xlen|?
=S Vynn— 4.5)

———————C
" V1+(x /A, |

This GDNLSE reduces to (1.1), i.e., the standard discrete
nonlinear Schrodinger equation (DNLSE), for small y /A
but predicts substantially different transport features for
non-negligible values of Y /A. Thus, whereas the increase
of the nonlinearity Y leads in the DNLSE (1.1) to merely
stronger nonlinear effects, it leads in (4.5) first to stronger
nonlinear effects but eventually to a total disappearance of
nonlinear features. For large values of x /A, (4.5) reduces
to a linear equation which, unlike (1.1) can exhibit no
self-trapping. In the light of the occurrence of this satu-
ration of nonlinearity, we term A, the saturation energy
or the saturation parameter. It measures the (static) site
energy lowering that every site in the crystal feels for
high values of nonlinearity.

The counterpart of the DNSLE results (3.4) for this ro-
tational polaron is

h(le, H)=xlc, 21+ (x/A)|c,, |4 7172 (4.6)
and that of (3.5) is
g(P)=A[V(p+1)2+Q2A/x)?*+V(p —1)2+(2A/x)?
—2V'1+(2A /%)) 4.7)

We choose the arbitrary constant in g(p) as to make
g(0)=0. Expressions for ¢(p) and U(p) corresponding
to (3.6) and (3.7) can also be written down explicitly'* but
they are tedious and have therefore not been shown here.
It is straightforward to show that (4.7) reduces to (3.5) for
large values of A /Y, i.e., for sufficiently small values of
nonlinearity. In Fig. 1, we plot the function g(p) ap-
propriate to the GDNLSE [Eq. (4.7)] for several values of
A/x. The value of Y /2V taken is 2. For the large value 6
of A/Y, the function g (p) coincides for all practical pur-
poses with that for the ordinary DNLSE [Eq. (3.5)].
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a(p)

-1.0 -0.5 0.0
probability difference p

FIG. 1. The function g(p) as given by the GDNLSE (4.7)
plotted versus the probability difference p for =4V and for
several values of the saturation energy. For the case A/y=6,
and for all larger values of A /Y, the function g (p) coincides for
all practical purposes with that for the ordinary DNLSE [Eq.
(3.5)]. Smaller values of A/y are seen to result in smaller g (p)
for a given nonlinearity.

Large saturation energy, equivalently slow variation in
the sinusoidal functions representing the restoring force
and the interaction energy [see Egs. (4.1) and (4.2)], obvi-
ously results in the linear harmonic case being recovered.
Smaller saturation energies result in smaller g(p) for a
given nonlinearity as is clear from Fig. 1.

V. DYNAMICS AND STATIONARY STATES
OF THE ROTATIONAL POLARON

Our studies of the rotational polaron have uncovered
several new phenomena and we have commented upon
some of them earlier.%!>* Here we describe the most
striking of them which involves the disappearance of
self-trapping on increasing the nonlinearity. In order to
illustrate this phenomenon, we plot in Fig. 2, the effective
dynamic potential U (p), obtained from (3.1) with (4.7).
For simplicity, we consider the initial condition of com-
plete localization at one of the two sites. We then have
Po=1, r=0. We have taken a fixed saturation energy A
in Fig. 2. In units of 2V, it equals 3. Whether the motion
is self-trapped or free is clear from the vertical location of
the horizontal line depicting the “constant energy” of the
fictitious oscillator representing the evolution. If it lies
always above U (p), the motion is free. Otherwise, the
motion is self-trapped, the intersection of the horizontal
line with the U (p) curve being indicative of the extent of
values that the probability difference p can take. For
small values of the nonlinearity there is free motion as is
clear from the Y /2V =2. An increase in the nonlinearity
X results in self-trapping as expected: the Y /2¥V =6 curve
shows that the probability difference oscillates between 1
and about 0.6. The surprising new consequence of our
analysis is evident from the y/2V =12 curve. We see
that a further increase of nonlinearity frees the quasipar-
ticle rather than self-trapping it more effectively, as
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selfirapped

x/2V =12

0.0

dynamic potential U(p)

free (low nonlinearity)

free (high nonlinearity)

-1.0 -0.5 0.0 0.5
probability difference p

FIG. 2. The counterintuitive phenomenon of destruction of
self-trapping on increasing nonlinearity illustrated through
plots of the effective dynamic potential U (p) for a given satura-
tion energy A=6V. The case Y /2V =2 shows free motion re-
sulting from a low value of nonlinearity. A higher value of non-
linearity, viz. x/2V =6, shows the occurrence of self-trapping.
A further increase in nonlinearity, y/2V =12 shows the de-
struction of self-trapping. By contrast, the result of the stan-
dard DNLSE are to make self-trapping always more effective as
nonlinearity is increased.

would happen in the DNLSE, i.e., in the limit that A/y
tends to infinity.

This phenomenon of destruction of self-trapping is ob-
viously due to a saturation effect. In order to explain the
saturation more clearly, we provide U(p) plots along
with the corresponding probability evolution plots in Fig.
3. The latter are obtained from the exact solution (3.2).
In units of 2V, the saturation energy has the respective
values 100 [Fig. 3(a)], 2.5 [Fig. 3(b)], and 2 [Fig. 3(c)]. As
expected, the first of these cases shows behavior as in the
standard DNLSE, since A is large. When Y is small
(solid line), the potential is near harmonic and the quasi-
particle is able to oscillate between p =—1 and p =1. As
X increases, the center of the potential starts to rise
(dashed and dotted lines). Eventually the maximum of
the potential exceeds the value of the initial potential
which is equal to zero. In this case, the quasiparticle is
self-trapped at its initially occupied site. In Fig. 3(b), in-
creasing the nonlinearity from y=V (solid line) to
x =10V (dashed line) raises the center of the potential
above U =0, and thus localizes the quasiparticle. How-
ever, the potential is lowered as Y takes the value of 18V.
The quasiparticle is now free again. Self-trapping is thus
destroyed for large enough nonlinearities. The disappear-
ance of self-trapping can also occur for all values of non-
linearity if the saturation energy is small enough since, as
Fig. 1 has shown, the self-trapping effect, represented by
g (p), becomes smaller over the entire range as the satura-
tion energy becomes smaller. This case is seen in Fig.
3(c), which represents the smallest value of the saturation
energy in the set shown. The center of the potential nev-
er exceeds the value of the initial potential, and thus no
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self-trapping ever occurs for any values of nonlinear pa-
rameter Y.

The above analysis addresses the time evolution of the
dimer for given initial conditions. The stationary states
of the dimer also show interesting variation with non-
linearity. The appearance of self-trapping, its disappear-
ance for higher values of the nonlinearity, and the oc-
currence of multiple stationary states have been discussed
elsewhere.®131* Here we explain only the basic method
for those investigations. The simplest manner of examin-
ing the stationary states of the dimer is to set the right-
hand sides of (2.7)-(2.9) equal to zero or to put the force
on the fictitious oscillator given in (2.10) and (2.11) equal
to zero, and then to replace p, and r, by p and r, respec-
tively, in the resulting equations. Since g, equals zero
from (2.7) in the stationary states, and the squares of
P,q,r add up to 1 from their definition, one has

r=+V1—pZ

(5.1
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The stationary state probability differences are thus ob-
tained as the solutions of

2Vpi\/1—p2-5;g(p):0. (5.2)

Nonzero solutions signify self-trapping. It is possible to
construct a potential W (p) whose derivative is given by
the left-hand side of (5.2). The minima in such a plot ob-
viously signify stationary states. The disappearance of
self-trapping (as manifested in the stationary states) on in-
creasing the nonlinearity has been described in Ref. 6
where the probability difference p in the stationary state
has been shown to exhibit a bifurcation signifying self-
trapping above a critical value of the nonlinearity, and
then a destruction of the self-trapping above another crit-
ical value of the nonlinearity.® A complete study of the
multiple stationary states of the rotational polaron, and
their stability, will be found elsewhere.'*

FIG. 3. Dynamics of the rota-
tional polaron described through
probability evolution plots (right

side of the figure) along with
corresponding U(p) plots (left
side of the figure) for several
values of the nonlinearity and

00 02
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-06

the saturation energy. The ordi-
nate on all the left plots is U(p).
In units of 2V, the saturation en-
ergy has the respective values
100 (a), 2.5 (b), and 2 (c). The
nonlinearity )y is small for the
solid lines (y="V), larger for the
dashed lines (Y =10¥), and larg-
est for the dotted lines (18V).
Oscillations of p(t) favoring one

-08

-1 0

of the sites signify self-trapping.
Of particular interest is (c) in
which it is seen that the disap-
pearance of self-trapping can

00
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occur for all values of nonlinear-
ity if the saturation energy is
small enough: the center of the
potential never exceeds the value
of the initial potential, and no
self-trapping ever occurs for any
values of .
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VI. CONCLUDING REMARKS

We have investigated the effect of nonlinearities in the
interaction potential and anharmonicities in the restoring
force on the evolution of a system consisting of a quasi-
particle interacting with vibrations. We have obtained a
generalized transport equation for the quasiparticle
which we have called the generalized discrete nonlinear
Schrodinger equation (GDNLSE). We have given a prac-
tical prescription for obtaining the equation explicitly
from the nonlinearity in the interaction potential and
anharmonicity in the restoring force, and for solving the
equation for the time evolution in a dimer. We have il-
lustrated the general formalism by applying it to a system
we have called the rotational polaron, which is appropri-
ate to the oscillatory coordinate being a rotation. We
have discovered new effects including a saturation of non-
linearity, destruction of self-trapped states, and oc-
currence of multiple stationary states.

The physics behind what we have called a rotational
polaron is that of an electron, or electronic or vibrational
excitation, in strong interaction with an oscillator subject
to a sinusoidal potential. A rotator provides the simplest
example of such an oscillator. Our analysis is of interest
in the study of liquid crystals, which consist of partially
ordered aggregates of molecules possessing directed
shapes such as rods or discs.!*> The angular oscillations
that such molecules can perform around their equilibri-
um directions provide an example of the coordinate 0
that we have discussed in the present paper. The rota-
tional polaron would be encountered generally in any sys-
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tem in which a quasiparticle (an electron, or electronic or
vibrational excitation) interacts with the angular oscilla-
tions so strongly that the presence of the quasiparticle
has an appreciable effect on the equilibrium direction of
the molecule.

Our starting equations are (1.6) and (1.7) for the cou-
pled evolution of the quantum quasiparticle and the clas-
sical vibrations. They involve the generalization of the
more common (1.2) and (1.3) which lead to the standard
DNLSE. We have carried out that generalization in or-
der to introduce nonlinear and anharmonic effects. The
latter appear through a replacement of the linear interac-
tion energy expression (1.4) by the general expression
(1.5), and by the replacement of linear restoring forces by
more general counterparts. The coupled equations (1.6)
and (1.7) lead to our generalized transport equation for
the quasiparticle amplitudes, viz. the GDNLSE (2.1), and
the corresponding von Neumann equation for the density
matrix, viz. (2.3).

We obtain soluble equations for the two-site system.
The density-matrix elements lead to (2.7)-(2.9), and to
the closed evolution equation (2.11) for the probability
difference. General force and potential expressions are
(2.10) and (3.1) and the explicit solution to quadratures is
(3.2). The application to the system of rotational pola-
rons is made through (4.1) and (4.2), leads to the specific
transport equation (4.5). Figures 2 and 3 show the effects
of saturation on the dynamics. We explain a useful
method to study stationary states leading to (5.2). The
application of the general formalism to a variety of non-
linearities and anharmonicities will form the content of a
future publication.
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